Что сделать с патентом. Патент на работу и разрешение на работу: в чем разница и как получить. Процедура продления действия патента

Барометр — это устройство, которое измеряет атмосферное давление. То есть давление воздуха, который давит на нас со всех сторон. Еще со школы мы знаем, что первый барометр представлял собой тарелку с ртутью, и перевернутой пробиркой в ней. Автором этого устройства был Эванджели́ста Торриче́лли — итальянский физик и математик. Снять показания ртутного барометра можно так же просто, как и показания спиртового термометра: чем давление снаружи колбы больше, тем выше столбик ртути внутри неё. Пары ртути, как известно, весьма ядовиты.

Позже, появился более безопасный прибор — барометр-анероид. В этом барометре ртуть была заменена на гофрированную коробку из тонкой жести, в которой создано разрежение. Под воздействием атмосферы, коробочка сжимается и через систему рычагов поворачивает стрелку на циферблате. Вот так выглядят эти два барометра. Слева — анероид, справа — барометр Торричелли.

Зачем нам может понадобиться барометр? Чаще всего, этот прибор используют на летательных аппаратах для определения высоты полета. Чем выше аппарат поднимается над уровнем моря, тем меньшее давление испытывает бортовой барометр. Зная эту зависимость, легко определить высоту.

Другой распространенный вариант использования — самодельная погодная станция. В этом случае мы можем использовать известные зависимости грядущей погоды от атмосферного давления. Помимо барометра, на такие станции ставят датчики влажности и температуры.

1. Электронный барометр

Такие громоздкие барометры мы не сможем использовать в робототехнике. Нам нужен миниатюрный и энергоэффективный прибор, который легко подключается к той же Ардуино Уно. Большинство современных барометров делают по технологии МЭМС, так же как и гиротахометры с акселерометрами. МЭМС барометры основаны на пьезорезистивном, либо на тензометрическом методе, в которых используется эффект изменения сопротивления материала под действием деформирующих сил.

Если открыть корпус МЭМС барометра, можно увидеть чувствительный элемент (справа), который находится прямо под отверстием в защитном корпусе прибора, и плату управления (слева), которая осуществляет первичную фильтрацию и преобразование измерений.

2. Датчики BMP085 и BMP180

К самым доступным датчикам давления, которые часто используются полетных контроллерах и в разного рода самодельных электронных устройствах, можно отнести датчики компании BOSH: BMP085 и BMP180. Второй барометр более новый, но полностью совместимый со старой версией.

Немного важны характеристик BMP180:

  • диапазон измеряемых значений: от 300 гПа до 1100 гПа (от -500м от +9000м над уровнем моря);
  • напряжение питания: от 3.3 до 5 Вольт;
    сила тока: 5 мкА при скорости опроса — 1 Герц;
  • уровень шума: 0.06 гПа (0.5м) в грубом режиме (ultra low power mode) и 0.02 гПа (0.17м) а режиме максимального разрешения (advanced resolution mode).

Теперь подключим этот датчик к контроллеру, и попробуем оценить атмосферное давление.

3. Подключение BMP180

Оба датчика имеют I2C интерфейс, так что их без проблем можно подключить к любой платформе из семейства Ардуино. Вот как выглядит таблица подключения к Ардуино Уно.

BMP 180 GND VCC SDA SCL
Ардуино Уно GND +5V A4 A5

Принципиальная схема

Внешний вид макета

4. Программа

Для работы с датчиком нам понадобится библиотека: BMP180_Breakout_Arduino_Library

Скачиваем её из репозитория, и устанавливаем в Arduino IDE. Теперь все готово для написания первой программы. Попробуем получить сырые данные из датчика, и вывести их в монитор COM порта.

#include #include SFE_BMP180 pressure; void setup(){ Serial.begin(9600); pressure.begin(); } void loop(){ double P; P = getPressure(); Serial.println(P, 4); delay(100); } double getPressure(){ char status; double T,P,p0,a; status = pressure.startTemperature(); if (status != 0){ // ожидание замера температуры delay(status); status = pressure.getTemperature(T); if (status != 0){ status = pressure.startPressure(3); if (status != 0){ // ожидание замера давления delay(status); status = pressure.getPressure(P,T); if (status != 0){ return(P); } } } } }

Процедура получения заветного давления из датчика не такая тривиальная, и состоит из нескольких этапов. В упрощенном виде алгоритм выглядит так:

  1. запрашиваем у барометра показания встроенного датчика температуры;
  2. ждем время A, пока датчик оценивает температуру;
  3. получаем температуру;
  4. запрашиваем у барометра давление;
  5. ждем время B, пока датчик оценивает давление;
  6. получаем значение давления;
  7. возвращаем значение давления из функции.

Время B зависит от точности измерений, которая задается в функции startPressure . Единственный аргумент этой функции может принимать значения от 0 до 3, где 0 — самая грубая и самая быстрая оценка, 3 — самая точная оценка давления.

Загружаем программу на Ардуино Уно, и наблюдаем поток измерений атмосферного давления. Попробуем поднять датчик над головой, и опустить до уровня пола. Показания будут немного меняться. Осталось только разобраться, как нам преобразовать эти непонятные числа в высоту над уровнем моря.

5. Преобразование давления в высоту над уровнем моря

Датчик BMP180 возвращает величину давления в гектопаскалях (гПа). Именно в этих единицах принято измерять атмосферное давление. 1 гПа = 100 Паскалей. Известно, что на уровне моря давление в среднем составляет 1013 гПа, и каждый дополнительный метр над уровнем моря будет уменьшать это давление всего на 0.11 гПа (примерно).

Таким образом, если мы вычтем из результата функции getPressure число 1013, и разделим оставшуюся разность на 0.11, то мы получим значение высоты над уровнем моря в метрах. Вот так изменится наша программа:

Void loop(){ double P, Alt; P = getPressure(); Alt = (P - 1013)/0.11; Serial.println(Alt, 2); delay(100); }

В действительности, давление зависит от высоты над уровнем моря нелинейно, и наша формула годится лишь для высот на которых мы с вами обычно живем. Благо, человечеству известная более точная зависимость давления от высоты, которую мы можем применить для получения более точных результатов.

Здесь p — измеренное в данной точке давление, p0 — давление относительно которого идет отсчет высоты.

В библиотеке SFE_BMP180 уже есть функция, которая использует указанную. формулу для получения точной высоты. Используем её в нашей программе.

#include #include SFE_BMP180 pressure; double P0 = 0; void setup(){ Serial.begin(9600); pressure.begin(); P0 = pressure.getPressure(); } void loop(){ double P, Alt; P = getPressure(); Alt = pressure.altitude(P,P0) Serial.println(Alt, 2); delay(100); } double getPressure(){ ... }

Я не стал полностью копировать функцию getPressure, чтобы сохранить читабельность текста.

В программе появилась еще одна переменная P0 — это давление, которое мы измерим на старте программы. В случае летательного аппарата, P0 будет давлением на взлетной площадке, относительно которой мы начнем набор высоты.

6. Визуализация

Теперь попробуем отобразить показания давления в программе SFMonitor , и посмотрим как меняется давление при движении датчика на высоту 2 метра.

Static const byte PACKET_SIZE = 1; static const byte VALUE_SIZE = 2; static const boolean SEPARATE_VALUES = true; #include #include #include SFE_BMP180 pressure; SerialFlow rd(&Serial); double P0 = 0; void setup(){ rd.setPacketFormat(VALUE_SIZE, PACKET_SIZE, SEPARATE_VALUES); rd.begin(9600); pressure.begin(); P0 = getPressure(); } void loop(){ double P; P = getPressure(); rd.setPacketValue(100+int((P - P0)*100)); rd.sendPacket(); delay(100); } double getPressure(){ ... }

В результате работы программы получим график давления в Паскалях:

7. Заключение

Как мы уяснили из урока, определение высоты над уровнем моря не такая тривиальная задача. Мало того, что давление зависит от высоты нелинейно, так еще картину портят различные внешние факторы. Например, давление у нас дома постоянно меняется с течением времени. Даже за несколько минут, высота измеренная нашим прибором может варьироваться в диапазоне 0.5 — 1 метра. Температура так же сильно влияет на качество измерений, поэтому нам приходится учитывать её при расчете давления.

Для летательных аппаратов рекомендуется использовать датчики повышенной точности, такие как MS5611. У этого барометра точность измерений может достигать 0,012 гПа, что в 5 раз лучше, чем у BMP180. Также, для уточнения барометрической высоты полета применяют координаты GPS.

Успехов в наблюдении за атмосферой! 🙂

Введение

Что можно вывести на двухстрочный экран, кроме «Hello world!»? Почему бы не отображать температуру влажность и давление?

Датчики предлагаемые как учебное пособие к arduino (DHT11, DHT22) показывают температуру и влажность воздуха. В учебных целях (для университета) понадобилось наблюдать так же и за давлением. Естественно на кафедре есть барометр, но почему бы не собрать свой? К тому же можно в дальнейшем накапливать показания в автоматическом режиме, и это неплохой опыт в изучении arduino.

Так или иначе из Китая были заказаны комплектующие и собрано данное устройство.

Необходимые комплектующие

Для отправки скетча в arduino был использован USB-UART . Так же можно было использовать Raspberry Pi или компьютер с COM портом.

Схема подключения для прошивки и код программы

Из Китая USB-UART пришёл с набором проводков:

Их вполне хватило. Перемычку оставил на 3.3 вольта, несмотря на то что моя версия arduino питается от 5 вольт.

UART - Arduino
5v - VCC
TXD - RXD
RXD - TXD
GND - GND
CTS - DTR (опционально, у меня не работал, возможно потому что напряжение сигналов осталось 3.3В)

Если не подключать DTR, то после отправки прошивки arduino нужно перезагрузить встроенной кнопкой, начнётся активный обмен данными в обе стороны (о чём свидетельствуют светодиоды на USB-UART), после успешной загрузки прошивки, она сама перезагрузится.

Необходимые сторонние библиотеки:

Непосредственно код, с комментариями из примеров (на случай, если кому то понадобится что то менять).

Код

#include #include "SparkFunBME280.h" #include "Wire.h" #include "SPI.h" #include //Global sensor object BME280 mySensor; LiquidCrystal_I2C lcd(0x3F,16,2); //Адрес дисплея, в моём случае 0x3F void setup() { lcd.init(); lcd.backlight(); //***Driver settings********************************// //commInterface can be I2C_MODE or SPI_MODE //specify chipSelectPin using arduino pin names //specify I2C address. Can be 0x77(default) or 0x76 //For I2C, enable the following and disable the SPI section mySensor.settings.commInterface = I2C_MODE; mySensor.settings.I2CAddress = 0x76; //Адрес датчика, в моём случае не стандартный //For SPI enable the following and dissable the I2C section //mySensor.settings.commInterface = SPI_MODE; //mySensor.settings.chipSelectPin = 10; //***Operation settings*****************************// //renMode can be: // 0, Sleep mode // 1 or 2, Forced mode // 3, Normal mode mySensor.settings.runMode = 3; //В примере предлагают использовать Forced mode, но при обновлении раз в секунду достаточно Normal mode //tStandby can be: // 0, 0.5ms // 1, 62.5ms // 2, 125ms // 3, 250ms // 4, 500ms // 5, 1000ms // 6, 10ms // 7, 20ms mySensor.settings.tStandby = 5; //Очевидно чаще не нужно //filter can be off or number of FIR coefficients to use: // 0, filter off // 1, coefficients = 2 // 2, coefficients = 4 // 3, coefficients = 8 // 4, coefficients = 16 mySensor.settings.filter = 0; //tempOverSample can be: // 0, skipped // 1 through 5, oversampling *1, *2, *4, *8, *16 respectively mySensor.settings.tempOverSample = 1; //pressOverSample can be: // 0, skipped // 1 through 5, oversampling *1, *2, *4, *8, *16 respectively mySensor.settings.pressOverSample = 1; //humidOverSample can be: // 0, skipped // 1 through 5, oversampling *1, *2, *4, *8, *16 respectively mySensor.settings.humidOverSample = 1; //Calling .begin() causes the settings to be loaded mySensor.begin(); } void loop() { //Буквы можно вывести один раз, а далее менять показания, но показания при изменении количества значащих цифр могут сдвигать строку. lcd.setCursor(0,0); lcd.print("H="); lcd.print((uint8_t)mySensor.readFloatHumidity()); lcd.print("%"); lcd.print(" T="); lcd.print(mySensor.readTempC()); lcd.setCursor(13,0); lcd.print(" P:"); lcd.setCursor(0,1); int mmH=mySensor.readFloatPressure()/133; lcd.print(mmH); lcd.print("mmH "); lcd.print(mySensor.readFloatPressure()); lcd.setCursor(14,1); lcd.print("Pa"); delay(1000); }


Адрес датчика можно угадать, их всего два.

Как узнать адрес своего дисплея, можно посмотреть . В зависимости от микросхемы, есть две таблички.

В данном случае:


И адрес будет 0x3F т.к. A0 - A2 разомкнуты:

Светодиод который обведён в овал лучше можно выпаять.

Схема подключения

Резистор выбирался как половина от сопротивления датчика (между VVC и GND), чтобы падения напряжения на нём было 1.7 вольта. Так же схему можно запитать от входа RAW, другим напряжением (например от кроны).

На фотографии видно, что для компактности можно взять питание на датчик и дисплей с другого пина. Так же там видно ответвление оранжево-жёлтой пары проводов, на них висит резистор на 100 Ом, для уменьшения яркости подсветки (можно оставить джампер, но будет резать глаза).

В моём случае всё питается от старого компьютерного блока питания. Можно питать от USB. Все комплектующие были приклеены оказавшемся под рукой клеем «Момент».

Итог

На рабочем месте появился 1602 прикрученный к столу, который показывает давление, влажность, температуру. Arduino можно перепрошить не снимая (возможно станет бегущей строкой).