Что спектральная плотность энергетической светимости. Тепловое излучение закон стефана больцмана связь энергетической светимости r e и спектральной плотности энергетической светимости абсолютно черного тела

Тепловым излучением называют электромагнитные волны, испускаемые атомами, которые возбуждаются за счет энергии их теплового движения. Если излучение находится в равновесии с веществом, его называют равновесным тепловым излучением.

Все тела при температуре Т > 0 К испускают электромагнитные волны. Разреженные одноатомные газы дают линейчатые спектры излучения, многоатомные газы и жидкости - полосатые спектры, т.е.области с практически непрерымным набором длин волн. Твердые тела излучают сплошные спектры, состоящие из всевозможных длин волн. Человеческий глаз видит излучение в ограниченном диапазоне длин волн примерно от 400 до 700 нм. Чтобы человек смог увидеть излучение тела, температура тела должна быть не ниже 700 о С.

Тепловое излучение характеризуют следующими величинами:

W - энергия излучения (в Дж);

(Дж/(с.м 2) - энергетическая светимость (DS - площадь излучающей

поверхности). Энергетическая светимость R - по смыслу –

это энергия, излучаемая единичной площадью за единицу

времени по всем длинам волн l от 0 до .

Кроме этих характеристик, называемых интегральными, используют также спектральные характеристики , которые учитывают количество излучаемой энергии, приходящейся на единичный интервал длин волн или единичный интервал

поглощательная способность (коэффициент поглощения) - это отношение поглощенного светового потока к падающему потоку, взятых в малом интервале длин волн вблизи данной длины волны.

Спектральная плотность энергетической светимости численно равна Мощности излучения с единицы площади поверхности этого тела в интервале частот единичной ширины.



Тепловое излучение и его природа. Ультрафиолетовая катастрофа. Кривая распределения теплового излучения. Гипотеза Планка.

ТЕПЛОВОЕ ИЗЛУЧЕНИЕ (температурное излучение) - эл--магн. излучение, испускаемое веществом и возникающее за счёт его внутр. энергии (в отличие, напр., от люминесценции, к-рая возбуждается внеш. источниками энергии). Т. и. имеет сплошной спектр,положение максимума к-рого зависит от темп-ры вещества. С её повышением возрастает общая энергия испускаемого Т. и., а максимум перемещается в область малых длин волн. Т. и. испускает, напр., поверхность накалённого металла, земная атмосфера и т. д.

Т. и. возникает в условиях детального равновесия в веществе (см. Детального равновесия принцип)для всех безыз-лучат. процессов, т. е. для разл. типов столкновений частиц в газах и плазме, для обмена энергиями электронного и колебат. движений в твёрдых телах и т. д. Равновесное состояние вещества в каждой точке пространства - состояние локального термодинамич. равновесия (ЛТР) - при этом характеризуется значением темп-ры, от к-рой зависит Т. и. в данной точке.

В общем случае системы тел, для к-рой осуществляется лишь ЛТР и разл. точки к-рой имеют разл. темп-ры, Т. и. не находится в термодинамич. равновесии с веществом. Более горячие тела испускают больше, чем поглощают, а более холодные-соответственно наоборот. Происходит перенос излучения от более горячих тел к более холодным. Для поддержания стационарного состояния, при к-ром сохраняется распределение темп-ры в системе, необходимо восполнять потерю тепловой энергии излучающим более горячим телом и отводить её от более холодного тела.

При полном термодинамич. равновесии все части системы тел имеют одну темп-ру и энергия Т. и., испускаемого каждым телом, компенсируется энергией поглощаемого этим телом Т. и. других тел. В этом случае детальное равновесие имеет место и для излучат. переходов, Т. и. находится в термодинамич. равновесии с веществом и наз. излучением равновесным (равновесным является Т. и. абсолютно чёрного тела). Спектр равновесного излучения не зависит от природы вещества и определяется Планка законом излучения.

Для Т. и. нечёрных тел справедлив Кирхгофа закон излучения,связывающий их испускат. и поглощат. способности с испускат. способностью абсолютно чёрного тела.

При наличии ЛТР, применяя законы излучения Кирхгофа и Планка к испусканию и поглощению Т. и. в газах и плазме, можно изучать процессы переноса излучения. Такое рассмотрение широко используется в астрофизике, в частности в теории звёздных атмосфер.

Ультрафиоле́товая катастро́фа - физический термин, описывающий парадокс классической физики, состоящий в том, что полная мощность теплового излучения любого нагретого тела должна быть бесконечной. Название парадокс получил из-за того, что спектральная плотность энергии излучения должна была неограниченно расти по мере сокращения длины волны.

По сути этот парадокс показал если не внутреннюю противоречивость классической физики, то во всяком случае крайне резкое (абсурдное) расхождение с элементарными наблюдениями и экспериментом.

Так как это не согласуется с экспериментальным наблюдением, в конце XIX века возникали трудности в описании фотометрических характеристик тел.

Проблема была решена при помощи квантовой теории излучения Макса Планка в 1900 году.

Гипо́теза Пла́нка - гипотеза, выдвинутая 14 декабря 1900 года Максом Планком и заключающаяся в том, что при тепловом излучении энергия испускается и поглощается не непрерывно, а отдельными квантами (порциями). Каждая такая порция-квант имеет энергию , пропорциональной частоте ν излучения:

где h или - коэффициент пропорциональности, названный впоследствии постоянной Планка. На основе этой гипотезы он предложил теоретический вывод соотношения между температурой тела и испускаемым этим телом излучением - формулу Планка.

Позднее гипотеза Планка была подтверждена экспериментально.

Итак, что такое тепловое излучение?

Тепловое излучение - это электромагнитное излучение, которое возникает за счет энергии вращательного и колебательного движения атомов и молекул в составе вещества. Тепловое излучение характерно для всех тел, которые имеют температуру, превышающую температуру абсолютного нуля.

Тепловое излучение тела человека относится к инфракрасному диапазону электромагнитных волн. Впервые такое излучение было открыто английским астрономом Вильямом Гершелем. В 1865 английский физик Дж. Максвелл доказал, что ИК - излучение имеет электромагнитную природу и представляет собой волны длиной от 760нм до 1-2мм . Чаще всего весь диапазон ИК - излучения делят на области: ближнюю (750нм -2.500нм ), среднюю (2.500нм - 50.000нм ) и дальнюю (50.000нм -2.000.000нм ).

Рассмотрим случай, когда тело А расположено в полости Б, которая ограничена идеальной отражающей (непроницаемой для излучения) оболочкой С (рис.1). В результате многократного отражения от внутренней поверхности оболочки излучение будет сохраняться в пределах зеркальной полости и частично поглощаться телом А. При таких условиях система полость Б - тело А не будет терять энергию, а будет лишь происходить непрерывный обмен энергией между телом А и излучением, которое заполняет полость Б.

Рис.1 . Многократное отражение тепловых волн от зеркальных стенок полости Б

Если распределение энергии остается неизменным для каждой длины волны, то состояние такой системы будет равновесным, а излучение также будет равновесным. Единственным видом равновесного излучения является тепловое. Если по какой-то причине равновесие между излучением и телом сместится, то начинают протекать такие термодинамические процессы, которые вернут систему в состояние равновесия. Если тело А начинает излучать больше, чем поглощает, то тело начинает терять внутреннюю энергию и температура тела (как мера внутренней энергии) начнет падать, что уменьшит количество излучаемой энергии. Температура тела будет падать до тех пор, пока количество излучаемой энергии не станет равным количеству энергии, поглощаемой телом. Таким образом, наступит равновесное состояние.

Равновесное тепловое излучение имеет такие свойства: однородное (одинаковая плотность потока энергии во всех точках полости), изотропное (возможные направления распространения равновероятны), неполяризованное (направления и значения векторов напряженностей электрического и магнитного полей во всех точках полости изменяются хаотически).

Основными количественными характеристиками теплового излучения являются:

- энергетическая светимость - это количество энергии электромагнитного излучения во всем диапазоне длин волн теплового излучения, которое излучается телом во всех направлениях с единицы площади поверхности за единицу времени: R = E/(S·t), [Дж/(м 2 с)] = [Вт/м 2 ] Энергетическая светимость зависит от природы тела, температуры тела, состояния поверхности тела и длины волны излучения.

- спектральная плотность энергетической светимости - энергетическая светимость тела для данных длин волн (λ + dλ) при данной температуре (T + dT): R λ,T = f(λ, T).

Энергетическая светимость тела в пределах каких-то длин волн вычисляется интегрированием R λ,T = f(λ, T) для T = const:

- коэффициент поглощения - отношение поглощенной телом энергии к падающей энергии. Так, если на тело падает излучение потока dФ пад, то одна его часть отражается от поверхности тела - dФ отр, другая часть проходит в тело и частично превращается в теплоту dФ погл, а третья часть после нескольких внутренних отражений - проходит через тело наружу dФ пр: α = dФ погл /dФ пад.

Коэффициент поглощения α зависит от природы поглощающего тела, длины волны поглощаемого излучения, температуры и состояния поверхности тела.

- монохроматический коэффициент поглощения - коэффициент поглощения теплового излучения данной длины волны при заданной температуре: α λ,T = f(λ,T)

Среди тел есть такие тела, которые могут поглощать все тепловое излучение любых длин волн, которое падает на них. Такие идеально поглощающие тела называются абсолютно черными телами . Для них α =1.

Есть также серые тела, для которых α<1, но одинаковый для всех длин волн инфракрасного диапазона.

Моделью АЧТ является малое отверстие полости с теплонепроницаемой оболочкой. Диаметр отверстия составляет не более 0,1 диаметра полости. При постоянной температуре из отверстия излучается некоторая энергия, соответствующая энергетической светимости абсолютно черного тела. Но АЧТ - это идеализация. Но законы теплового излучения АЧТ помогают приблизиться к реальным закономерностям.

2. Законы теплового излучения

1. Закон Кирхгофа. Тепловое излучение является равновесным - сколько энергии излучается телом, столь ее им и поглощается. Для трех тел, находящихся в замкнутой полости можно записать:

Указанное соотношение будет верным и тогда, когда одно из тел будет АЧ:

Т.к. для АЧТ α λT .
Это закон Кирхгофа: отношение спектральной плотности энергетической светимости тела к его монохроматическому коэффициенту поглощения (при определенной температуре и для определенной длины волны) не зависит от природы тела и равно для всех тел спектральной плотности энергетической светимости при тех же самых температуре и длине волны.

Следствия из закона Кирхгофа:
1. Спектральная энергетическая светимость АЧТ является универсальной функцией длины волны и температуры тела.
2. Спектральная энергетическая светимость АЧТ наибольшая.
3. Спектральная энергетическая светимость произвольного тела равна произведению его коэффициента поглощения на спектральную энергетическую светимость абсолютно черного тела.
4. Любое тело при данной температуре излучает волны той же длины волны, которое оно излучает при данной температуре.

Систематическое изучение спектров ряда элементов позволило Кирхгофу и Бунзену установить однозначную связь между спектрами поглощения и излучения газов и индивидуальностью соответствующих атомов. Так был предложен спектральный анализ , с помощью которого можно выявить вещества, концентрация которых составляет 0,1нм.

Распределение спектральной плотности энергетической светимости для абсолютно черного тела, серого тела, произвольного тела. Последняя кривая имеет несколько максимумов и минимумов, что указывает на избирательность излучения и поглощения таких тел.

2. Закон Стефана-Больцмана.
В 1879 году австрийские ученые Йозеф Стефан (экспериментально для произвольного тела) и Людвиг Больцман (теоретически для АЧТ) установили, что общая энергетическая светимость во всем диапазоне длин волн пропорциональна четвертой степени абсолютной температуры тела:

3. Закон Вина.
Немецкий физик Вильгельм Вин в 1893 году сформулировал закон, который определяет положение максимума спектральной плотности энергетической светимости тела в спектре излучения АЧТ в зависимости от температуры. Согласно закону, длина волны λ max , на которую приходится максимум спектральной плотности энергетической светимости АЧТ, обратно пропорционален его абсолютной температуре Т: λ max = в/t, где в = 2,9*10 -3 м·К- постоянная Вина.

Таким образом, при увеличении температуры изменяется не только полная энергия излучения, но и сама форма кривой распределения спектральной плотности энергетической светимости. Максимум спектральной плотности при увеличении температуры смещается в сторону более коротких длин волн. Поэтому закон Вина называют законом смещения.

Закон Вина применяется в оптической пирометрии - метода определения температуры по спектру излучения сильно нагретых тел, которые отдалены от наблюдателя. Именно этим методом впервые была определена температура Солнца (для 470нм Т=6160К).

Представленные законы не позволяли теоретически найти уравнения распределения спектральной плотности энергетической светимости по длинам волн. Труды Релея и Джинса, в которых ученые исследовали спектральный состав излучения АЧТ на основе законов классической физики, привели к принципиальным трудностям, названных ультрафиолетовой катастрофой. В диапазоне УФ-волн энергетическая светимость АЧТ должна была достигать бесконечности, хотя в опытах она уменьшалась к нулю. Эти результаты противоречили закону сохранения энергии.

4. Теория Планка. Немецкий ученый в 1900 году выдвинул гипотезу о том, что тела излучают не непрерывно, а отдельными порциями - квантами. Энергия кванта пропорциональна частоте излучения: E = hν = h·c/λ , где h = 6,63*10 -34 Дж·с постоянная Планка.

Руководствуясь представлениями о квантовом излучении АЧТ, он получил уравнение для спектральной плотности энергетической светимости АЧТ:

Эта формула находится в соответствии с опытными данными во всем интервале длин волн при всех температурах.

Солнце - основной источник теплового излучения в природе. Солнечное излучение занимает широкий диапазон длин волн: от 0,1нм до 10м и более. 99% солнечной энергии приходится на диапазон от 280 до 6000нм . На единицу площади Земной поверхности приходится в горах от 800 до 1000 Вт/м 2 . До земной поверхности доходит одна двухмиллиардная часть тепла - 9,23 Дж/см 2 . На диапазон теплового излучения от 6000 до 500000нм приходится 0,4% энергии Солнца. В атмосфере Земли большая часть ИК-излучения поглощается молекулами воды, кислорода, азота, диоксида углерода. Радиодиапазон тоже большей частью поглощается атмосферой.

Количество энергии, которую приносят солнечные лучи за 1с на площадь в 1 кв.м, расположенную за пределами земной атмосферы на высоте 82 км перпендикулярную солнечным лучам называется солнечной постоянной. Она равна 1,4*10 3 Вт/м 2 .

Спектральное распределение нормальной плотности потока солнечного излучения совпадает с таким для АЧТ при температуре 6000 градусов. Поэтому Солнце относительно теплового излучения - АЧТ.

3. Излучение реальных тел и тела человека

Тепловое излучение с поверхности тела человека играет большую роль в теплоотдаче. Существуют такие способы теплоотдачи: теплопроводность (кондукция), конвекция, излучение, испарение. В зависимости от условий, в которых окажется человек, каждый из этих способов может иметь доминирующее значение (так, например, при очень высоких температурах среды ведущая роль принадлежит испарению, а в холодной воде - кондукции, причем температура воды 15 градусов является смертельной средой для обнаженного человека, и через 2-4 часа наступает обморок и смерть вследствие переохлаждения мозга). Доля излучения в общей теплоотдаче может составлять от 75 до 25%. В нормальных условиях около 50% при физиологическом покое.

Тепловое излучение, которое играет роль в жизни живых организмов делится на коротковолновую (от 0,3 до 3 мкм) и длинноволновую (от 5 до 100мкм ). Источником коротковолнового излучения служат Солнце и открытое пламя, а живые организмы являются исключительно реципиентами такого излучения. Длинноволновая радиация и излучается, и поглощается живыми организмами.

Величина коэффициента поглощения зависит от соотношения температур среды и тела, площади их взаимодействия, ориентации этих площадей, а для коротковолнового излучения - от цвета поверхности. Так у негров происходит отражение лишь 18% коротковолнового излучения, тогда как у людей белой расы около 40% (скорее всего, цвет кожи негров в эволюции не имел отношение к теплообмену). Для длинноволнового излучения коэффициент поглощения приближен к 1.

Расчет теплообмена излучением - очень трудная задача. Для реальных тел использовать закон Стефана-Больцмана нельзя, поскольку у них более сложная зависимость энергетической светимости от температуры. Оказывается, она зависит от температуры, природы тела, формы тела и состояния его поверхности. Со сменой температуры изменяется коэффициент σ и показатель степени температуры. Поверхность тела человека имеет сложную конфигурацию, человек носит одежду, которая изменяет излучение, на процесс влияет поза, в которой находится человек.

Для серого тела мощность излучения во всем диапазоне определяется по формуле: P = α с.т. σ·T 4 ·S Считая с определенными приближениями реальные тела (кожа человека, ткани одежды) близкими к серым телам, можно найти формулу для вычисления мощности излучения реальными телами при определенной температуре: P = α·σ·T 4 ·S В условиях разных температур излучающего тела и окружающей среды: P = α·σ·(T 1 4 - T 2 4)·S
Существуют особенности спектральной плотности энергетической светимости реальных тел: при 310К , что соответствует средней температуре тела человека, максимум теплового излучения приходится на 9700нм . Любое изменение температуры тела приводит к изменению мощности теплового излучения с поверхности тела (0,1 градус достаточно). Поэтому исследование участков кожи, через ЦНС связанных с определенными органами, способствует выявлению заболеваний, в результате которых температура изменяется довольно значительно (термография зон Захарьина-Геда ).

Интересен метод бесконтактного массажа биополем человека (Джуна Давиташвили). Мощность теплового излучения ладони 0,1Вт , а тепловая чувствительность кожи 0,0001 Вт/см 2 . Если действовать на вышеупомянутые зоны, можно рефлекторно стимулировать работу этих органов.

4. Биологическое и терапевтическое действие тепла и холода

Тело человека постоянно излучает и поглощает тепловое излучение. Этот процесс зависит от температур тела человека и окружающей среды. Максимум ИК-излучения тела человека приходится на 9300нм.

При маленьких и средних дозах облучения ИК-лучами усиливаются метаболические процессы и ускоряются ферментативные реакции, процессы регенерации и репарации.

В результате действия ИК-лучей и видимого излучения в тканях образуются БАВ (брадикинин, калидин, гистамин, ацетилхолин, в основном вазомоторные вещества, которые играют роль в осуществлении и регуляции местного кровотока).

В результате действия ИК-лучей в коже активируются терморецепторы, информация от которых поступает в гипоталамус, в результате чего расширяются сосуды кожи, увеличивается объем циркулирующей в них крови, усиливается потовыделение.

Глубина проникновения ИК-лучей зависит от длины волны, влажности кожи, наполнения ее кровью степени пигментации и т.д.

На коже человека под действием ИК-лучей возникает красная эритема.

Применяется в клинической практике для влияния на местную и общую гемодинамику, усиления потовыделения, расслабления мышц, снижения болевого ощущения, ускорения рассасывания гематом, инфильтратов и т.д.

В условиях гипертермии усиливается противоопухолевое действие лучевой терапии - терморадиотерапия.

Основные показания применения ИК-терапии: острые негнойные воспалительные процессы, ожоги и обморожения, хронические воспалительные процессы, язвы, контрактуры, спайки, травмы суставов, связок и мышц, миозиты, миалгии, невралгии. Основные противопоказания: опухоли, гнойные воспаления, кровотечения, недостаточность кровообращения.

Холод применяется для остановки кровотечений, обезболивания, лечения некоторых заболеваний кожи. Закаливание ведет к долголетию.

Под действием холода снижается частота сердечных сокращений, артериальное давление, угнетаются рефлекторные реакции.

В определенных дозах холод стимулирует заживление ожогов, гнойных ран, трофических язв, эрозий, коньюктивитов.

Криобиология - изучает процессы, которые происходят в клетках, тканях, органах и организме под действием низких, нефизиологических температур.

В медицине используются криотерапия и гипертермия . Криотерапия включает методы, основанные на дозированном охлаждении тканей, органов. Криохирургия (часть криотерапии) использует локальное замораживание тканей с целью их удаления (часть миндалины. Если вся - криотонзилоэктомия. Можно удалять опухоли, например, кожи, шейки матки и т.д.) Криоэкстракция, основанная на криоадгезии (прилипании влажных тел к замороженному скальпелю) - выделение из органа части.

При гипертермии можно некоторое время сохранить функции органов ин виво. Гипотермию с помощью наркоза используют для сохранения функции органов при отсутствии кровоснабжения, поскольку замедляется обмен веществ в тканях. Ткани становятся стойкими к гипоксии. Применяют холодовой наркоз.

Осуществляют действие тепла с помощью ламп накаливания (лампа Минина, солюкс, ванна светотепловая, лампа ИК-лучей) с использованием физических сред, имеющих высокую теплоемкость, плохую теплопроводность и хорошую теплосохранящую способность: грязи, парафин, озокерит, нафталин и т.д.

5. Физические основы термографии.Тепловизоры

Термография, или тепловидение - это метод функциональной диагностики, основанный на регистрации ИК-излучения тела человека.

Существует 2 разновидности термографии:

- контактная холестерическая термография : в методе используются оптические свойства холестерических жидких кристаллов (многокомпонентные смеси сложных эфиров и других производных холестерина). Такие вещества избирательно отражают разные длины волн, что дает возможным получать на пленках этих веществ изображения теплового поля поверхности тела человека. На пленку направляют поток белого света. Разные длины волн по-разному отражаются от пленки в зависимости от температуры поверхности, на которую нанесен холестерик.

Под действием температуры холестерики могут изменять цвет от красного до фиолетового. В результате формируется цветное изображение теплового поля тела человека, которое легко расшифровать, зная зависимость температура-цвет. Существуют холестерики, позволяющие фиксировать разницу температур 0,1 градус. Так, можно определить границы воспалительного процесса, очаги воспалительной инфильтрации на разных стадиях ее развития.

В онкологии термография позволяет выявить метастатические узлы диаметром 1,5-2мм в молочной железе, коже, щитовидной железе; в ортопедии и травматологии оценить кровоснабжение каждого сегмента конечности, например, перед ампутацией, опередить глубину ожога и т.д.; в кардиологии и ангиологии выявить нарушения нормального функционирования ССС, нарушения кровообращения при вибрационной болезни, воспалении и закупорке сосудов; расширение вен и т.д.; в нейрохирургии определить расположение очагов повреждения проводимости нерва, подтвердить место нейропаралича, вызванного апоплексией; в акушерстве и гинекологии определить беременность, локализацию детского места; диагностировать широкий спектр воспалительных процессов.

- Телетермография - базируется на превращение ИК-излучения тела человека в электрические сигналы, которые регистрируются на экране тепловизора или другом записывающем устройстве. Метод бесконтактный.

ИК-излучение воспринимается системой зеркал, после чего ИК-лучи направляются на приемник ИК-волн, основную часть которого составляет детектор (фотосопротивление, металлический или полупроводниковый болометр, термоэлемент, фотохимический индикатор, электронно-оптический преобразователь, пьезоэлектрические детекторы и т.д.).

Электрические сигналы от приемника передаются на усилитель, а потом - на управляющее устройство, которое служит для перемещения зеркал (сканирование объекта), разогревания точечного источника света ТИС (пропорционально тепловому излучению), движения фотопленки. Каждый раз пленка засвечивается ТИС соответственно температуре тела в месте исследования.

После управляющего устройства сигнал может передаваться на компьютерную систему с дисплеем. Это позволяет запоминать термограммы, обрабатывать их с помощью аналитических программ. Дополнительные возможности предоставляет цветные тепловизоры (близкие по температуре цвета обозначить контрастными цветами), провести изотермы.

Многие копании в последнее время признают тот факт, что «достучаться» до потенциального клиента, порой, достаточно сложно, его информационное поле настолько загружено различного рода рекламными сообщениями, что таковые просто перестают восприниматься.
Активные продажи по телефону становятся одним из наиболее эффективных способов увеличения продаж в короткие сроки. Холодные звонки направлены на привлечение клиентов, которые ранее не обращались за товаром или услугой, но по ряду факторов являются потенциальными клиентами. Набрав телефонный номер, менеджер активных продаж должен четко осознавать цель холодного звонка. Ведь телефонные переговоры требуют от sales manager особого мастерства и терпения, а так же знание техники и методики ведения переговоров.

Энергетическая светимость тела R Т , численно равна энергии W , излучаемой телом во всем диапазоне длин волн (0 с единицы поверхности тела, в единицу времени, при температуре телаТ , т.е.

Испускательная способность тела rl ,Т численно равна энергии тела dWl , излучаемой телом c единицы поверхности тела, за единицу времени при температуре тела Т, в диапазоне длин волн от lдо l+dl, т.е.

Эту величину называют также спектральной плотностью энергетической светимости тела.

Энергетическая светимость связана с испускательной способностью формулой

Поглощательная способность тела al ,T - число, показывающее, какая доля энергии излучения, падающего на поверхность тела, поглощается им в диапазоне длин волн от l до l+dl, т.е.

Тело, для которого al ,T =1 во всем диапазоне длин волн, называется абсолютно черным телом (АЧТ).

Тело, для которого al ,T =const<1 во всем диапазоне длин волн называют серым.

где- спектральная плотность энергетической светимости, или лучеиспускательная способность тела .

Опыт показывает, что лучеиспускательная способность тела зависит от температуры тела (для каждой температуры максимум излучения лежит в своей области частот). Размерность .



Зная лучеиспускательную способность, можно вычислить энергетическую светимость:

называется поглощательной способностью тела . Она также сильно зависит от температуры.

По определению не может быть больше единицы. Для тела, полностью поглощающего излучения всех частот, . Такое тело называется абсолютно черным (это идеализация).

Тело, для которого и меньше единицы для всех частот , называется серым телом (это тоже идеализация).

Между испускательной и поглощательной способностью тела существует определенная связь. Мысленно проведем следующий эксперимент (рис. 1.1).

Рис. 1.1

Пусть внутри замкнутой оболочки находятся три тела. Тела находятся в вакууме, следовательно обмен энергией может происходить только за счет излучения. Опыт показывает, что такая система через некоторое время придет в состояние теплового равновесия (все тела и оболочка будут иметь одну и ту же температуру).

В таком состоянии тело, обладающее большей лучеиспускательной способностью, теряет в единицу времени и больше энергии, но, следовательно это тело должно обладать и большей поглощающей способностью:

Густав Кирхгоф в 1856 году сформулировал закон и предложил модель абсолютно черного тела .

Отношение лучеиспускательной к поглощательной способности не зависит от природы тела, оно является для всех тел одной и той же (универсальной ) функцией частоты и температуры.

, (1.2.3)

где – универсальная функция Кирхгофа.

Эта функция имеет универсальный, или абсолютный, характер.

Сами величины и, взятые отдельно, могут изменяться чрезвычайно сильно при переходе от одного тела к другому, но их отношение постоянно для всех тел (при данной частоте и температуре).

Для абсолютно черного тела, следовательно, для него, т.е. универсальная функция Кирхгофа есть не что иное, как лучеиспускательная способность абсолютно черного тела.

Абсолютно черных тел в природе не существует. Сажа или платиновая чернь имеют поглощающую способность, но только в ограниченном интервале частот. Однако полость с малым отверстием очень близка по своим свойствам к абсолютно черному телу. Луч, попавший внутрь, после многократных отражений обязательно поглощается, причём луч любой частоты (рис. 1.2).

Рис. 1.2

Лучеиспускательная способность такого устройства (полости) очень близка к f (ν,,T ). Таким образом, если стенки полости поддерживаются при температуре T , то из отверстия выходит излучение весьма близкое по спектральному составу к излучению абсолютно черного тела при той же температуре.

Разлагая это излучение в спектр, можно найти экспериментальный вид функции f (ν,,T )(рис. 1.3), при разных температурах Т 3 > Т 2 > Т 1 .

Рис. 1.3

Площадь, охватываемая кривой, дает энергетическую светимость абсолютно черного тела при соответствующей температуре.

Эти кривые одинаковы для всех тел.

Кривые похожи на функцию распределения молекул по скоростям. Но там площади, охватываемые кривыми, постоянны, а здесь с увеличением температуры площадь существенно увеличивается. Это говорит о том, что энергетическая совместимость сильно зависит от температуры. Максимум излучения (излучательной способности) с увеличением температурысмещается в сторону больших частот.

Законы теплового излучения

Любое нагретое тело излучает электромагнитные волны. Чем выше температура тела, тем более короткие волны оно испускает. Тело, находящееся в термодинамическом равновесии со своим излучением, называют абсолютно черным (АЧТ). Излучение абсолютно черного тела зависит только от его температуры. В 1900 году Макс Планк вывел формулу, по которой при заданной температуре абсолютно черного тела можно рассчитать величину интенсивности его излучения.

Австрийскими физиками Стефаном и Больцманом был установлен закон, выражающий количественное соотношение между полной излучательной способностью и температурой черного тела:

Этот закон носит название закон Стефана–Больцмана . Константа σ = 5,67∙10 –8 Вт/(м 2 ∙К 4) получила названиепостоянной Стефана–Больцмана .

Все планковские кривые имеют заметно выраженный максимум, приходящийся на длину волны

Этот закон получил название закон Вина . Так, для Солнца Т 0 = 5 800 К, и максимум приходится на длину волныλ max ≈ 500 нм, что соответствует зеленому цвету в оптическом диапазоне.

С увеличением температуры максимум излучения абсолютно черного тела сдвигается в коротковолновую часть спектра. Более горячая звезда излучает большую часть энергии в ультрафиолетовом диапазоне, менее горячая – в инфракрасном.

Фотоэффект. Фотоны

Фотоэлектрический эффект был открыт в 1887 году немецким физиком Г. Герцем и в 1888–1890 годах экспериментально исследован А. Г. Столетовым. Наиболее полное исследование явления фотоэффекта было выполнено Ф. Ленардом в 1900 г. К этому времени уже был открыт электрон (1897 г., Дж. Томсон), и стало ясно, что фотоэффект (или точнее – внешний фотоэффект) состоит в вырывании электронов из вещества под действием падающего на него света.

Схема экспериментальной установки для исследования фотоэффекта изображена на рис. 5.2.1.

В экспериментах использовался стеклянный вакуумный баллон с двумя металлическими электродами, поверхность которых была тщательно очищена. К электродам прикладывалось некоторое напряжение U , полярность которого можно было изменять с помощью двойного ключа. Один из электродов (катод K) через кварцевое окошко освещался монохроматическим светом некоторой длины волны λ. При неизменном световом потоке снималась зависимость силы фототока I от приложенного напряжения. На рис. 5.2.2 изображены типичные кривые такой зависимости, полученные при двух значениях интенсивности светового потока, падающего на катод.

Кривые показывают, что при достаточно больших положительных напряжениях на аноде A фототок достигает насыщения, так как все электроны, вырванные светом из катода, достигают анода. Тщательные измерения показали, что ток насыщения I н прямо пропорционален интенсивности падающего света. Когда напряжение на аноде отрицательно, электрическое поле между катодом и анодом тормозит электроны. Анода могут достичь только те электроны, кинетическая энергия которых превышает |eU |. Если напряжение на аноде меньше, чем –U з, фототок прекращается. Измеряя U з, можно определить максимальную кинетическую энергию фотоэлектронов:

Многочисленными экспериментаторами были установлены следующие основные закономерности фотоэффекта:

  1. Максимальная кинетическая энергия фотоэлектронов линейно возрастает с увеличением частоты света ν и не зависит от его интенсивности.
  2. Для каждого вещества существует так называемая красная граница фотоэффекта , т. е. наименьшая частота ν min , при которой еще возможен внешний фотоэффект.
  3. Число фотоэлектронов, вырываемых светом из катода за 1 с, прямо пропорционально интенсивности света.
  4. Фотоэффект практически безынерционен, фототок возникает мгновенно после начала освещения катода при условии, что частота света ν > ν min .

Все эти закономерности фотоэффекта в корне противоречили представлениям классической физики о взаимодействии света с веществом. Согласно волновым представлениям при взаимодействии с электромагнитной световой волной электрон должен был бы постепенно накапливать энергию, и потребовалось бы значительное время, зависящее от интенсивности света, чтобы электрон накопил достаточно энергии для того, чтобы вылететь из катода. Как показывают расчеты, это время должно было бы исчисляться минутами или часами. Однако, опыт показывает, что фотоэлектроны появляются немедленно после начала освещения катода. В этой модели также было невозможно понять существование красной границы фотоэффекта. Волновая теория света не могла объяснить независимость энергии фотоэлектронов от интенсивности светового потока и пропорциональность максимальной кинетической энергии частоте света.

Таким образом, электромагнитная теория света оказалась неспособной объяснить эти закономерности.

Выход был найден А. Эйнштейном в 1905 г. Теоретическое объяснение наблюдаемых закономерностей фотоэффекта было дано Эйнштейном на основе гипотезы М. Планка о том, что свет излучается и поглощается определенными порциями, причем энергия каждой такой порции определяется формулой E = h ν, где h – постоянная Планка. Эйнштейн сделал следующий шаг в развитии квантовых представлений. Он пришел к выводу, что свет имеет прерывистую (дискретную) структуру . Электромагнитная волна состоит из отдельных порций – квантов , впоследствии названных фотонами . При взаимодействии с веществом фотон целиком передает всю свою энергию h νодному электрону. Часть этой энергии электрон может рассеять при столкновениях с атомами вещества. Кроме того, часть энергии электрона затрачивается на преодоление потенциального барьера на границе металл–вакуум. Для этого электрон должен совершить работу выхода A , зависящую от свойств материала катода. Наибольшая кинетическая энергия, которую может иметь вылетевший из катода фотоэлектрон, определяется законом сохранения энергии:

Эту формулу принято называть уравнением Эйнштейна для фотоэффекта .

С помощью уравнения Эйнштейна можно объяснить все закономерности внешнего фотоэффекта. Из уравнения Эйнштейна следуют линейная зависимость максимальной кинетической энергии от частоты и независимость от интенсивности света, существование красной границы, безынерционность фотоэффекта. Общее число фотоэлектронов, покидающих за 1 с поверхность катода, должно быть пропорционально числу фотонов, падающих за то же время на поверхность. Из этого следует, что ток насыщения должен быть прямо пропорционален интенсивности светового потока.

Как следует из уравнения Эйнштейна, тангенс угла наклона прямой, выражающей зависимость запирающего потенциала U з от частоты ν (рис. 5.2.3), равен отношению постоянной Планка h к заряду электрона e :

где c – скорость света, λ кр – длина волны, соответствующая красной границе фотоэффекта. У большинства металлов работа выхода A составляет несколько электрон-вольт (1 эВ = 1,602·10 –19 Дж). В квантовой физике электрон-вольт часто используется в качестве энергетической единицы измерения. Значение постоянной Планка, выраженное в электрон–вольтах в секунду, равно

Среди металлов наименьшей работой выхода обладают щелочные элементы. Например, у натрия A = 1,9 эВ, что соответствует красной границе фотоэффекта λ кр ≈ 680 нм. Поэтому соединения щелочных металлов используют для создания катодов в фотоэлементах , предназначенных для регистрации видимого света.

Итак, законы фотоэффекта свидетельствуют, что свет при испускании и поглощении ведет себя подобно потоку частиц, получивших название фотонов или световых квантов .

Энергия фотонов равна

следует, что фотон обладает импульсом

Таким образом, учение о свете, совершив виток длительностью в два столетия, вновь возвратилось к представлениям о световых частицах – корпускулах.

Но это не был механический возврат к корпускулярной теории Ньютона. В начале XX века стало ясно, что свет обладает двойственной природой. При распространении света проявляются его волновые свойства (интерференция, дифракция, поляризация), а при взаимодействии с веществом – корпускулярные (фотоэффект). Эта двойственная природа света получила название корпускулярно-волнового дуализма . Позже двойственная природа была открыта у электронов и других элементарных частиц. Классическая физика не может дать наглядной модели сочетания волновых и корпускулярных свойств у микрообъектов. Движением микрообъектов управляют не законы классической механики Ньютона, а законы квантовой механики. Теория излучения абсолютно черного тела, развитая М. Планком, и квантовая теория фотоэлектрического эффекта Эйнштейна лежат в основании этой современной науки.

Спектральная плотность энергетической светимости (яркости) - это функция, показывающая распределение энергетической светимости (яркости) по спектру излучения.
Имея ввиду, что:
Энергетическая светимость - это поверхностная плотность потока энергии, излучаемой поверхностью
Энергетическая яркость - это величина потока, излучаемого единицей площади в единицу телесного угла в данном направлении

Абсолютно чёрное тело - физическая идеализация, применяемая в термодинамике, тело, поглощающее всё падающее на него электромагнитное излучение во всех диапазонах и ничего не отражающее. Несмотря на название, абсолютно чёрное тело само может испускать электромагнитное излучение любой частоты и визуально иметь цвет. Спектр излучения абсолютно чёрного тела определяется только его температурой.

Абсолютно черное тело

Абсолютно черное тело - это физическая абстракция (модель), под которой понимают тело, полностью поглощающее всё падающее на него электромагнитное излучение

Для абсолютно черного тела

Серое тело

Серое тело - это такое тело, коэффициент поглощения которого не зависит от частоты, а зависит только от температуры

Для серого тела

Закон кирхгофа для теплового излучения

Отношение излучательной способности любого тела к его поглощательной способности одинаково для всех тел при данной температуре для данной частоты и не зависит от их формы и химической природы.

Температурная зависимость спектральной плотности энергетической светимости абсолютно черного тела

зависимости спектральной плотности энергии излучения L (Т) черного тела от температуры Т в микроволновом диапазоне излучения, устанавливается для диапазона температур от 6300 до 100000 К.

Закон смещения Вина даёт зависимость длины волны, на которой поток излучения энергии чёрного тела достигает своего максимума, от температуры чёрного тела.

B=2,90* м*К

Закон Стефана-Больцмана

Формула рэлея-джинса

формула планка

постоянная планка

Фотоэффе́кт - это испускание электронов веществом под действием света (и, вообще говоря, любого электромагнитного излучения). В конденсированных веществах (твёрдых и жидких) выделяют внешний и внутренний фотоэффект.

Законы фотоэффекта :

Формулировка 1-го закона фотоэффекта : количество электронов, вырываемых светом с поверхности металла за единицу времени на данной частоте, прямо пропорционально световому потоку, освещающему металл .

Согласно 2-му закону фотоэффекта , максимальная кинетическая энергия вырываемых светом электронов линейно возрастает с частотой света и не зависит от его интенсивности .

3-ий закон фотоэффекта : для каждого вещества существует красная граница фотоэффекта, то есть минимальная частота света (или максимальная длина волны λ 0), при которой ещё возможен фотоэффект, и если , то фотоэффект уже не происходит .

Фото́н - элементарная частица, квант электромагнитного излучения (в узком смысле -света). Это безмассовая частица, способная существовать только двигаясь со скоростью света. Электрический заряд фотона также равен нулю.

Уравнение Эйнштейна для внешнего фотоэффекта

Фотоэлемент - электронный прибор, который преобразует энергию фотонов в электрическую энергию. Первый фотоэлемент, основанный на внешнем фотоэффекте, создал Александр Столетов в конце XIX века.

энергия масса и импульс фотона

Давление света - это давление, которое производят электромагнитные световые волны, падающие на поверхность какого-либо тела.

Давление р, оказываемое волной на поверхность металла можно было рассчитать, как отношение равнодействующей сил Лоренца, действующих на свободные электроны в поверхностном слое металла, к площади поверхности металла:

Квантовая теория света объясняетдавление света как результат передачи фотонами своего импульса атомам или молекулам вещества.

Эффект Комптона (Комптон-эффект) - явление изменения длины волны электромагнитного излучения вследствие упругого рассеивания его электронами

Комптоновская длина волны

Гипотеза де Бройля заключается в том, что французский физик Луи де Бройль выдвинул идею приписать волновые свойства электрону. Проводя аналогию между квантом, де Бройль предположил, что движение электрона или какой-либо другой частицы, обладающей массой покоя, связано с волновым процессом.

Гипотеза де Бройля устанавливает, что движущейся частице, обладающей энергией E и импульсом p, соответствует волновой процесс, частота которого равна:

а длина волны:

где p - импульс движущейся частицы.

Опыт Дэвиссона-Джермера - физический эксперимент по дифракции электронов, проведённый в 1927 г. американскими учёными Клинтоном Дэвиссоном и Лестером Джермером.

Проводилось исследование отражения электронов от монокристалла никеля. Установка включала в себя монокристалл никеля, сошлифованный под углом и установленный на держателе. На плоскость шлифа направлялся перпендикулярно пучок монохроматических электронов. Скорость электронов определялась напряжением на электронной пушке:

Под углом к падающему пучку электронов устанавливался цилиндр Фарадея, соединённый с чувствительным гальванометром. По показаниям гальванометра определялась интенсивность отражённого от кристалла электронного пучка. Вся установка находилась в вакууме.

В опытах измерялась интенсивность рассеянного кристаллом электронного пучка в зависимости от угла рассеяния от азимутального угла , от скорости электронов в пучке.

Опыты показали, что имеется ярко выраженная селективность (выборочность) рассеяния электронов. При различных значениях углов и скоростей, в отражённых лучах наблюдаются максимумы и минимумы интенсивности. Условие максимума:

Здесь - межплоскостное расстояние.

Таким образом наблюдалась дифракция электронов на кристаллической решётке монокристала. Опыт явился блестящим подтверждением существования у микрочастиц волновых свойств.

Волнова́я фу́нкция , или пси-функция - комплекснозначная функция, используемая в квантовой механике для описания чистого состояния системы. Является коэффициентом разложения вектора состояния по базису (обычно координатному):

где - координатный базисный вектор, а - волновая функция в координатном представлении.

Физический смысл волновой функции заключается в том, что согласно копенгагенской интерпретации квантовой механики плотность вероятностинахождения частицы в данной точке пространства в данный момент времени считается равной квадрату абсолютного значения волновой функции этого состояния в координатном представлении.

Принцип неопределённости Гейзенбе́рга (или Га́йзенберга ) в квантовой механике - фундаментальное неравенство (соотношение неопределённостей), устанавливающее предел точности одновременного определения пары характеризующих квантовую систему физических наблюдаемых (см. физическая величина), описываемых некоммутирующими операторами (например, координаты и импульса, тока и напряжения, электрического и магнитного поля). Соотношение неопределенностей [* 1] задаёт нижний предел для произведения среднеквадратичных отклонений пары квантовых наблюдаемых. Принцип неопределённости, открытый Вернером Гейзенбергом в 1927 г., является одним из краеугольных камней квантовой механики.

Определение Если имеется несколько (много) идентичных копий системы в данном состоянии, то измеренные значения координаты и импульса будут подчиняться определённому распределению вероятности - это фундаментальный постулат квантовой механики. Измеряя величину среднеквадратического отклонения координаты и среднеквадратического отклонения импульса, мы найдем что:

Уравнение шредингера

Потенциа́льная я́ма – область пространства, где присутствует локальный минимум потенциальной энергии частицы.

Тунне́льный эффект , туннели́рование - преодоление микрочастицей потенциального барьера в случае, когда её полная энергия (остающаяся при туннелировании неизменной) меньше высоты барьера. Туннельный эффект - явление исключительно квантовой природы, невозможное и даже полностью противоречащее классической механике. Аналогом туннельного эффекта в волновой оптике может служить проникновение световой волны внутрь отражающей среды (на расстояния порядка длины световой волны) в условиях, когда, с точки зрения геометрической оптики, происходит полное внутреннее отражение. Явление туннелирования лежит в основе многих важных процессов в атомной и молекулярной физике, в физике атомного ядра, твёрдого тела и т. д.

Гармонический осциллятор в квантовой механике представляет собой квантовый аналог простого гармонического осциллятора, при этом рассматривают не силы, действующие на частицу, а гамильтониан, то есть полную энергию гармонического осциллятора, причём потенциальная энергия предполагается квадратично зависящей от координат. Учёт следующих слагаемых в разложении потенциальной энергии по координате ведёт к понятию ангармонического осциллятора.

Изучение строения атомов показало, что атомы состоят из положительно заряженного ядра, в котором сосредоточена почти вся масс. ч атома, и движущихся вокруг ядра отрицательно заряженных электронов.

Планетарная модель атома Бора-Резерфорда . В 1911 году Эрнест Резерфорд, проделав ряд экспериментов, пришёл к выводу, что атом представляет собой подобие планетной системы, в которой электроны движутся по орбитам вокруг расположенного в центре атома тяжёлого положительно заряженного ядра («модель атома Резерфорда»). Однако такое описание атома вошло в противоречие с классической электродинамикой. Дело в том, что, согласно классической электродинамике, электрон при движении с центростремительным ускорением должен излучать электромагнитные волны, а, следовательно, терять энергию. Расчёты показывали, что время, за которое электрон в таком атоме упадёт на ядро, совершенно ничтожно. Для объяснения стабильности атомов Нильсу Бору пришлось ввести постулаты, которые сводились к тому, что электрон в атоме, находясь в некоторых специальных энергетических состояниях, не излучает энергию («модель атома Бора-Резерфорда»). Постулаты Бора показали, что для описания атома классическая механика неприменима. Дальнейшее изучение излучения атома привело к созданию квантовой механики, которая позволила объяснить подавляющее большинство наблюдаемых фактов.

Спектры излучения атомов обычно получаются при высокой температуре источника света (плазма, дуга или искра), при которой происходит испарение вещества, расщепление его молекул на отдельные атомы и возбуждение атомов к свечению. Атомный анализ может быть как эмиссионным - исследование спектров излучения, так и абсорбционным - исследование спектров поглощения.
Спектр излучения атома представляет собой набор спектральных линий. Спектральная линия появляется в результате монохроматического светового излучения при переходе электрона с одного допускаемого постулатом Бора электронного подуровня на другой подуровень разных уровней. Это излучение характеризуется длиной волны К, частотой v или волновым числом со.
Спектр излучения атома представляет собой набор спектральных линий. Спектральная линия появляется в результате монохроматического светового излучения при переходе электрона с одного допускаемого постулатом Бора электронного подуровня на другой подуровень разных уровней.

Бо́ровская моде́ль а́тома (Моде́ль Бо́ра) - полуклассическая модель атома, предложенная Нильсом Бором в 1913 г. За основу он взял планетарную модель атома, выдвинутую Резерфордом. Однако, с точки зрения классической электродинамики, электрон в модели Резерфорда, двигаясь вокруг ядра, должен был бы излучать непрерывно, и очень быстро, потеряв энергию, упасть на ядро. Чтобы преодолеть эту проблему Бор ввел допущение, суть которого заключается в том, что электроны в атоме могут двигаться только по определенным (стационарным) орбитам, находясь на которых они не излучают, а излучение или поглощение происходит только в момент перехода с одной орбиты на другую. Причем стационарными являются лишь те орбиты, при движении по которым момент количества движения электрона равен целому числу постоянных Планка : .

Используя это допущение и законы классической механики, а именно равенство силы притяжения электрона со стороны ядра и центробежной силы, действующей на вращающийся электрон, он получил следующие значения для радиуса стационарной орбиты и энергии находящегося на этой орбите электрона:

Здесь - масса электрона, Z - количество протонов в ядре, - диэлектрическая постоянная, e - заряд электрона.

Именно такое выражение для энергии можно получить, применяя уравнение Шрёдингера, решая задачу о движении электрона в центральном кулоновском поле.

Радиус первой орбиты в атоме водорода R 0 =5,2917720859(36)·10 −11 м , ныне называется боровским радиусом, либо атомной единицей длины и широко используется в современной физике. Энергия первой орбиты эВ представляет собойэнергию ионизации атома водорода.

Постулаты Бора

§ Атом может находиться только в особенных стационарных, или квантовых, состояниях, каждому из которых отвечает определенная энергия. В стационарном состоянии атом не излучает электромагнитных волн.

§ Электрон в атоме, не теряя энергии, двигается по определённым дискретным круговым орбитам, для которых момент импульса квантуется: , где - натуральные числа, а - постоянная Планка. Пребывание электрона на орбите определяет энергию этих стационарных состояний.

§ При переходе электрона с орбиты (энергетический уровень) на орбиту излучается или поглощается квант энергии , где - энергетические уровни, между которыми осуществляется переход. При переходе с верхнего уровня на нижний энергия излучается, при переходе с нижнего на верхний - поглощается.

Используя данные постулаты и законы классической механики, Бор предложил модель атома, ныне именуемую Боровской моделью атома . В дальнейшем Зоммерфельд расширил теорию Бора на случай эллиптических орбит. Её называют моделью Бора-Зоммерфельда.

Опыты франка и герца

опыт показал, что электроны передают свою энергию атомам ртути порциями , причем 4,86 эВ – наименьшая возможная порция, которая может быть поглощена атомом ртути в основном энергетическом состоянии

Формула бальмера

Для описания длин волн λ четырех видимых линий спектра водорода И. Бальмер предложил формулу

где n = 3, 4, 5, 6; b = 3645,6 Å.

В настоящее время для серии Бальмера используют частный случай формулы Ридберга:

где λ - длина волны,

R ≈ 1,0974·10 7 м −1 - постоянная Ридберга,

n - главное квантовое число исходного уровня - натуральное число, большее или равное 3.

Водородоподобный атом - атом, содержащий в электронной оболочке один и только один электрон.

Рентге́новское излуче́ние - электромагнитные волны, энергия фотонов которых лежит на шкале электромагнитных волн между ультрафиолетовым излучением и гамма-излучением, что соответствует длинам волн от 10 −2 до 10 3 Å (от 10 −12 до 10 −7 м)

Рентге́новская тру́бка - электровакуумный прибор, предназначенный для генерации рентгеновского излучения.

Тормозное излучение - электромагнитное излучение, испускаемое заряженной частицей при её рассеянии (торможении) в электрическом поле. Иногда в понятие «тормозное излучение» включают также излучение релятивистских заряженных частиц, движущихся в макроскопических магнитных полях (в ускорителях, в космическом пространстве), и называют его магнитотормозным; однако более употребительным в этом случае является термин «синхротронное излучение».

ХАРАКТЕРИСТИЧЕСКОЕ ИЗЛУЧЕНИЕ - рентг. излучение линейчатого спектра. Характерно для атомов каждого элемента.

Химическая связь - явление взаимодействия атомов, обусловленное перекрыванием электронных облаков связывающихся частиц, которое сопровождается уменьшением полной энергии системы.

молекуляр­ный спектр - спектр излучения (по­глощения), возникающий при квантовых переходах между уровнями энергии моле­кул

Энергетический уровень - собственные значения энергии квантовых систем, то есть систем, состоящих из микрочастиц (электронов, протонов и других элементарных частиц) и подчиняющихся законам квантовой механики.

Квантовое число n главное . Оно определяет энергию электрона в атоме водорода и одноэлектронных системах (He + , Li 2+ и т. д.). В этом случае энергия электрона

где n принимает значения от 1 до ∞. Чем меньше n , тем больше энергия взаимодействия электрона с ядром. При n = 1 атом водорода находится в основном состоянии, при n > 1 – в возбужденном.

Правилами отбора в спектроскопии называют ограничения и запрет на переходы между уровнями квантомеханической системы с поглощением или излучением фотона, наложенные законами сохранения и симметрией.

Многоэлектронными атомами называются атомы с двумя и более электронами.

Эффе́кт Зе́емана - расщепление линий атомных спектров в магнитном поле.

Обнаружен в 1896 г. Зееманом для эмиссионных линий натрия.

Суть явления электронного парамагнитного резонанса заключается в резонансном поглощении электромагнитного излучения неспаренными электронами. Электрон имеет спин и ассоциированный с ним магнитный момент.

ТЕПЛОВОЕ ИЗЛУЧЕНИЕ Закон Стефана Больцмана Связь энергетической светимости R e и спектральной плотности энергетической светимости абсолютно черного тела Энергетическая светимость серого тела Закон смещения Вина (1-ый закон) Зависимость максимальной спектральной плотности энергетической светимости черного тела от температуры (2-ой закон) Формула Планка


ТЕПЛОВОЕ ИЗЛУЧЕНИЕ 1. Максимум спектральной плотности энергетической светимости Солнца приходится на длину волны = 0,48 мкм. Считая, что Солнце излучает как черное тело, определить: 1) температуру его поверхности; 2) мощность, излучаемую его поверхностью. Согласно закону смещения Вина Мощность, излучаемая поверхностью Солнца Согласно закону Стефана Больцмана,


ТЕПЛОВОЕ ИЗЛУЧЕНИЕ 2. Определить количество теплоты, теряемое 50 см 2 с поверхности расплавленной платины за 1 мин, если поглощательная способность платины А Т = 0,8. Температура плавления платины равна 1770 °С. Количество теплоты, теряемое платиной равно энергии, излучаемой ее раскаленной поверхностью Согласно закону Стефана Больцмана,


ТЕПЛОВОЕ ИЗЛУЧЕНИЕ 3. Электрическая печь потребляет мощность Р = 500 Вт. Температура ее внутренней поверхности при открытом небольшом отверстии диаметром d = 5,0 см равна 700 °С. Какая часть потребляемой мощности рассеивается стенками? Полная мощность определяется суммой Мощность, выделяемая через отверстие Мощность рассеиваемая стенками Согласно закону Стефана Больцмана,


ТЕПЛОВОЕ ИЗЛУЧЕНИЕ 4 Вольфрамовая нить накаливается в вакууме током силой I = 1 А до температуры T 1 = 1000 К. При какой силе тока нить накалится до температуры Т 2 = 3000 К? Коэффициенты поглощения вольфрама и его удельные сопротивления, соответствующие температурам T 1, Т 2 равны: a 1 = 0,115 и a 2 = 0,334; 1 = 25, Ом м, 2 = 96, Ом м Мощность излучаемая равна мощности потребляемой от электрической цепи в установившемся режиме Электрическая мощность выделяемая в проводнике Согласно закону Стефана Больцмана,


ТЕПЛОВОЕ ИЗЛУЧЕНИЕ 5. В спектре Солнца максимум спектральной плотности энергетической светимости приходится на длину волны.0 = 0,47 мкм. Приняв, что Солнце излучает как абсолютно черное тело, найти интенсивность солнечной радиации (т. е. плотность потока излучения) вблизи Земли за пределами ее атмосферы. Сила света (интенсивность излучения) Световой поток Согласно законам Стефана Больцмана и Вина


ТЕПЛОВОЕ ИЗЛУЧЕНИЕ 6. Длина волны 0, на которую приходится максимум энергии в спектре излучения черного тела, равна 0,58 мкм. Определить максимальную спектральную плотность энергетической светимости (r,T) max, рассчитанную на интервал длин волн = 1 нм, вблизи 0. Максимальная спектральная плотность энергетической светимости пропорциональна пятой степени температуры и выражается 2-ым законом Вина Температуру Т выразим из закона смещения Вина значение С дано в единицах СИ, в которых единичный интервал длин волн =1 м. По условию же задачи требуется вычислить спектральную плотность энергетической светимости, рассчитанную на интервал длин волн 1 нм, поэтому выпишем значение С в единицах СИ и пересчитаем его на заданный интервал длин волн:


ТЕПЛОВОЕ ИЗЛУЧЕНИЕ 7. Исследование спектра излучения Солнца показывает, что максимум спектральной плотности энергетической светимости соответствует длине волны =500 нм. Принимая Солнце за черное тело, определить: 1) энергетическую светимость R e Солнца; 2) поток энергии Ф е, излучаемый Солнцем; 3) массу электромагнитных волн (всех длин), излучаемых Солнцем за 1 с. 1. Согласно законам Стефана Больцмана и Вина 2. Световой поток 3. Массу электромагнитных волн (всех длин), излучаемых Солнцем за время t=1 с, определим, применив закон пропорциональности массы и энергии Е=мс 2. Энергия электромагнитных волн, излучаемых за время t, равна произведению потока энергии Ф e ((мощности излучения) на время: E=Ф e t. Следовательно, Ф е =мс 2, откуда m=Ф е /с 2.