Цветная металлургия. Технологии производства цветных металлов

Цветные металлы обладают рядом характерных только для них свойств, определяющих применение их в машино- и приборостроении, несмотря на то, что встречаются они в природе гораздо реже, чем железо. Это и высокие тепло- и электропроводность, хорошая коррозионная стойкость, малый или наоборот большой удельный вес, низкая или высокая температура плавления, высокая пластичность или наоборот прочность.

Основной продукцией цветной металлургии являются слитки цветных металлов для производства проката и отливок, лигатуры (сплавы с легирующими элементами для изготовления легированных сплавов), чистые и особо чистые металлы для электроники и приборостроения.

ПРОИЗВОДСТВО МЕДИ

За год в мире производится 3 … 5 млн. тонн меди. Она обладает важными для современной техники свойствами, такими как высокие электро- и теплопроводность, пластичность, хорошая коррозионная стойкость. Около половины всего годового производства чистой металлической меди идёт на изготовление проводов, кабелей, шин и прочих токопроводящих изделий электротехнической промышленности. Вместе с тем с давних пор широко применяются сплавы меди с цинком (латуни) и с оловом (бронзы).

В настоящее время главнейшим источником для получения меди служат сульфидные руды, содержащие халькопирит (медный колчедан) CuFeS 2 , халькозин CuS, пирит FeS 2 и сульфиды цинка, свинца, никеля, а нередко серебро и золото. Другим источником для получения меди являются окисленные медные руды, содержащие куприт Cu 2 O или азурит 2CuCO 3 ×Cu(OH) 2 .

Указанные руды бедные. Содержание меди в них незначительно – 1 … 5%, поэтому руды перед плавкой подвергают обогащению. Обогащение флотацией позволяет выделить из руды отдельно медный концентрат, содержащий 11 … 35% меди, а также цинковый или пиритный концентраты.

Природные запасы меди постоянно сокращаются. Поэтому в настоящее время существенным становится использование металлолома и других отходов промышленности, содержащих медь. Крупнейшие промышленно развитые страны из отходов получают меди больше, чем выплавляют её из руд.

Для получения меди из руд обычно используют пирометаллургический способ, состоящий из плавки на штейн и восстановительной плавки, но некоторые руды успешно перерабатывают и гидрометаллургическим способом, например выщелачиванием серной кислотой.

Процесс производства меди наиболее распространенным, пирометаллургическим способом можно разделить на следующие этапы: измельчение медных руд, их обогащение, обжиг концентрата, получение медного штейна, переработка медного штейна, рафинирование меди (рис. 1.16).

Обогащение медных руд осуществляют методом флотации, основанном на различном смачивании водой соединений меди и пустой породы. Для обогащения образуют пульпу, состоящую из измельченной руды, воды и флотационного реагента (пихтового масла). Последний адсорбируется на частицах руды в виде пленок, не смачиваемых водой. При продувке пульпы пузырьки воздуха собираются на поверхности этих частиц и увлекают их вверх, образуя на поверхности слой пены. Смачиваемая водой пустая порода оседает на дно ванны. Пену с поверхности ванны собирают, сушат и получают концентрат с необходимым содержанием меди.

Обжиг концентрата производят при 750 … 850 °С в воздушной среде для окисления сульфидов и уменьшения содержания серы. Наиболее производительным является обжиг в кипящем слое. Измельченный концентрат загружается в окно в средней ее части, а снизу в печь через поддон подается воздух. Давление воздуха устанавливается таким, чтобы частицы концентрата находились во взвешенном (кипящем) состоянии. Обожженный концентрат «переливается» через порог печи в виде огарка. Отходящие сернистые газы очищаются в циклоне от твердых частиц и направляются в сернокислотное производство.

Получение медного штейна. Штейн в застывшем виде – это сплав сульфидов меди и железа и сульфидов цинка, свинца, никеля, содержащий 20 … 60% меди, 10 … 60% железа и до 25% серы. Жидкие штейны хорошо растворяют в себе золото и серебро, и, если эти металлы есть в руде, они почти полностью концентрируются в штейне. Цель плавки на штейн – отделение сернистых соединений меди и железа от содержащихся в руде примесей, присутствующих в ней в виде окисных соединений.

В зависимости от химического состава руды и ее физического состояния штейн получают либо в шахтных печах, если сырьем служит кусковая медная руда, содержащая много серы, либо в отражательных или дуговых электропечах, если исходным продуктом служат порошкообразные флотационные концентраты.

В качестве огнеупоров отражательных печей используют динасовые или магнезитовые кирпичи. Огнеупор выбирают в зависимости от преобладания в шихте основных или кислотных оксидов, так как соответствие состава шихты и огнеупорных материалов удлиняет срок их службы. Отражательные печи отапливают мазутом, угольной пылью или газом, вдувая топливо форсунками. Максимальная температура в головной части печи 1550 °С, в хвостовой – 1250 … 1300 °С. Шихту в эти печи загружают через отверстия в своде, расположенные вдоль печи у боковых стенок. При загрузке шихта ложится откосами вдоль стен, предохраняя кладку от прямого воздействия шлаков и газов. По мере нагрева шихты начинаются реакции частичного восстановления высших оксидов железа и меди, окисления серы и шлакообразования:

FeS + 3Fe 3 O 4 + 5SiO 2 = 5(2FeO*SiO 2) + SO 2 ;

2Cu 2 S + 3O 2 = 2Cu 2 O + 2SO 2 .

Сульфиды меди и железа, сплавляясь, дают первичный штейн, который, стекая по откосам, изменяет свой состав, обедняясь железом и обогащаясь медью:

2FeS + 2Cu 2 O + SiO 2 = 2FeO*SiO 2 + 2Cu 2 S.

При этом 2FeO*SiO 2 поступает в шлак, а 2Cu 2 S – в штейн. Штейн, имеющий плотность около 5000 кг/м 3 , собирается на поду печи, а шлак (плотность около 3500 кг/м 3) образует второй верхний жидкий слой. Его выпускают по мере накопления через шлаковое окно, расположенное в хвостовой части печи. Выпуск штейна производят по мере его образования и потребности в нем последующего конвертерного передела.

Переработка медного штейна. Расплавленный штейн перерабатывают на черновую медь продувкой его воздухом в конвертере – горизонтально расположенном цилиндрическом сосуде из листовой стали длиной 5 … 10 и диаметром 3 … 4 м, футерованном магнезитовым кирпичом.

Переработка штейна протекает в два периода. В конвертер загружают кусковой кварц, заливают расплавленный штейн и продувают его воздухом. Воздух, энергично перемешивая штейн, окисляет сульфиды меди и железа:

2FeS + 3O 2 = 2FeO + 2SO 2 + 940 кДж;

2Cu 2 S + 3O 2 = 2Cu 2 O + 2SO 2 + 775 кДж,

при этом закись меди благодаря обменному взаимодействию вновь превращается в сульфид:

Cu 2 O + FeS = Cu 2 S + FeO.

Поэтому в первом периоде идет практически окисление только железа, а закись железа шлакуется кварцем:

2FeO + SiO 2 = 2FeO*SiO 2 .

Образующийся шлак периодически сливают и в конвертер добавляют свежие порции медного штейна и кускового кварца. Температура заливаемого штейна составляет около 1200 °С, но за время продувки, за счет большого выделения тепла при окислении сульфидов температура повышается до 1350 °С. Продолжительность первого периода зависит от количества меди в штейне и составляет 6 … 10 ч. Добавка в воздушное дутье кислорода повышает температуру в конвертере и позволяет загружать в него холодный концентрат, заменив им некоторую часть расплавленного штейна.

Первый период закончится, когда в продуваемом штейне окислится сернистое железо. После этого тщательно удаляют шлак и продолжают продувку без добавки штейна и кварца. Воздух окисляет теперь только Cu 2 S, и образовавшаяся закись меди способствует появлению в конвертере металлической меди по реакции

Cu 2 S + 2Cu 2 O = 6Cu + SO 2 .

Второй период заканчивается, когда в конвертере весь штейн превращается в медь, на что обычно уходит 2 … 3 ч. В конвертере и во втором периоде образуется небольшое количество богатого медью шлака, который остается в нем после выливания черновой меди и перерабатывается в следующем цикле.

Черновую медь по окончании процесса, наклоняя конвертер, выпускают в ковш и разливают в изложницы. Полученную медь называют черновой, так как она содержит до 1,5% примесей железа, цинка, никеля, мышьяка, сурьмы, кислорода, серы.

Рафинирование меди. Черновая медь подвергается рафинированию для удаления примесей, ухудшающих ее качество, а также для извлечения из нее золота и серебра. В современной практике применяют огневое и электролитическое рафинирование.

Огневое (пирометаллургическое) рафинирование заключается в окислении примесей в отражательных печах при продувке черновой меди воздухом. Кислород воздуха соединяется с медью и образует оксид Cu 2 O, который затем реагирует с примесями металлов (Me) по реакции

Me + Cu 2 O = MeO + 2Cu.

Одновременно окисляется и сера:

Cu 2 S + 2Cu 2 O = 6Cu + SO 2.

После этого приступают к раскислению меди – восстановлению Cu 2 O. Для этого медь перемешивают деревянными жердями. Бурное выделение паров воды и углеводородов способствует удалению газов и восстановлению меди:

4Cu 2 O + CH 4 = 8Cu + 2H 2 O + CO 2 .

После огневого рафинирования чистота меди достигает 99 … 99,5%.

Электролитическое рафинирование меди проводят в ваннах, наполненных раствором сернокислой меди, подкисленным серной кислотой. Анодами служат пластины из черновой меди размером 1х1 м и толщиной 50 мм, катодами – листы толщиной 0,5 мм из чистой меди.

При прохождении тока напряжением 2 … 3 В и плотностью 100 … 400 А/м 2 анод растворяется, медь переходит в раствор в виде катионов, которые затем разряжаются на катодах и откладываются слоем чистой меди.

Примеси, имеющие более отрицательный потенциал (Zn, Fe, Ni, Bi, Sb, As и др.) переходят в раствор, но не могут выделиться на катоде при наличии в нем большого количества ионов меди. Золото и серебро не переходят в раствор и оседают на дно ванны вместе с не успевшими раствориться на аноде отдельными кусочками меди, образуя шлам. В шлам переходят также соединения серы, селена и теллура. Иногда в шламе содержатся до 35% Ag, 6% Se, 3% Fe, 1% Au и другие ценные элементы. Поэтому шламы обычно перерабатывают и извлекают эти элементы.

ПРОИЗВОДСТВО АЛЮМИНИЯ

Алюминий является достаточно распространенным в природе металлом. Насчитывается 250 минералов, содержащих алюминий. Основные алюминиевые руды – это бокситы, нефелины, алуниты, каолины. В них он встречается в виде гидроокисей (АlООН, Аl(OH) 3), каолинита (Al 2 O 3 ×2SiO 2 ×2H 2 O), корунда (Al 2 O 3).

Основной рудой, используемой для производства алюминия, являются бокситы. Алюминий в них содержится в виде гидрооксидов Al 2 O 3 ×Н 2 О и Al 2 O 3 ×3Н 2 О. В руде много примесей, однако, производство экономически целесообразно при содержании глинозёма в ней не менее 12 … 14%. В нашей стране главные месторождения бокситов находятся в Ленинградской области, на Урале и в Красноярском крае.

Технологический процесс производства алюминия состоит из трех этапов: извлечение глинозема из руд, его электролиз с целью получения алюминия и рафинирование. Последовательность технологических операций приведена на рис. 1.17.

Наиболее распространённым в мировой практике способом получения глинозёма из бокситов является мокрый щелочной способ.

Существует определенная последовательность технологических операций.

Подготовка боксита, заключающаяся в прокаливании его в проходных трубчатых печах, дроблении и измельчении на дробилках, разделении по крупности на грохотах, последующем измельчении в мельницах и отделении фракции тонкого помола при помощи классификаторов.

Выщелачивание боксита, состоящее в его химическом разложении при взаимодействии с водным раствором щёлочи. Для этого измельчённый боксит загружают в автоклав и смешивают с раствором щелочи при температуре 200 … 250 °С и давлении 3 МПа. Для этого через автоклав внизу пропускают струю пара, которая перемешивает и подогревает полученную пульпу.

В результате в пульпе происходят следующие реакции

Al 2 O 3 ×Н 2 О + 2NaOH = 2NaAlO 2 + H 2 O.

Достаточная концентрация алюмината натрия (NaAlO 2) получается в растворе примерно через 4 часа Другие компоненты боксита (SiO 2 , Fe 2 O 3 , TiO 2 и др.) образуют осадок (красный шлам). Пульпа вытесняется из автоклава и по трубе транспортируется для дальнейшей переработки.

Отделение алюминатного раствора от красного шлама. Пульпу разбавляют водным раствором, полученным от промывки красного шлама предыдущей партии, и подвергают обработке в сгустителях (температура пульпы 90 … 100 °С). В результате этой обработки красный шлам оседает, после чего алюминатный раствор сливают и отфильтровывают (осветляют).

Разложение алюминатного раствора происходит по реакции

NaAlO 3 + 2H 2 O = NaOH + Al(OH) 3 .

Процесс разложения называется выкручиванием или декомпозицией. Его производят путём медленного перемешивания (96 … 120 ч) алюминатного раствора в присутствии кристаллической гидроокиси алюминия Al(OH) 3 . Процесс протекает в камерах (декомпозёрах) при температуре 30 … 60 °С. В результате из алюминатного раствора выделяется кристаллическая гидроокись алюминия. Полученную пульпу подвергают сгущению. Часть сгущённой пульпы употребляют для выкручивания в следующем цикле, а основную часть пульпы фильтруют и промывают. В результате получают кристаллическую гидроокись алюминия с 3 … 4% влаги.

Обезвоживание гидроокиси алюминия (кальцинация) - завершающая стадия производства глинозема. Её проводят в трубчатых вращающихся печах длиной 50 … 70 м и диаметром около 4 м. Печь расположена с наклоном. С высокой стороны в печь поступает сырье и, проходя по всей её длине, обезвоживается топочными газами, идущими навстречу. При 40 … 200 °С материал высушивается. При 200 … 1250 °С из него удаляется гидратная вода и образуется безводная окись алюминия.

2Al(OH) 3 = Al 2 O 3 + 3H 2 O.

В конце печи (зоне охлаждения) температура полученного глинозёма снижается до 60 … 70 °С, и его выгружают из печи (через 1,5 часа после начала процесса кальцинации). Глинозём по трубопроводу передаётся для хранения в цех электролиза.

Вышеописанная технология позволяет получить чистый глинозём (примеси составляют не более 0,4 … 0,66%).

Следующий этап технологического процесса производства алюминия заключается в электролизе глинозема.

Электролиз глинозёма производят в жидком криолите (3NaF×AlF 3 или Na 3 AlF 6) в электролизере (рис. 1.17). Катодное устройство электролизёра 1 представляет собой ванну в стальном кожухе, футерованную изнутри угольными блоками. К угольной подине ванны подключены медные шины для подвода электрического тока.

Анодное устройство 2 представляет собой вертикально установленный угольный блок. Нижняя его часть погружена в электролит. К электролизеру подводится постоянный электрический ток силой 70 …75 кА и напряжением 4 … 4,5 В. Ток используется как в процессе электролиза, так и для разогрева электролита до температуры 1000 ºС.

Электролит состоит из расплава криолита, в котором содержится 8 … 10% глинозёма.

В процессе работы в результате разложения глинозема на подине ванны под электролитом собирается жидкий алюминий. Его называют сырцом из-за большого содержания примесей.

Завершающий этап процесса – рафинирование алюминия. Операция заключается в продувке расплава алюминия хлором. При этом образуется парообразный хлористый алюминий. Пузырьки образующихся газов адсорбируют на своей поверхности атомы примесей и выносят их на поверхность ванны металла.

После рафинирования жидкий алюминий отстаивают – выдерживают в ковше или электропечи в течении 30 … 45 мин. В результате чистота алюминия достигает 99,5 … 99,85%. Полученный алюминий разливают в изложницы и получают в итоге слитки.

Описанная выше технология требует большого количества электроэнергии. Расход энергии на 1 т металла составляет 10000 … 12000 квт-ч.

ПРОИЗВОДСТВО МАГНИЯ

Магний широко используется в металлургии при производстве чугуна, стали и цветных металлов. В технике магний применяется в виде сплавов в авиационной и автомобильной промышленности.

Магний как металл достаточно широко распространен в природе. Его содержание в земной коре составляет около 2,3%. Встречается магний в виде следующих минералов, которые и являются сырьем для его производства: магнезит – природный карбонат магния (МaСО 3), содержащий 28,8% Mg; доломит – двойной карбонат магния и кальция (MgCO 3 ×СаСО 3), содержащий 13,2% Mg; карналлит – двойной хлорид магния и калия (MgCl 2 ×KCl ×6H 2 O), содержащий 8,8% Mg, и бишофит – шестиводный хлорид магния (MgCl 2 × 6Н 2 О), растворенный в морской воде и воде соленых озер.

Независимо от вида исходного сырья процесс получения магния можно разбить на три периода: подготовка сырья, получение из него магния и рафинирование. В зависимости от типа сырья магний получают термическим и электролитическим способами. Последний применяется наиболее часто.

Основным сырьем для получения магния в нашей стране является карналлит. Последовательность процесса получения магния следующая (рис. 1.18).

Обогащение карналлита. Руду измельчают, после чего обрабатывают горячей водой (T = 110 … 120 °С). При этом MgCl 2 и KCl переходят в раствор, а нерастворимые примеси после выпадения в осадок удаляются. Далее раствор охлаждают в вакуум-кристаллизаторах до нормальной температуры, в результате чего из него выпадают кристаллы так называемого искусственного карналлита MgCl 2 ×KCl×6H 2 O, которые при фильтровании отделяют. Полученный карналлит имеет примерно следующий состав: 32% MgCl 2 ; 26% KCl, 5% NaCl и 37% H 2 O.

Обезвоживание карналлита осуществляют в две стадии. Первая стадия процесса – в кипящем слое печи. Процесс осуществляют в наклонной печи шахтного типа. Обезвоживание карналлита происходит горячим газом, поступающим в печь через большое количество отверстий в подине. Давлением газа порошкообразный карналлит интенсивно перемешивается и переносится вдоль пода вплоть до выходного окна. Такое движение создает впечатление кипения. Карналлит при этом нагревается до температуры 200 … 210 °С, обезвоживается до 3 … 4% остаточной влаги, а затем направляется на вторую стадию обезвоживания.

На этой стадии получение безводного карналлита осуществляют расплавлением его в камерной электрической плавильной печи, а затем и в подогреваемом миксере. Камерная электрическая печь и миксер представляют собой электрические печи сопротивления, в которых нагревательными элементами служит расплавленный карналлит. В плавильной печи температура карналлита достигает 520 … 550 °С. В миксере температуру расплава поднимают до 840 … 860 °С. В результате происходит полное обезвоживание карналлита, при этом часть примесей выпадает в осадок.

Электролитическое получение магния осуществляют в электролизере. Он представляет собой стальную ванну, футерованную огнеупорным кирпичом. Ванну электролизёра заполняют расплавленным электролитом (расплав обезвоженного карналлита и возвратный хлористый магний). Температуру электролита поддерживают в пределах 720 °С. Электролизёр оснащен графитовым анодом, установленным между двумя стальными катодами. Сверху ванна закрыта хлороулавливателем и полностью изолирована от сообщения с атмосферой. Так как электролит содержит соли MgCl 2 , KCl, NaCl и примеси других солей и окислов, то электролитическое разложение хлористого магния обеспечивается пропусканием через электролит электрического ток требуемого напряжения (2,7 … 2,8 В), ток 30 … 70 кА. Напряжение, при котором происходит разложение других соединений, содержащихся в электролите, выше, чем для хлористого магния.

В результате работы установки на аноде образуются пузырьки хлора, которые выделяются из электролита и тут же отсасываются из электролизёра. На рабочей поверхности катодов выделяются капельки металлического магния. Магний легче электролита, поэтому он всплывает на поверхность, откуда периодически удаляется вакуумными ковшами. На дно ванны осаждается шлам, содержащий окись магния и частично восстановленное железо. Шлам и отработанный электролит удаляют вакуумными насосами. В результате электролиза получают магний-сырец, содержащий до 2 … 3% примесей (окись магния, нитрид и силицид магния и т.п.)

Рафинирование магния-сырца, извлечённого из электролизёра, проводят с целью удаления примесей электролита. Рафинирование заключается в переплавке полученного магния с флюсом. Для этого магний заливают в стальной тигель и перемешивают с флюсом (борной кислотой и др.). Тигель устанавливают в электропечь и нагревают до 710 … 720 °С в течение 0,5 … 1 ч. В процессе отстаивания примеси растворяются во флюсе, всплывают и образуют шлак. После этого магний разливают в изложницы и получают слитки, чистотой 99,9%. Более глубокую очистку магния можно осуществить путем его сублимации (возгонки) в вакууме.

ПРОИЗВОДСТВО ТИТАНА

Титан считается широко распространенным в природе металлом, так как содержание его в земной коре составляет 0,6%. Уникальное сочетание свойств титана и его сплавов, таких как высокая прочность, коррозионная и химическая стойкость, малый удельный вес, высокая температура плавления используется в авиа- и судостроении, космической технике, химической промышленности и т.д.

Рудами, служащими сырьем для получения титана, в настоящее время являются ильменит FeO × TiO 2 и рутил TiO 2 .

Известно несколько способов получения титана из руд. Схема одного из наиболее распространенных технологических процессов, исходным продуктом в которой является ильменит, приведена на рис. 1.19. Технологическая схема процесса включает следующие этапы: выделение концентрата из руды, получение двуокиси титана, получение четыреххлористого титана, восстановление титана с получением губчатого металла, рафинирование его и переплавка титановой губки в слитки.

Перед выделением концентрата из руд их дробят, и в связи с низким содержанием нужного компонента, обогащают. Титановые руды легко обогащаются флотацией, гравитацией и т.д. В результате получают ильменитовый концентрат, с содержанием двуокиси титана до 40 … 45%.

Получение концентрированной двуокиси титана достигается отделением окислов железа и пустой породы, содержание которых в ильменитовом концентрате составляет более 40%. Для этого концентрат смешивают с углем, загружают в пламенные отражательные или электрические печи и нагревают до температуры плавления чугуна (~1200 °С). В результате железо из оксидов восстанавливается, а после его науглероживания углем на подине печи образуется чугун.

FeO×TiO 2 + С = Fe + TiO 2 + СО.

Оксиды титана переходят в шлак, всплывающий на поверхность ванны расплавленного чугуна. Чугун и шлак выпускают из печи и раздельно разливают в изложницы. Титановый шлак, имеющий характерный белый цвет, содержит до 90% двуокиси титана, а также примеси- окислы железа, кремния, алюминия и др. Побочным продуктом процесса является чугун.

Четыреххлористый титан получают хлорированием титанового шлака. Для этого его измельчают, смешивают с углем, каменноугольной смолой (связующее) и прессуют в брикеты. Брикеты прокаливают при температуре 800 °С без доступа воздуха, а затем подвергают хлорированию в специальных печах – шахтных хлораторах. Процесс осуществляют при высокой температуре (800 … 1250 °С). В присутствии углерода хлор вступает в реакцию с двуокисью титана по реакции:

TiO 2 + 2Cl 2 + C = TiCl 4 + CO 2 .

Четыреххлористый титан, представляет собой бурую жидкость с температурой кипения 1300 °С. Вместе с ним образуются хлористые соединения элементов, входящих в состав шлака в виде примесей (FeCl 4 , AlCl 3 и др.). Разделение хлоридов осуществляют по принципу ректификации. Для этого пары смеси хлоридов пропускают через систему конденсационных установок, в которых поддерживается температура более низкая, чем температура кипения соответствующего хлорида.

Восстановление титана из хлористого соединения осуществляется чаще всего магнийтермическим методом. Процесс осуществляют в реакторах при температуре 950 … 1000 °С в атмосфере аргона. Реактор представляет собой стальную реторту диаметром и высотой несколько метров. В реактор загружают магний и подают четыреххлористый титан. В результате их взаимодействия образуется металлический титан, твердые частицы которого спекаются в пористую массу- губку.

TiCl 4 + 2Mg = Ti + 2MgCl 2 .

Побочный продукт процесса – хлористый магний периодически сливается из реактора через летку и направляется на переработку (электролиз). Полученная губка титана в своих порах содержит в качестве примесей до 35 … 40% магния и хлористого магния.

Рафинирование титана с целью очистки его от примесей осуществляют методом вакуумной дистиляции – выдержкой при температуре 900 … 950 °С в вакууме (при остаточном давлении воздуха 0,1 Па). При этом примеси либо расплавляются, либо испаряются.

Переплавка титановой губки в слитки осуществляется методом вакуумно-дугового переплава. Для этого из губки прессованием изготавливают расходуемый электрод и осуществляют переплав его в вакууме на установке, аналогичной рассмотренной ранее в разделе рафинирования стали. Чистота полученных слитков титана составляет 99,6 … 99,7%.

Вопросы для текущего контроля знаний по разделу

1. Какие материалы, применяемые в машино- и приборостроении вы знаете?

2. Что представляют собой черные сплавы, какие черные сплавы вы знаете?

3. Что такое цветные сплавы, какие цветные сплавы вы знаете?

4. Какие неметаллические материалы вы знаете?

5. Что такое металлургическое производство, каковы его задачи?

6. Какие виды продукции выпускает черная металлургия?

7. Какие материалы являются исходными при производстве чугуна?

8. Что в металлургии называют шихтой?

9. Как устроена и работает доменная печь?

10. Какие недостатки способа получения железоуглеродистых сплавов в доменной печи вы знаете?

11. Что является сырьем при производстве стали?

12. Какова последовательность протекания физико-химических реакций в сталеплавильной печи?

13. Какие этапы технологического процесса выплавки стали в металлургической печи вы знаете?

14. Какова сущность способа производства стали в кислородном конвертере, как устроен и работает кислородный конвертер?

15. Перечислите достоинства и недостатки способа производства стали в кислородном конвертере?

16. Как осуществляют выплавку стали в мартеновской печи?

17. Расскажите, как устроена и работает мартеновская печь?

18. На какие периоды делится процесса плавки в мартеновской печи?

19. Каковы достоинства и недостатки мартеновской печи?

20. Какие электропечи, предназначенные для выплавки стали вы знаете?

21. Что является источником тепла в дуговой электрической печи?

22. Как устроена и работает дуговая электропечь для выплавки стали?

23. Каковы достоинства и недостатки дуговой электрической печи?

24. Что является источником тепла в индукционной электрической печи?

25. На каком принципе построена работа индукционных электрических печей для выплавки стали?

26. Как устроена и работает индукционная электрическая печь?

27. Назовите преимущества и недостатки индукционной печи?

28. Какие способы прямого восстановления железа из руд вы знаете?

29. Расскажите о методе внедоменного получения железа, реализованном на Оскольском металлургическом комбинате?

30. Каким образом в сталь попадают примеси?

31. Какие методы повышения качества стали вы знаете?

32. В чем заключается метод рафинирующей обработки стали синтетическими шлаками?

33. В чем заключается метод вакуумной дегазации стали при рафинирующей ее обработке?

34. Как осуществляется электрошлаковый переплав при рафинировании стали?

35. В чем состоит сущность способа вакуумно-дугового переплава и как он влияет на качество стали?

36. Какие методы разливки стали вы знаете?

37. Какая оснастка используется для разливки стали?

38. Как осуществляется разливка стали при заполнении изложниц сверху, какие преимущества и недостатки имеет этот метод?

39. Что представляет собой метод разливки стали сифоном, какие преимущества и недостатки он имеет?

40. Каким образом разливают сталь на машинах для непрерывной разливки, какие преимущества и недостатки он имеет?

41. Какие основные виды продукции цветной металлургии вы знаете?

42. Как в настоящее время осуществляют производство меди?

43. Расскажите о технологическом процессе производства алюминия?

44. В какой последовательности выполняют операции при производстве магния?

45. Как выглядит наиболее распространная в настоящее время схема технологического процесса производства титана?

Позволяющая получать качественные и чистые элементы в соответствии с потребностями промышленности. Поскольку в природе эта группа в чистом виде практически не встречается, то требуется применение химических или физических методов для их получения.

Производство в современных условиях

Цветные металлы образуют большую группу веществ. Сюда входят все металлы, за исключение только железа и его соединений, которое входит в число черных. Несмотря на большое количество элементов, в природе цветные разновидности встречаются намного реже, поэтому производство цветных металлов и сплавов является важной отраслью промышленности.

Разновидности сырья

Самое название «цветной» означает цвет металла. Некоторые виды, например, имеют ярко выраженный цветовой оттенок. Подобные вещества важны из-за своих свойств и качеств, намного отличающихся от обычного железа.

Поэтому производство цветных металлов и сплавов необходимо для получения качественно новых соединений, применяемых во всех отраслях промышленности.

Сплав – это смешанные металлы. При соединении двух или более металлов, находящихся в расплавленном состоянии, образуется новый материал, имеющий практически полный спектр свойств, которым обладают составляющие сплава.

Цветные металлы распределяются на несколько крупных групп:

  • Тяжелые – в эту группу входят медь, цинк, свинец, олово.
  • Легкие – эта группа представлена магнием, титаном, бериллием, кальцием, стронцием, алюминием, натрием, калием, цезием.
  • Благородные – находятся самые дорогие из цветных металлов, которых мало в природе: платина, золото, серебро, осмий, рутений, родий, .
  • Малые – группа веществ, которых также немного в природе. Сюда относятся кобальт, кадмий, сурьма, висмут, .
  • Тугоплавкие: марганец, вольфрам, хром, ванадий, тантал.
  • Редкоземельные.
  • Рассеянные.
  • Радиоактивные.

Особенности процесса

В промышленности практически не применяются цветные металлы в чистом виде, а больше используются именно сплавы, что позволяет достигать требуемых свойств. При производстве цветных металлов происходит видоизменение их химических, физических и механических свойств, что очень важно для изготовления как бытовых, так и промышленных предметов.

Особенностью цветных металлов является простота обработки. Практически все они подвергаются шлифовке, ковке, прессования, резке, сварке или пайке.

При производстве из этих веществ удается получать не только готовые изделия, но также разнообразные полуфабрикаты:

  • прутки;
  • проволока;
  • порошок;
  • фольга.

Производство проволоки из цветного металла

Для производства цветных металлов и сплавов применяется разнообразные методы, основанные на химических свойствах основы, из которой будет получен металл или сплав и реагента.

Пирометаллургия – метод получения цветного металла путем проведения избирательной плавки, которая может быть окислительной или восстановительной. Источником тепла и главным реагентом чаще всего выступает присутствующая в руде .

Электролиз – метод, основанный на химической реакции электролиза. Применяется катод и анод. На катоде, которым выступает ванна из огнеупорного материала, происходит осаждение ионов металла в результате диссоциации. Реакция, в отличие от традиционной, описанной в учебниках химии, проводится не в водной среде, а в расплаве. Это обуславливается необходимостью избежать осаждения на катоде ионов водорода, что не позволяет выделять чистый металл.

Металлотермия – метод восстановления хлоридов или оксидов металла под воздействием другого вещества. Преимущественно технология применяется при производстве титана. Параллельно добывается магний, поскольку хлорид магния выступает побочным продуктом.

Сплавление – этот способ заключается в прямом смешивании двух металлов. Дополнительно в жидком состоянии поставляется шихта или легирующий материал. Этот способ относится к наиболее производительным, менее затратным и позволяет получать незагрязненные металлы., имеющие заданные физико-химические свойства.

Литье металла

Производство отдельных видов

Производство меди

Получение подобного цветного металла происходит из медных руд. Его содержание в составе этих соединении составляет от 1 до 6%. При составе меди менее 1% ее извлечение при современном уровне развития технологии не представляется рентабельным.

Получение меди осуществляется двумя способами:

  • гидрометаллургический;
  • пирометаллургический.

Первый способ является менее распространенным, поскольку при его использовании не удается извлекать из руды иные элементы.

Пирометаллургический метод добычи меди состоит из нескольких последовательных этапов:

  • Подготовка руды к плавке посредством обогащения и дальнейшего обжига. Это позволяет получить концентрат меди.
  • Последующий обжиг требуется для сокращения количества серы.
  • Плавка на штейн. Путем удается получить штейн или сульфиды меди и железа.

А также проводится конвертирование штейна. Этот этап заключается путем продувки воздухом внутри специального медеплавильного конвертера полученного штейна, что позволяет выделить железо в шлак и получить черновую медь.

И в заключение – рафинирование. Черновая медь подвергается действию огневого плавления и электролитического рафинирования, что позволяет в итоге получить продукт, чистота которого составляет 99,97–99,99%.

Производство алюминия

Получение алюминия происходит методом электролиза глинозема. Процесс включает несколько этапов.

Получение чистого глинозема или оксида алюминия. Этот процесс заключается в обработке бокситов (руд, содержащих металл) щелочными растворами. Результатом является выпадение в виде осадка гидроксида алюминия.

Получение криолита – его производство заключается в обработке плавикового шпата для получения плавиковой кислоты и дальнейшего выделения фторалюминиевой кислоты. Посредством соды криолит выделяется в виде осадка.

Электролиз глинозема – результатом этого процесса является получения алюминия-сырца.

Рафинирование – посредством продувки расплавленного сырца хлором добывается чистый алюминий.

Магний добывается посредством реакции электролиза. Сырьем служат расплавленные соли металла (карналлит, магнезит, доломит, бишофит). Основу электролита составляет хлористый магний. Дополнительно применяется хлористый натрий, кальций и калий.

После проведения реакции на аноде оседает черновой металл, имеющий до 5% примесей. Их удаление происходит посредство процесса рафинирования с использованием флюсов. Все неметаллические компоненты преобразуются в шлак, а чистый металл разливается в изложницы.

Производство титана

По своим качествам титан и его сплавы во многом превосходят . Процесс производства титана затрудняется его повышенной активностью, особенно при повышении температуры.

Его особенностью является способность вступать в реакцию со множеством металлов, что требует соблюдения определенных условий для получения чистого титана.

Метод, применяемый для получения титана, называется магниетермия. Он состоит из следующих операций.

Выделение титанового концентрата путем обогащения руды, содержащей подобный металл.

Изготовление шлака – на этом этапе происходит отделение оксидов железа от оксидов титана.

Получение четыреххлористого титана – чтобы получить металлический титан, требуется применение хлорида титана, получаемый при хлорировании шлака.

Восстановление посредством магния – процесс восстановления протекает при очень высоких температурах – близких к 1 тыс. градусов. Реактор, где расплавляется магний, подается парообразный титан. При металлизации он оседает на стенках, а расплавленный магний удаляется через летку.

Сепарация массы в вакууме – полученный в результате предыдущего шага титан в виде губчатой массы требуется нагреть с использованием вакуума, что позволит выделить чистый металл.

Все цветные металлы обладают рядом особенностей, что должно учитываться при или их использовании.

Ряд элементов имеют повышенную теплопроводность и удельную теплоемкость:

  • медь;
  • магний;
  • алюминий.

При сварке место соединения быстро охлаждается, что потребует использования мощных источников, особенно тепла при сварочных работах.

Некоторые элементы при резком нагреве изменяют свои механические свойства. Наблюдается их снижение. При этом сам металл становится легко разрушаемым от ударов или иного механического воздействия.

Все цветные металлы легко вступают во взаимодействие с газами, кроме инертных. Эта особенность характерна для тугоплавких цветных металлов.

Цветные металлы, их свойства и сплавы

К цветным металлам* и сплавам относятся практически все металлы и сплавы, за исключением железа и его сплавов, образующих группу чёрных металлов. Цветные металлы встречаются реже, чем железо и часто их добыча стоит значительно дороже, чем добыча железа. Однако цветные металлы часто обладают такими свойствами, какие у железа не обнаруживаются, и это оправдывает их применение.

Выражение «цветной металл» объясняется цветом некоторых тяжёлых металлов: так, например, медь имеет красный цвет.

Если металлы соответствующим образом смешать (в расплавленном состоянии), то получаются сплавы. Сплавы обладают лучшими свойствами, чем металлы, из которых они состоят. Сплавы, в свою очередь, подразделяются на сплавы тяжёлых металлов, сплавы лёгких металлов и т.д.

Цветные металлы по ряду признаков разделяют на следующие группы:

-
тяжёлые металлы
- медь , никель , цинк , свинец , олово ;

- лёгкие металлы - алюминий , магний , титан , бериллий , кальций , стронций , барий , литий , натрий , калий , рубидий , цезий ;

-
благородные металлы
- золото , серебро , платина , осмий , рутений , родий , палладий ;

-
малые металлы
- кобальт , кадмий , сурьма , висмут , ртуть , мышьяк ;

-
тугоплавкие металлы
- вольфрам , молибден , ванадий , тантал , ниобий , хром , марганец , цирконий ;

-
редкоземельные металлы
- лантан, церий, празеодим, неодим, самарий, европий, гадолиний, тербий, иттербий, диспрозий, гольмий, эрбий, тулий, лютеций, прометий, скандий, иттрий;

-
рассеянные металлы
- индий, германий, таллий, таллий, рений, гафний , селен, теллур;

-
радиоактивные металлы
- уран, торий, протактиний, радий, актиний, нептуний, плутоний, америций, калифорний, эйнштейний, фермий, менделевий, нобелий, лоуренсий.

Чаще всего цветные металлы применяют в технике и промышленности в виде различных сплавов, что позволяет изменять их физические, механические и химические свойства в очень широких пределах. Кроме того, свойства цветных металлов изменяют путём термической обработки, нагартовки, эа счёт искусственного и естественного старения и т. д.

Цветные металлы подвергают всем видам механической обработки и обработки давлением - ковке, штамповке, прокатке, прессованию, а также резанию, сварке, пайке.

Из цветных металлов изготовляют литые детали, а также различные полуфабрикаты в виде проволоки, профильного металла, круглых, квадратных и шестигранных прутков, полосы, ленты, листов и фольги. Значительную часть цветных металлов используют в виде порошков для изготовления изделий методом порошковой металлургии, а также для изготовления различных красок и в качестве антикоррозионных покрытий.

Некоторые химические элементы Национальная Комиссия Украины (НКУ) рекомендует называть так: Серебро - Аргентумом, Золото - Аурумом, Углерод - Карбоном, Медь - Купрумом и т.д. Названия элементов в определённых случаях употребляются как имена собственные - пишутся с большой буквы в середине предложения. В школах дети (на уроках химии) называют азотную кислоту нитратной, серную - сульфурной и т.д. В остальных случаях (география, история и пр.) применяются общеупотребительные названия, т.е. золото называется золотом, медь - медью и т.д.

Цветные металлы и сплавы

Сплавы цветных металлов применяют для изготовления деталей, работающих в условиях агрессивной среды, подвергающихся трению, требующих большой теплопроводности, электропроводности и уменьшенной массы.

Медь- металл красноватого цвета, отличающийся высокой теплопроводностью и стойкостью против атмосферной коррозии. Прочность невысокая: ав = 180… ...240 МПа при высокой пластичности б>50%.
Латунь - сплав меди с цинком (10...40 %), хорошо поддается холодной прокатке, штамповке, вытягиванию
Бронза - сплав меди с оловом (до 10%), алюминием, марганцем, свинцом и другими элементами. Обладает хорошими литейными свойствами (вентили, краны, люстры). При маркировке бронзы Бр.ОЦСЗ-12-5 отдельные индексы обозначают: Бр - бронза, О - олово, Ц - цинк, С -свинец, цифры 3, 12, 5--содержание в процентах олова цинка, свинца. Свойства бронзы зависят от состава: бв=15О...21О МПа, б=4...8%, НВ60 (в среднем).
Алюминий - легкий серебристый металл, обладающий низкой прочностью при растяжении - аа = 80… ...100 МПа, твердостью - НВ20, малой плотностью - 2700 кг/м3, стоек к атмосферной коррозии. В чистом виде в строительстве применяют редко (краски, газооб-разователи, фольга). Для повышения прочности в него вводят легирующие добавки (Мп, Си, Mg, Si, Fe) и используют некоторые технологические приемы. Алюминиевые сплавы делят на литейные, применяемые для отливки изделий (силумины), и деформируемые (дюралюмины), идущие для прокатки профилей, листов и т.п.
Силумины - сплавы алюминия с кремнием (до 14%), они обладают высокими литейными качествами, малой усадкой, прочностью ои = 200 МПа, твердостью НВ50...70 при достаточно высокой пластичности 6== =5...10 %. Механические свойства силуминов можно существенно улучшить путем модифицирования. При этом увеличивается степень дисперсности кристаллов, что повышает прочность и пластичность силуминов.

Дюралюмины - сложные сплавы алюминия с медью (до 5,5 %), кремнием (менее 0,8%). марганцем (до 0,8 %), магнием (до 0,8 %) и др. Их свойства улучшают термической обработкой (закалкой при температуре 500...520°С с последующим старением). Старение осуществляют на воздухе в течение 4...5 сут при нагреве на 170°С в течение 4...5 ч.

Термообработка алюминиевых сплавов основана на дисперсном твердении с выделением твердых дисперсных частиц сложного химического состава. Чем мельче частицы новообразований, тем выше эффект упрочнения сплавов. Предел прочности дюралюминов после закалки и старения составляет 400...480 МПа и может быть повышен до 550...600 МПа в результате наклепа при обработке давлением.

В последнее время алюминий и его сплавы все шире применяют в строительстве для несущих и ограждающих конструкций. Особенно эффективно применение дюралюминов для конструкций в большепролетных сооружениях, в сборно-разборных конструкциях, при сейсмическом строительстве, в конструкциях, предназначенных для работы в агрессивной среде. Начато изготовление трехслойных навесных панелей из листов алюминиевых сплавов с заполнением пенопластовыми материалами. Путем введения газообразователей можно создать высокоэффективный материал пеноалюминий со средней плотностью 100...300 кг/м3
Все алюминиевые сплавы поддаются сварке, но она осуществляется более трудно, чем сварка стали, из-за образования тугоплавких оксидов АЬОз.

Особенностями дюралюмина как конструкционного сплава являются: низкое значение модуля упругости, примерно в 3 раза меньше, чем у стали, влияние температуры (уменьшение прочности при повышении температуры более 400°С и увеличение прочности и пластичности при отрицательных температурах); повышенный примерно в 2 раза по сравнению со сталью коэффициент линейного расширения; пониженная свариваемость.
Титан за последнее время начал применяться в разных отраслях техники благодаря ценным свойствам: высокой коррозионной стойкости, меньшей плотности (4500 кг/м3) по сравнению со сталью, высоким прочностным свойствам, повышенной теплостойкости. На основе титана создаются легкие и прочные конструкции с уменьшенными габаритами, способные работать при повышенных температурах.

Технологии подготовки поверхности металла

Надёжная антикоррозионная защита металла возможна только при высоком уровне подготовки поверхности.

Перед нанесением антикоррозионного лакокрасочного материала необходимо, прежде всего, выбрать технологию и метод подготовки поверхности металла перед окраской.

Существуют механические и химические методы подготовки поверхности. Механические методы имеют ряд ограничений в применении и не способны обеспечить хорошие защитные свойства лакокрасочных покрытий, особенно при их эксплуатации в жёстких условиях. В настоящее время широкое распространение получили химические методы подготовки поверхности. Данные методы позволяют обрабатывать изделия любой формы и сложности, легко поддаются автоматизации и обеспечивают высокое качество поверхности окрашиваемых изделий.

Как выбрать технологический процесс подготовки поверхности?

Какую схему подготовки поверхности следует выбрать для разных металлов, различных лакокрасочных покрытий и условий эксплуатации? Давайте обо всём по порядку.

Выбор технологии подготовки поверхности зависит от трёх основных факторов: условий эксплуатации окрашенных изделий, типа металла и применяемого лакокрасочного покрытия.

С точки зрения подготовки поверхности металлы можно разделить на две категории:

Чёрные металлы - сталь, чугун и др.;

Цветные металлы - алюминий, сплавы цинка, титана, меди, оцинкованная сталь и др.

Для подготовки поверхности чёрных металлов применяют фосфатирование, для обработки цветных металлов - фосфатирование или хроматирование. При одновременной обработке цинка и алюминия с чёрными металлами предпочтение отдают фосфатированию. Пассивирование применяют на заключительной стадии после операций фосфатирования, хроматирования и обезжиривания.

Технологические процессы подготовки поверхности изделий, эксплуатирующихся внутри помещений, могут состоять из 3-5 стадий.

Практически во всех случаях после проведения химической подготовки поверхности изделия сушат от влаги в специальных камерах.

Полный цикл химической подготовки поверхности выглядит так:

Обезжиривание;

Промывка питьевой водой;

Нанесение конверсионного слоя;

Промывка питьевой водой;

Промывка деминерализованной водой;

Пассивация.

Технологический процесс кристаллического фосфатирования предусматривает стадию активации непосредственно перед нанесением конверсионного слоя. При применении хроматирования могут быть введены стадии осветления (при использовании сильнощелочного обезжиривания) или кислотной активации.

Выбор технологии, обеспечивающей высокое качество подготовки поверхности перед окраской, обычно ограничен размерами производственных площадей и финансовыми возможностями. Если таких ограничений нет, то следует выбирать многостадийный технологический процесс, гарантирующий необходимое качество получаемых лакокрасочных покрытий.

Однако, как правило, с ограничивающими факторами приходится считаться. Поэтому для выбора оптимального варианта предварительной обработки поверхности следует провести предварительные испытания предполагаемых покрытий на месте.

Какой метод химической обработки металла лучше?

Для химической обработки металла применяют распыление (струйная обработка низкого давления), погружение, паро- и гидроструйный методы.

Для реализации первых двух методов используют специальные агрегаты химической подготовки поверхности (АХПП).

Выбор метода подготовки поверхности зависит от производственной программы, конфигурации и габаритов изделий, производственных площадей и ряда других факторов.

Обработка металла распылением. Для обработки металла методом распыления можно применять АХПП как тупикового, так и проходного типов. Высокую производительность обеспечивают агрегаты проходного типа непрерывного действия.

Максимальная скорость движения конвейера в АХПП ограничивается возможностью качественного нанесения ЛКМ в камере окраски и составляет, как правило, не более 2,0м/мин. При возрастании скорости конвейера потребуется расширение производственных площадей.

Большим достоинством АХПП проходного типа является возможность применения единого конвейера для участков подготовки поверхности и окраски изделий.

Обработка металла погружением. Для обработки металла методом погружения используют АХПП, состоящие из ряда последовательно расположенных ванн, оборудования перемешивания, транспортёра, разводки трубопроводов, камеры сушки. Изделия транспортируют с помощью тельфера, автооператора или кран-балки. Агрегат обработки погружением занимает значительно меньше производственной площади по сравнению с агрегатом обработки распылением. Но в этом случае после подготовки поверхности потребуется введение дополнительной операции - перевешивания изделий на конвейер окраски.

Пароструйный метод. Для подготовки к окраске крупногабаритных изделий, а также при отсутствии необходимых производственных площадей возможно применение пароструйной обработки металла (обезжиривание с одновременным аморфным фосфатированием). Металлообработка производится оператором вручную стволом-очистителем, из которого на изделия распыляется пароводяная смесь при температуре 140°С с добавками специальных химикатов.

Для пароструйной обработки можно применять стационарные и передвижные установки. В стационарных установках нагрев осуществляется паром при давлении 4,5- 5,0ати.

Обработка металла

Выбор технологии подготовки поверхности и обработки металла - ответственный этап организации покрасочных работ, так как он во многом определяет качество будущего лакокрасочного покрытия и должен производиться с привлечением квалифицированных специалистов.

Только такой подход может обеспечить высокое качество антикоррозионного покрытия и заданный срок службы металлической конструкции.

Термическая обработка цветных металлов

Термическая обработка цветных металлов. Как правило, цветные металлы подвергают термической обработке для удобства работы с ними.

Медь отжигают, нагревая ее до температуры 500- 650°С и охлаждая в воде. Если мягкую медь нагреть, а потом постепенно охладить на воздухе, она станет более твердой.

Латунь и алюминий отжигают при нагревании соответственно до 600-750°С и 350-410°С с последующим охлаждением на воздухе.

Бронзу закаливают нагреванием до 800-850°С с последующим охлаждением в воде. Если ее нагреть до той же температуры и охладить на воздухе, она отпустится.

Дюралюминий Д1 и Д6 закаливают нагреванием до 500°С с последующим охлаждением в воде, однако окончательную твердость он приобретет при комнатной температуре через 4-5 дн. Этот процесс называется старением. Для облегчения сгибания, особенно под острыми углами, дюралюминиевые детали отжигают. Для этого деталь нагревают до 350-400°С, затем медленно охлаждают на воздухе.

Особенности цветных металлов

1. Некоторые металлы (медь, магний, алюминий) обладают сравнительно высокими теплопроводностью и удельной теплоемкостью, что способствует быстрому охлаждению места сварки, требует применения более мощных источников теплоты при сварке, а в ряде случаев предварительного подогрева детали.

2. Для некоторых металлов (медь, алюминий, магний) и их сплавов наблюдается довольно резкое снижение механических свойств при нагреве, в результате чего в этом интервале температур металл легко разрушается от ударов, либо сварочная ванна даже проваливается под действием собственного веса (алюминий, бронза).

3. Все цветные сплавы при нагреве в значительно больших объемах, чем черные металлы, растворяют газы окружающей атмосферы и химически взаимодействуют со всеми газами, кроме инертных. Особенно активные в этом смысле более тугоплавкие и химически более активные металлы: титан, цирконий, ниобий, тантал, молибден. Эту группу металлов часто выделяют в группу тугоплавких, химически активных металлов.

Особенности обработки цветных металлов

Цветные металлы прочны и долговечны, способны переносить высокие температуры. Недостаток только один - способность корродировать и разрушаться под воздействием кислорода.

Одним из самых эффективных методов защиты цветного металла от атмосферной коррозии считается нанесение защитных лакокрасочных материалов. Существуют три группы средств для защиты металлических поверхностей: грунтовки, краски и универсальные препараты «три в одном». Грунтовка - незаменимое средство борьбы с атмосферным окислением, одно- или двухслойное грунтование производится перед окрашиванием, помимо защитных свойств сообщая финишному покрытию лучшую адгезию к основанию. При выборе состава важно знать, что для разных металлов используются разные грунтовки

Для алюминиевых оснований используют специальные грунтовки на цинковой основе либо уретановые краски. Медь, латунь и бронзу обычно не красят - эти металлы поставляются на рынок с заводской обработкой, защищающей поверхность и подчеркивающей ее красоту. Если же целостность такого «фирменного» покрытия со временем нарушается, его лучше полностью удалить с помощью растворителя, после чего основание следует отполировать и покрыть эпоксидным или полиуретановым лаком.

LIKONDA® 25: Процесс бесцветного хроматирования цветных металлов

Процесс бесцветного хроматирования цветных металлов

Процесс Likonda 25 предназначен для получения на серебре, меди и ее сплавах бесцветных хроматных пленок , полирующих и защищающих металлическую поверхность от коррозии.

Особенности процесса

Бесцветные хроматные пленки получаются при одностадийной обработке .

Коррозионная стойкость бесцветных хроматных пленок к воздействию влаги (по ГОСТ 9.012.73) составляет не менее 240 ч .

Получаемые пленки стойки к истиранию в мокром виде , поэтому хроматирование можно проводить во вращательных установках .

Раствор Likonda 25 может быть применен как на автоматических установках , так и при ручном обслуживании .

Корректировка хроматирующего раствора во время эксплуатации осуществляется добавлением композиции Likonda 25 .

Хроматирование проводится методом погружения обрабатываемых деталей в раствор.

Состав раствора и режим работы

1. Композиция Likonda25 , г/дм3

Параметр

Значение

Не контролируется

Температура, ºС

Продолжительность хроматирования, с.

Существует несколько методов нанесения защитных металлических покрытий: гальванический, диффузионный, металлизация, плакирование и погружение в расплавленный металл.

Гальваника – один из наиболее распространённых методов защиты металлических изделий от коррозии и придания им определённых свойств или улучшения их, путём нанесения специальных металлических или химических покрытий. На настоящее время гальваника распространена в машиностроении и строительстве. Гальваническое производство выполняет различные виды покрытий: никелирование, цинкование, хромирование, анодирование, фосфатирование и другие.

Свойства антикоррозийных покрытий напрямую зависят от толщины защитного слоя, толщина которого, в зависимости от резкости климатических условий, меняется в сторону увеличения.

Никелирование – это процесс нанесения тонкого слоя никеля на поверхность металлических изделий для защиты от коррозии. Никелирование бывает нескольких типов: электрохимическое, химическое, покрытие «чёрный никель».

При электрохимическом никелировании - никелем покрывают изделия из стали и цветных металлов для достижения высокой степени антикоррозийности и повышения износостойкости. Главным плюсом химического никелирования, в состав которого входит ещё до 12% фосфора, является равномерное распределение покрытия по поверхности изделия, а также повышенная антикоррозийная стойкость, износостойкость и твёрдость, полученные после термообработки.

Анодирование – это процесс получения защитной или декоративной поверхности различных сплавов (алюминиевых, магниевых и др.) под воздействием тока. Полученная плёнка обладает повышенными электроизоляционными, водостойкими и антикоррозионными свойствами.

Хромирование - это процесс, при котором наносится хром или его сплав на изделие из металла. При этом само изделие наделяется такими свойствами, как износостойкость, антикорозийность, жаростойкость и т.д. В наше современное время процесс хромирования очень распространен. Его в достаточном объеме используют как в машиностроении, так и в промышленности. Сам хром отличается большой стойкостью против негативного воздействия различных кислот, а также щелочей. Хром не может быть растворим в серной, азотной, соляной кислоте и т.д. Он не тускнеет, даже если его нагреть до 700 К.

Для красоты и ограждения от коррозии люди хромируют большое количество различных изделий. Процесс хромирования широко распространен в различных сферах. Например, часто хромируют предметы интерьера, среди которых некоторые детали мебели, ручки к дверям, таблички, статуэтки и т. д. Хромирование используют для долговечности нагрудных знаков (ордена, медали, значки и т. д.), аксессуаров к вещам (запонки, пряжки, зажимы к галстукам), ювелирных украшений. Также распространенная сфера применения - покрытие медицинских инструментов.

1.Алмазирование: -профильные шлифовальные круги d 10:300мм. Высотой до 100мм. -напильники длиной до 350мм. -шлифовальные оправки, надфили, шарошки и т. п. 2.Гальванические покрытия Никелирование, меднение: -мелкие детали для обработки во вращательной установке -детали для покрытия на подвесках габаритами до 420x500мм. Цинкование: -аналогично никелированию, но необходим выпрямитель электрического тока до 100 ампер. 3.Дополнительная обработка гальванопокрытий с целью повышения коррозионной стойкости при повышенной влажности – пропитка ГФЖ / гидрофобизирующая жидкость/. После обработки поверхность приобретает Водоотталкивающие свойства. 4.Рекуперация Снятие остаточного алмазного слоя на никелевой связке с алмазного инструмента для повторного использования стальной заготовки.

Цветная металлургия – отрасль тяжелой индустрии, производящая конструкционные материалы. Она включает в себя добычу, обогащение металлов, передел цветных, производство сплавов, проката, переработку вторичного сырья, а также добычу алмазов. В бывшем СССР производилось 7 млн. тонн цветных металлов.

Развитие НТП требует увеличение производства прочных, пластичных, стойких против коррозии, легких конструкционных материалов (сплавы на основе алюминия и титана). Они широко используются в авиационной, ракетной промышленности, в космических технологиях, в судостроении, в производстве оборудования для химической промышленности.

Медь широко используется в машиностроении и электрометаллургии, как в чистом виде, так и в виде сплавов – с оловом (бронза), с алюминием (дюралюминий), с цинком (латунь), с никелем (мельхиор).

Свинец используется в производстве аккумуляторов, кабелей, в атомной промышленности.

Цинк и никель используются в черной металлургии.

Олово используется при производстве белой жести и подшипников.

Благородные металлы обладают высокой пластичностью, а платина – тугоплавкостью. Поэтому они широко применяются при изготовлении ювелирных изделий и техники. Без солей серебра невозможно изготовить кино- и фотопленку. По физическим свойствам и назначению цветные металлы можно условно поделить на 4 группы.

Классификация цветных металлов:

Основные

тяжелые – медь, свинец, цинк, олово, никель

легкие – алюминий, титан, магний

малые – мышьяк, ртуть, сурьма, кобальт

Легирующие – молибден, ванадий, вольфрам, кремний

Благородные – золото, серебро, платина

Редкие и рассеянные – галлий, селен, теллур, уран, цирконий, германий

Отрасли цветной металлургии:

свинцово-цинковая металлургия тяжелых металлов

никель-кобальтовая

оловянная

алюминиевая

титаномагниевая металлургия легких металлов

Цветные металлы обладают прекрасными физическими свойствами: электропроводимостью, ковкостью, плавкостью, способностью образовывать сплавы, теплоемкостью.

По стадиям технологического процесса цветная металлургия делится на:

Добычу и обогащение рудного сырья (ГОК – горно-обогатительные комбинаты). ГОК базируются у источников сырья, т. к. для производства одной тонны цветного металла в среднем требуется 100 тонн руды.

Передельную металлургию. В передел поступают обогащенные руды. У сырья базируется производства, связанные с медью и цинком. У источников энергии – производства, связанные с алюминием, цинком, титаном, магнием. У потребителя – производства, связанные с оловом.

Обработка, прокат, производство сплавов. Предприятия базируются у потребителя.

Россия обладает многими видами цветных металлов. 70% руд цветных металлов добывается открытым способом.

Специфика руд цветных металлов состоит в:

а) в их сложном составе (многокомпонентности)

б) в низком содержании полезных компонентов в руде – всего несколько %, иногда и доля %:

медь – 1-5%

цинк – 4-6%

свинец – 1,5%

олово – 0,01-0,7%

Для получения 1 тонны медного концентрата используется 100 тонн руды, 1 тонны никелевого концентрата – 200 тонн, оловянного концентрата – 300 тонн.

Все руды предварительно обогащаются на ГОКах и в металлургическом переделе. Там производятся концентраты:

медь – 75%

цинк – 42-62%

олово – 40-70%

Вследствие значительной материалоемкости цветная металлургия ориентируется на сырьевые базы. Поскольку руды цветных и редких металлов обладают многокомпонентным составом, то практическое значение имеет комплексное использование сырья. Комплексное использование сырья и утилизация промышленных отходов связывает цветную металлургию с другими производствами. На этой основе формируются целые промышленные комплексы, например, Урал. Особый интерес представляет комбинирование цветной металлургии и основной химии. При использовании сернистых газов в промышленности производятся цинк и медь.

Факторы размещения:

сырьевой – медь, никель, свинец

топливно-энергетический – титан, магний, алюминий

потребительский – олово

Металлургия тяжелых металлов (медь, никель, цинк, олово, свинец).

Для руд тяжелых металлов характерно малое содержание металла в единице руды.

Медная промышленность.

Медная промышленность приурочена к районам сырья из-за низкого содержания в концентрате, кроме рафинирования чернового металла. Основные типы руд:

медные колчеданы – сосредоточены на Урале. Красно Уральск (Свердловская область), Ревда (Свердловская область), Гай (очень высокое содержание металла – 4%), Сибай, Баймак.

медно-никелевые. Талнахское (север Красноярского края). На нем базируется Норильский комбинат

медистые песчаники. Перспективное месторождение – Удоканское в Читинской области севернее г. Гары.

В качестве дополнительного сырья используются медно-никелевые и полиметаллические руды (из них получают медь в виде штейна).

Производство меди распадается на 2 цикла:

производство черновой медь (штейна)

производство рафинированной меди (очищение методом электролиза)

Медеплавильные заводы находятся на:

Урале: Красно Уральск, Кировоград, Ревда, Медногорск, Карабаш.

Электролитные заводы:

Кыштым, Верхняя Пышма.

На Урале широко развита утилизация производственных отходов для химических целей: Красно Уральск, Ревда. После обжига цинка и меди получают сернистые газы. На основе сернистых газов получают серную кислоту, с помощью которой на основе привозных апатитов Кольского п-ова производят фосфатные удобрения.

Медь вместе с никелем производится в Норильске на базе Танахского месторождения.

Казахстан. Джезказган, Коунрад, Саяк (Джезказганская область), Бозшакуль (в Павлодарской области).

Медеплавильные заводы – Балхаш, Джезказган. Иртышский в г. Глубокое (Восточно-Казахстанская область) использует полиметаллические и медно-никелевые руды.

Узбекистан. Алмалык – медеплавильный завод + месторождение.

Никеле -кобальтовая промышленность (производство никеля).

Она тесно связана с источниками сырья из-за низкого содержания металла в руде. В России – два типа руд:

сульфидные (медно-никелевые) – Кольский полуостров (г. Никель), Норильск

окисленные руды на Урале

Предприятия:

Урал – Реж (северней Екатеринбурга), Верхний Уфалей (севернее Челябинска), Орск

Норильск

Мончегорск, “Североникель” (используются руды Собелевского месторождения) - Мурманская область

Свинцово-цинковая промышленность.

Она использует полиметаллические руды. В целом приурочена к руде. Свинцово-цинковые концентраты обладают высоким содержанием полезного компонента (до 62%), а, стало быть, транспортабельны, поэтому обогащение и металлургический передел отрываются друг от друга в отличие от медной промышленности. Так, производство цинка в Челябинске основано на привозных концентратах из Восточной Сибири и Дальнего Востока.

Свинцово-цинковая промышленность выделяется утилизацией отходов в химических целях. Путем электролиза раствора сернокислого цинка получают серную кислоту, которую можно также производить из сернистых газов, получаемых при обжиге цинковых концентратов. Месторождения:

Садонское (Северная Осетия)

Салаир (Кемеровская область)

Нерчинские месторождения (Читинская область)

Дальнегорское (Приморский край)

Предприятия:

Совместное производство свинца и цинка на местном месторождении предприятие “Садонское” в г. Владикавказ

Производство цинка из привозных концентратов – Челябинск (дешевая электроэнергия - ГРЭС), Белово (на основе Салаирского месторождения). Перевозки на дальние расстояния возможны из-за высокого содержания цинка в концентрате – до 62%. Завозится сырье из Нерчинского месторождения

Производство металлического свинца – Дальнегорск (Приморский край)

Казахстан. Месторождения:

Заряновское (В-К область)

Лениногорское (В-К область)

Тэкэли (Талды-Курганская область)

Ачисай (Чимкентская область)

Предприятия:

Совместное производство свинца и цинка – Лениногорск (В-К область), Усть-Каменогорск (В-К область)

Производство свинца – Чимкент

Украина. Производство цинка из привозных Садонских концентратов – Константиновка. Донбасс - электроэнегия

Киргизия. Актюз – добыча и обогащение полиметаллических руд

Таджикистан. Кансай – добыча и обогащение руд

Оловодобывающая промышленность.

Месторождения:

Шерловская гора (Читинская область)

Хабчеранга (Читинская область)

ЭСЕ-Хайя – в бассейне р. Лена (республика Саха)

Облучия (Еврейская автономная область)

Солнечный (Комсомольск-на-Амуре)

Кавалерово (Хрустальное) – Приморский край

Оловодобывающая промышленность разобщена по стадиям технологического процесса. Металлургический передел не связан с источниками сырья. Он ориентируется на районы потребления готовой продукции : Москва, Подольск, Кольчугино (север Владимирской области), Санкт- Петербург или расположены на путях следования концентратов : Новосибирск. Это обусловлено тем, что добыча сырья рассредоточена по мелким месторождениям, а концентраты обладают большой транспортабельностью (содержание концентрата – до 70%).

Металлургия легких металлов (алюминий, титан, магний).

Алюминиевая промышленность.

Производство алюминия распадается на два цикла :

получение глинозема (окись алюминия). Одновременно получают соду, цемент, т. е. происходит комбинирование химической промышленностью с производством стройматериалов. Производство глинозема, будучи материалоемким производством, тяготеет к сырью.

Около 70 элементов таблицы Д. И. Менделеева составляют цветные металлы, без которых немыслимо развитие отраслей промышленности. Цветные металлы широко различаются как по свойствам, так и по способам получения. Так, галлий и цезий имеют температуры плавления 29,8 и 28,5 °С соответственно, т. е. их можно расплавить в руке, а вольфрам плавится при температуре 3400 °С. Литий, имея плотность 0,53 г/см 3 , не тонет ни в бензине, ни в керосине, а плотность тантала составляет 26,6 г/см 3 . Для производства цветных металлов применяются пирометаллургия, гидрометаллургия, электролиз, как водных растворов, так и расплавленных солей.

Все цветные металлы делят на 5 групп:

1. Тяжёлые цветные металлы – это металлы, плотность которых превышает 7 г/см 3 . Типичные представители: медь (8,94 г/см 3), никель (8,92 г/см 3), свинец (11,34 г/см 3), цинк (7,14 г/см 3), олово (7,3 г/см 3) и др.

2. Легкие цветные металлы – алюминий (2,7 г/см 3), магний (1,74 г/см 3), кальций (1,55 г/см 3), барий (3,75 г/см 3), натрий (0,97 г/см 3), калий (0,86 г/см 3) и др.

3. Благородные металлы – золото, серебро, платина и и металлы платиновой группы.

4. Редкие металлы – это металлы, Кларк которых составляет 10 -10 (кларки элементов – числовые оценки среднего содержания химических элементов в земной коре, гидросфере, атмосфере. Введен А. Е. Ферсманом в честь американского геохимика Ф. У. Кларка). Типичные представители этой группы металлов:: титан, индий, рений, галлий, волфрам, литий, молибден и др.

5. Полупроводниковые металлы: селен, мышьяк, сурьма, германий и др.

Следует отметить, что приведенное деление условное. Так, например, титан и литий могут быть отнесены к легким металлам, а практически все полупроводниковые металлы – к редким.

2.1. Производство меди /Кнорозов, 1974 - с. 69/

Медь - один из важнейших металлов, относится к I – й группе Периодической системы; порядковый номер 29; атомная масса – 63,546; плотность – 8,92 г/см 3 . температура плавления – 1083 °С; температура кипения – 2595 °С. По электро­проводности она несколько уступает лишь серебру и является главным проводниковым материалом в элект­ро- и радиотехнике, потребляющих 40…50 % всей меди. Почти во всех областях машиностроения используются медные сплавы - латуни и бронзы. Медь как легирую­щий элемент входит в состав многих алюминиевых и других сплавов.

Мировое производство меди в капиталистических странах около 6-7 млн. т, в том числе вторичной меди около 2 млн. т. В СССР выплавка меди за каждое пя­тилетие увеличивался на 30…40 %.

Медные руды. Медь встречается в природе главным образом в виде сернистых соединений CuS (ковеллин), Cu 2 S (халькозин) в со­ставе сульфидных руд (85…95 % запасов), реже в виде окисных соединений Сu 2 О (куприт), углекислых соединений СuСО 3 · Сu(ОН) 2 - малахит 2СuСО 3 · Сu(ОН) 2 - азурит и само­родной металлической меди (очень редко). Окисные и углекислые соединения трудно поддаются обогащению и перерабатываются гидрометаллургическим способом.



Наибольшее промышленное значение в СССР имеют сульфидные руды, из которых получают около 80 % всей меди. Самыми распространенными сульфидными рудами являются медный колчедан, медный блеск и др.

Все медные руды являются бедными и обычно содер­жат 1…2 %, иногда меньше 1 % меди. Пустая порода, как правило, состоит из песчаников, глины, известняка, сульфидов железа и т. п. Многие руды являются ком­плексными - полиметаллическими и содержат, кроме меди, никель, цинк, свинец и другие ценные элементы в виде окислов и соединений.

Примерно 90 % первичной меди получают пирометаллургическим способом; около 10 %-гидрометаллур­гическим способом.

Гидрометаллургический способ состоит в извлечении меди путем ее выщелачивания (например, слабыми рас­творами серной кислоты) и последующего выделения металлической меди из раствора. Этот способ, применя­емый для переработки бедных окисленных руд, не по­лучил широкого распространения в нашей промышлен­ности.

Пирометаллургический способ состоит в получении меди путем ее выплавки из медных руд. Он включает обогащение руды, ее обжиг, плавку на полупродукт - штейн, выплавку из штейна черной меди, ее рафиниро­вание, т. е. очистку от примесей (рис. 2.1).

Рис. 2.1. Упрощенная схема пирометаллургического производства меди

Наиболее широко для обогащения медных руд при­меняется метод флотации. Флотация основана на раз­личном смачивании водой металлсодержащих частиц и частиц пустой породы (рис. 2.2).

Рис. 2.2. Схема флотации:

а – принципиальная схема механической флотационной машины (вариант);

б – схема всплывания частиц; 1 – мешалка с лопастями; 2 – перегородка;

3 – схема минерализованной пены; 4 – отверстие для удаления хвосты

(пустой породы); I – зона перемешивания и аэрации.

Обогащение медных руд . Бедные медные руды под­вергают обогащению для получения концентрата, содер­жащего 10…35 % меди. При обогащении комплексных руд возможно извлечение из них и других ценных эле­ментов.

В ванну флотационной машины подают пульпу - суспензию из воды, тонкоизмельченной руды (0,05…0,5 мм) и специальных реагентов, образующих на поверхности металлсодержащих частиц пленки, не сма­чиваемые водой. В результате энергичного перемеши­вания и аэрации вокруг этих частиц возникают пузырь­ки воздуха. Они всплывают, извлекая с собой металл­содержащие частицы, и образуют на поверхности ванны слой пены. Частицы пустой породы, смачиваемые водой, не всплывают и оседают на дно ванны.

Из пены фильтруют частицы руды, сушат их и полу­чают рудный концентрат, содержащий 10…35 % меди. При переработке комплексных руд применяют селектив­ную флотацию, последовательно выделяя металлсодер­жащие частицы различных металлов. Для этого подби­рают соответствующие флотационные реагенты.

Обжиг. Рудные концентраты, достаточно богатые медью, плавят на штейн «сырыми» - без предваритель­ного обжига, что снижает потери меди (в шлаке - при плавке, унос - с пылью при обжиге); основной недоста­ток: при плавке сырых концентратов не утилизируется сернистый газ SO 2 , загрязняющий атмосферу. При об­жиге более бедных концентратов удаляется избыток се­ры в виде SO 2 , который используется для производства серной кислоты. При плавке получают достаточно богатый медью штейн, произво­дительность плавильных пе­чей увеличивается в 1,5…2 раза.

Обжиг производят в вер­тикальных многоподовых цилиндрических печах (диа­метр 6,5…7,5 м, высота 9…11 м), в которых измельчен­ные материалы постепенно перемещаются механически­ми гребками с верхнего пер­вого пода на второй - ниже расположенный, затем на третий и т. д. Необходимая температура (850 °С) обес­печивается в результате го­рения серы (CuS, Cu 2 S и др.). Образующийся сернистый газ SO 2 направляется для производства серной кислоты.

Производительность печей невысокая - до 300 т ших­ты в сутки, безвозвратный унос меди с пылью около 0,5 %.

Новым, прогрессивным способом является обжиг в кипящем слое (рис. 2.3).

Сущность этого способа состо­ит в том, что мелкоизмельченные частицы сульфидов окисляются при 600…700 °С кислородом воздуха, посту­пающего через отверстия в подине печи. Под давлением воздуха частицы обжигаемого материала находятся во взвешенном состоянии, совершая непрерывное движение и образуя «кипящий» («псевдоожиженный») слой. Обожженный материал «переливается» через порог пе­чи. Отходящие сернистые газы очищают от пыли и на­правляют в сернокислотное производство. При таком обжиге резко повышается интенсивность окисления; производительность в несколько раз больше, чем в много­подовых печах.

Плавка на штейн . Плавку на штейн концентрата наиболее часто проводят в пламенных печах, работаю­щих на пылевидном, жидком или газообразном топливе. Такие печи имеют длину до 40 м, ширину до 10 м, пло­щадь подины до 250 м 2 и вмещают 100 т и более пере­плавляемых материалов. В рабочем пространстве печей развивается температура 1500…1600 °С.

При плавке на подине печи постепенно скапливается расплавленный штейн - сплав, состоящий в основном из сульфида меди Cu 2 S и сульфида железа FeS. Он обычно содержит 20…60 % Сu, 10…60 % Fe и 20…25 % S. В расплавленном состоянии (t Пл -950…1050 °C) штейн поступает на переработку в черновую медь.

Плавку концентратов производят также в электропечах, в шахт­ных печах и другими способами. Технически совершенная плавка в электропечах (ток проходит между электродами в слое шлака) на­шла ограниченное применение из-за большого расхода электроэнергии. Медные кусковые руды с повышенным содержанием меди и серы часто подвергают медносерной плавке в вертикальных шахтных пе­чах с воздушным дутьем. Шихта состоит из руды (или брикетов), кокса и других материалов. Выплавляемый бедный штейн с 8…15 % Сu обогащают повторной плавкой до 25…4 % Сu, удаляя избыток железа. Эта плавка экономически выгодна, так как из печных газов улавливают до 90 % элементарной серы руды.

Черновую медь вы­плавляют путем продув­ки расплавленного штей­на воздухом в горизон­тальных цилиндрических конверторах (рис. 2.4) с основной футеровкой (магнезит) с массой плавки до 100 т. Конвер­тор установлен на опор­ных роликах и может по­ворачиваться в требуемое положение. Воздушное дутье подается через 40- 50 фурм, расположенных вдоль конвертора.

Через горловину конвертора заливают рас­плавленный штейн. При этом конвертор поворачивают так, чтобы не были залиты воздушные фурмы. На поверхность штейна через горловину или специальное пневматическое устройство загружают песок - флюс для ошлакования окислов железа, образующихся при про­дувке. Затем включают воздушное дутье и поворачивают конвертор в рабочее положение, когда фурмы находятся ниже уровня расплава. Плотность штейна (5г/см 3) зна­чительно меньше удельного веса меди (8,9 г/см 3). Поэто­му в процессе плавки штейн доливают несколько раз: пока не будет использована вся емкость конвертора, рассчитанная на выплавляемую медь. Продувка воздухом продолжается до 30 ч. Процесс выплавки черновой меди из штейна делится на два периода.


В первом периоде происходит окисление FeS кис­лородом воздушного дутья по реакции

2FeS + ЗО 2 = 2FeO + 2SO 2 + Q.

Образующаяся закись железа FeO ошлаковывается кремнеземом SiO 2 флюса:

2FeO + SiO 2 = SiO 2 ∙2FeO + Q.

По мере необходимости образующийся железистый шлак сливают через горловину (поворачивая конвер­тор), доливают новые порции штейна, загружают флюс и продолжают продувку. К концу первого периода же­лезо удаляется почти полностью. Штейн состоит в ос­новном из Cu 2 S и содержит до 80 % меди.

Шлак содержит до 3 % Сu и его используют при плав­ке на штейн.

Во втором периоде создаются благоприятные усло­вия для протекания реакций

2Cu 2 S + ЗО 2 = 2Cu 2 O + 2SO 2 +Q;

Cu 2 S + 2Cu 2 O = 6Cu + SO 2 - Q,

приводящих к восстановлению меди.

В результате плавки в конверторе получается черно­вая медь. Она содержит 1,5…2 % примесей (железа, ни­келя, свинца и др.) и не может быть использована для технических надобностей. Плавку меди выпускают из конвертора через горловину, разливают на разливочных машинах в слитки (штыки) или плиты и направляют на рафинирование.

Рафинирование меди - ее очистку от примесей - проводят огневым и электролитическим способом.

Огневое рафинирование ведут в пламенных печах емкостью до 400 т. Его сущность состоит в том, что цинк, олово и другие примеси легче окисляются, чем са­ма медь, и могут быть удалены из нее в виде окислов. Процесс рафинирования состоит из двух периодов - окислительного и восстановительного.

В окислительном периоде примеси частично окисляются уже при расплавлении меди. После полного расплавления для ускорения окисления медь продувают воздухом, подавая его через погруженные в жидкий ме­талл стальные трубки. Окислы некоторых примесей (SbO 2 , PbO, ZnO и др.) легко возгоняются и удаляются с печными газами. Другая часть примесей образует окис­лы, переходящие в шлак (FeO, Аl 2 О з, Si0 2). Золото и серебро не окисляются и остаются растворенными в меди.

В этот период плавки происходит также и окисление меди по реакции 4Cu+O 2 =2Cu 2 O.

Задачей восстановительного периода являет­ся раскисление меди, т. е. восстановление Сu 2 0, а так­же дегазация металла. Для его проведения окислитель­ный шлак полностью удаляют. На поверхность ванны насыпают слой древесного угля, что предохраняет ме­талл от окисления. Затем проводят так называемое дразнение меди. В расплавленный металл погружают сначала сырые, а затем сухие жерди (шесты). В результате су­хой перегонки древесины выделяются пары воды и га­зообразные углеводороды, они энергично перемешивают металл, способствуя удалению растворенных в нем газов (дразнение на плотность).

Газообразные углеводороды раскисляют медь, на­пример, по реакции 4Cu 2 O+CH 4 =8Cu+CO 2 +2H 2 O (дразнение на ковкость). Рафинированная медь содер­жит 0,3…0,6 % Sb и других вредных примесей, иногда до 0,1 % (Au+Ag).

Готовую медь выпускают из печи и разливают в слитки для прокатки или в анодные пластины для последующего электролитического рафинирования. Чистота меди после огневого рафинирования составляет 99,5 … 99,7 %.

Электролитическое рафинирование обеспечивает по­лучение наиболее чистой, высококачественной меди. Электролиз проводят в ваннах из железобетона и дере­ва, внутри футерованных листовым свинцом или винипластом. Электролитом служит раствор сернокислой ме­ди (CuSO 4) и серной кислоты, нагретый до 60…65 °С, Анодами являются пластины размером 1х1 м толщиной 40…50 мм, отлитые из рафинируемой меди. В качестве катодов используют тонкие листы (0,5…0,7 мм), изго­товленные из электролитической меди.

Аноды и катоды располагают в ванне попеременно; в одной ванне помещают до 50 анодов. Электролиз ве­дут при напряжении 2…3 В и плотности тока 100… 150 А/м 2 .

При пропускании постоянного тока аноды постепенно растворяются, медь переходит в раствор в виде ка­тионов Си 2+ . На катодах происходит разрядка катионов Cu 2+ +2e → Cu и выделяется металлическая медь.

Анодные пластины растворяются за 20…30 суток. Катоды наращивают в течение 10…15 суток до массы 70…140 кг, а затем извлекают из ванны и заменяют но­выми.

При электролизе на катоде выделяется и растворяет­ся в меди водород, вызывающий охрупчивание металла. В дальнейшем катодную медь переплавляют в плавиль­ных печах и разливают в слитки для получения листов, проволоки и т. п. При этом удаляется водород. Расход электроэнергии на 1 т катодной меди составляет 200…400 кВт · ч. Электролитическая медь имеет чистоту 99,95 %. Часть примесей оседает на дне ванны в виде шлама, из которого извлекают золото, серебро и некото­рые другие металлы.

2.2. Производство алюминия /Солнцев, МиТКМ, с.44 /

В группу легких металлов, имеющих плотность меньше 5 г/см, входят Al, Mg, Ti, Be, Ca, В, Zn, К и др. Наибольшее промышленное применение из них имеют алюминий, магний, титан.

Алюминий является самым распространенным металлом в земной коре. Он преимущественно встречается в виде соединений с кислородом и кремнием алюмосиликатов. Для получения алюминия используют руды, богатые глиноземом AI2O3. Чаще всего применяют бокситы, в которых содержится, %: Аl 2 О 3 40-60, Fе 2 О 3 15-30,SiO 2 5-15,ТiO 2 2-4 и гидратной влаги 10-15.

Технологический процесс производства алюминия состоит из трех этапов: извлечение глинозема из алюминиевых руд, электролиз расплавленного глинозема с получением первичного алюминия и его рафинирование. Извлечение глинозема обычно производят щелочным способом, применяемым в двух вариантах: мокром (метод Байера) и сухом.

При мокром методе бокситы сушат, измельчают и загружают в герметические автоклавы с концентрированной щелочью, где выдерживают в течение 2-3 ч при температуре 150…250 °С и давлении до 3 МПа. При этом протекают реакции взаимодействия гидрооксида алюминия с едким натром:

AI 2 O 3 + ЗН 2 О + 2NaOH=Na 2 O AI 2 O 3 + 4Н 2 О.

Раствор алюмината натрия Nа 2 О· А1 2 О в виде горячей пульпы идет на дальнейшую переработку. Оксиды железа, титана и другие примеси, не растворяющиеся в щелочах, выпадают в осадок-шлам.

Кремнезем также взаимодействует со щелочью и образует силикат натрия: SiO 2 + 2NaOH = Na 2 O SiO 2 + 4Н 2 О, который, в свою очередь, взаимодействуя с алюминатом натрия, выпадает в осадок, образуя нерастворимое соединение Na 2 O· AI 2 O 3 ·2SiO 2 ·2Н 2 О.

Пульпа после фильтрации и разбавления водой сливается в отстойник, где из алюминатного раствора выпадает в осадок гидроксид алюминия:

Na 2 O· AI 2 O 3 + 4Н 2 О = 2NaOH + 2A1 (ОН) 3 .

Гидроксид алюминия фильтруют и прокаливают при температуре до 1200 °С в трубчатых вращающихся печах. В результате получается глинозем:

2А1(ОН) 3 = AI 2 O 3 + ЗН 2 О.

Сухой щелочной способ или способ спекания состоит в совместном прокаливании при температурах 1200…1300 °С смеси боксита, соды и извести, приводящем к образованию спека, в котором содержится водорастворимый алюминат натрия:

AI 2 O 3 + Nа 2 СО 3 =Na 2 O · AI 2 O 3 + СО 2 .

Известь расходуется на образование нерастворимого в воде силиката кальция СаО SiO2. Алюминат натрия выщелачивают из спека горячей водой и полученный раствор продувают углекислотой:

Na 2 O AI 2 O 3 + ЗН 2 О + СО 2 =2А1(ОН) 3 +Nа 2 СО 3 .

Осадок промывают и прокаливают, получая глинозем, как и в предыдущем способе.

Алюминий получают электролизом глинозема, растворенного в расплавленном криолите Na 3 AlF 6 . Этот метод был предложен в 1886 г. одновременно Ч.Холлом в США и П.Эру во Франции и применяется до сих пор почти без изменений. Криолит получают в результате взаимо­действия плавиковой кислоты HF с гидроксидом алюминия с последую­щей нейтрализацей содой:6HF + А1(ОН) 3 =Н 3 АlF 6 + ЗН 2 О;

H 3 AIF 6 + ЗNа 2 СО 3 =2Na 3 AlF 6 + ЗН 2 О + СО 2 -

Электролиз осуществляют в алюминиевой ванне-электролизере, схема которого приведена на рис. 2.5.

Рис. 2.5. Схема электролизера для производства алюминия:

1 - катодные угольные бло­ки; 2 - огнеупорная футеровка; 3 - стальной кожух; 4 - угольные плиты; 5 - жидкий алюми­ний; 6 - металлические стержни с шинами; 7 - угольный анод; 8 - глинозем; 9 - жидкий элект­ролит; 10 - корка затвердевшего электролита; 11 - катодная токо-подводящая шина; 12 - фундамент

Ванна имеет стальной кожух прямоугольной формы, а ее стену и подину изготавливают из угольных блоков, теплоизолированных шамотным кирпичом. В футеровку подины вмонтированы стальные катодные шины, благодаря чему угольный корпус ванны является катодом электролизера. Анодами служат самообжигающиеся, вертикально расположенные угольные электроды, погруженные в расплав. При электролизе аноды постепенно сгорают и перемещаются вниз. По мере сгорания они наращиваются сверху жидкой анодной массой, из которой при нагреве удаляются летучие и происходит ее коксование. Электролит нагревается до рабочей температуры 930-950 °С. Глинозем, расходуемый в процессе электролиза, периодически загружают в ванну сверху. Благодаря охлаждению воздухом на поверхности образуется корка электролита. На боковой поверхности ванны образуется затвердевающий слой электролита (гарнисаж), пре­дохраняющий футеровку от разрушения и теплоизолирующий ванну.При высокой температуре глинозем AI 2 O 3 , растворенный в электролите, диссоциирует на ионы: А1 2 О 3 =2А1 3+ + O 2- На поверхности угольной подины, являющейся катодом, ионы восстанавливаются до металла: 2Al 3+ +6e=2al

По мере уменьшения содержания глинозема в электролите его периодически загружают в ванну электролизера. Жидкий алюминий скапливается на подине электролизера и периодически удаляется с помощью вакуумных ковшей.

Кислородные ионы разряжаются на угольном аноде: 3O 2- 6e= 3/2O 2 , окисляют анод, образуя СО и СО 2 , которые удаляются вентиляционными устройствами. Электролизные ванны соединяют последовательно в серии из 100-200 ванн.

Первичный алюминий, полученный в электролизной ванне, загрязнен примесями Si, Fe, неметаллическими включениями (AI 2 O 3 ,С), а также газами, преимущественно водородом. Для очистки алюминия его подвергают рафинированию либо хлорированием, либо электролитиче­ским способом.

Более чистый алюминий получают электролитическим рафинированием, где электролитом являются безводные хлористые и фтористые соли. В расплавленном электролите алюминий подвергают анодному растворению и электролизу. Электролитическим рафинированием получают алюминий чистотой до 99,996 %,потребляемый электрической, химической и пищевой промышленностью. Еще более чистый алюминий(99,9999 %)можно получить зонной плавкой. Этот способ дороже электролиза, мало производителен и применяется для изготовления

небольших количеств металла в тех случаях, когда необходима особая чистота, например для производства полупроводников.