Как определить электроотрицательность молекулы. Электроотрицательность атомов и групп

Электроотрицательность – это свойство атома, соединенного ковалентной связью с другим атомом. Если в связи А–В электронное облако смещено в сторону А, то А более электроотрицателен, чем В.

Наибольшая электроотрицательность присуща атомам, расположенным в правом верхнем углу, наименьшая – в нижнем левом углу периодической системы. Таким образом, электроотрицательность растет слева направо по периодам и снизу вверх в группах.

В пределах главного периода она пропорциональна эффективному заряду ядра (для 2-го периода: С F). Внутри группы она тем больше, чем меньше степень экранирования ядер электронами:FClBrI.

Рассмотрим энергии связей трех молекул:

Экспериментально установлено, что

E A – B > (E A – A +E B – B)

Электроотрицательность рассматривают в основном по шкале Полинга. Полинг предположил, что

χ A – χ B =f(Δ)

где Δ = E A – B –(E A – A +E B – B)

Эмпирически было найдено, что эта зависимость является квадратичной.

Если произвольно приписать χ F = 4, то остальным атомам можно присвоить такие значения элетроотрицательностей, что будет справедливо соотношение

│χ A – χ B │ =
= 0,208
,

где Δ – в ккал/моль;

23,06 – переводной коэффициент из ккал/моль в эВ/моль, помноженный на 10 4 .

Полученная таким образом эмпирическая шкала Полинга выглядит следующим образом:

Таблица 5

Шкала Полинга:

По Малликену = 1/2E + I, гдеE– сродство к электрону,I– энергия ионизации атома в данном валентном состоянии.

Электроотрицательность по Малликену линейно пропорциональна электроотрицательности по Полингу.

Электроотрицательность атома зависит от эффективного заряда атома в конкретной молекуле и от состояния его гибридизации, т. е. не является фиксированной величиной.

Таблица 6

Электроотрицательность атома углерода в различных гибридных состояниях:

Тип связи

Состояние гибридизации атома углерода

Следовательно, электроотрицательность одного и того же многовалентного атома различна в направлении различных связей и зависит от других заместителей, входящих в состав молекулы. особенно от атомов, непосредственно соединенных с рассматриваемым. Поэтому имеет смысл рассчитать электроотрицательность и для атомных групп:

Таблица 7

Электроотрицательность групп

Сведения об электроотрицательности можно получить из спектров ЯМР. Химический сдвиг протона приблизительно пропорционален электронной плотности вокруг него, и, следовательно, электроотрицательности атома или группы, с которыми он связан. Чем выше электроотрицательность атома или группы, тем ниже электронная плотность вокруг связанного с ними протона и тем в большей степени сдвинут сигнал протона в слабое поле.

В сложных соединениях, состоящих из атомов разных элементов, электронная плотность всегда будет смещена к одному, самому «сильному» соседу. Например, в молекуле воды (Н 2 О) победителем будет кислород, а в соляной кислоте (HCl) поединок выиграет атом хлора. Как же научиться определять эту силу? Для этого достаточно разобрать, что такое электроотрицательность. Приступим.

Атомы и элементы

Первое, что требуется освоить, это разница между атомом и элементом. Допустим, в молекуле HNO 3 целых пять атомов и только три элемента, коими являются водород (Н), азот (N) и кислород (О). Если название какого-то значка или символа стерлось из памяти, то на помощь придет периодическая система Менделеева.

В ней как раз и перечислены все существующие на сегодняшний день элементы. Итак, первая трудность преодолена. Подойдем поближе к вопросу, что такое электроотрицательность.

Шкала Полинга

В школах и вузах для выявления того самого наиболее сильного атома, который оттянет на себя электронную плотность более слабых «соседей», будет достаточно шкалы Полинга. Пугаться не стоит. Здесь всё предельно просто. Относительная электроотрицательность химических элементов расставлена в порядке возрастания и варьируется в интервале 0,7-4,0. Логика тут ясна: у кого данная величина больше, тот и сильнее.

Значение «0,7» принадлежит самому активному металлу - францию. Здесь он проигрывает абсолютно всем, то есть он наименее электроотрицателен (наиболее электроположителен). Максимальным значением, равным четырем, может похвастаться фтор. А потому ему нет равных по силе.

Даже особо не разбираясь, что такое электроотрицательность, в любом сложном фторсодержащем соединении можно сразу определить победителя. Кто оттянет на себя электронную плотность во фториде лития (LiF)? Конечно, фтор. Какой элемент более электроотрицателен в молекуле тетрафторида кремния (SiF 4)? Конечно же, снова фтор.

Закрепляем пройденное

Итак, разобрав, что такое электроотрицательность, подкрепим теорию примерами. Научимся выявлять самый сильный элемент из присутствующих в соединении. Возьмем молекулу серной кислоты (H 2 SO 4). Воспользовавшись шкалой Полинга, определим относительные электроотрицательности всех трех требуемых элементов. У водорода она составит 2,1. Значение для серы несколько выше - 2,6. Но явным лидером будет кислород, имеющий максимальный показатель, равный 3,5. Значит, наиболее электроотрицательным элементом в молекуле H 2 SO 4 будет именно кислород. Таким образом, возможно определить значение электроотрицательности любого элемента.

Электроотрицательность, как и прочие свойства атомов химических элементов, изменяется с увеличением порядкового номера элемента периодически:

График выше демонстрирует периодичность изменения электроотрицательности элементов главных подгрупп в зависимости от порядкового номера элемента.

При движении вниз по подгруппе таблицы Менделеева электроотрицательность химических элементов уменьшается, при движении вправо по периоду возрастает.

Электроотрицательность отражает неметалличность элементов: чем выше значение электроотрицательности, тем более у элемента выражены неметаллические свойства.

Степень окисления

Как рассчитать степень окисления элемента в соединении?

1) Степень окисления химических элементов в простых веществах всегда равна нулю.

2) Существуют элементы, проявляющие в сложных веществах постоянную степень окисления:

3) Существуют химические элементы, которые проявляют в подавляющем большинстве соединений постоянную степень окисления. К таким элементам относятся:

Элемент

Степень окисления практически во всех соединениях

Исключения

водород H +1 Гидриды щелочных и щелочно-земельных металлов, например:
кислород O -2 Пероксиды водорода и металлов:

Фторид кислорода —

4) Алгебраическая сумма степеней окисления всех атомов в молекуле всегда равна нулю. Алгебраическая сумма степеней окисления всех атомов в ионе равна заряду иона.

5) Высшая (максимальная) степень окисления равна номеру группы. Исключения, которые не попадают под это правило, — элементы побочной подгруппы I группы, элементы побочной подгруппы VIII группы, а также кислород и фтор.

Химические элементы, номер группы которых не совпадает с их высшей степенью окисления (обязательные к запоминанию)

6) Низшая степень окисления металлов всегда равна нулю, а низшая степень окисления неметаллов рассчитывается по формуле:

низшая степень окисления неметалла = № группы − 8

Отталкиваясь от представленных выше правил, можно установить степень окисления химического элемента в любом веществе.

Нахождение степеней окисления элементов в различных соединениях

Пример 1

Определите степени окисления всех элементов в серной кислоте.

Решение:

Запишем формулу серной кислоты:

Степень окисления водорода во всех сложных веществах +1 (кроме гидридов металлов).

Степень окисления кислорода во всех сложных веществах равна -2 (кроме пероксидов и фторида кислорода OF 2). Расставим известные степени окисления:

Обозначим степень окисления серы как x :

Молекула серной кислоты, как и молекула любого вещества, в целом электронейтральна, т.к. сумма степеней окисления всех атомов в молекуле равна нулю. Схематически это можно изобразить следующим образом:

Т.е. мы получили следующее уравнение:

Решим его:

Таким образом, степень окисления серы в серной кислоте равна +6.

Пример 2

Определите степень окисления всех элементов в дихромате аммония.

Решение:

Запишем формулу дихромата аммония:

Как и в предыдущем случае, мы можем расставить степени окисления водорода и кислорода:

Однако мы видим, что неизвестны степени окисления сразу у двух химических элементов — азота и хрома. Поэтому найти степени окисления аналогично предыдущему примеру мы не можем (одно уравнение с двумя переменными не имеет единственного решения).

Обратим внимание на то, что указанное вещество относится к классу солей и, соответственно, имеет ионное строение. Тогда справедливо можно сказать, что в состав дихромата аммония входят катионы NH 4 + (заряд данного катиона можно посмотреть в таблице растворимости). Следовательно, так как в формульной единице дихромата аммония два положительных однозарядных катиона NH 4 + , заряд дихромат-иона равен -2, поскольку вещество в целом электронейтрально. Т.е. вещество образовано катионами NH 4 + и анионами Cr 2 O 7 2- .

Мы знаем степени окисления водорода и кислорода. Зная, что сумма степеней окисления атомов всех элементов в ионе равна заряду, и обозначив степени окисления азота и хрома как x и y соответственно, мы можем записать:

Т.е. мы получаем два независимых уравнения:

Решая которые, находим x и y :

Таким образом, в дихромате аммония степени окисления азота -3, водорода +1, хрома +6, а кислорода -2.

Как определять степени окисления элементов в органических веществах можно почитать .

Валентность

Валентность атомов обозначается римскими цифрами: I, II, III и т.д.

Валентные возможности атома зависят от количества:

1) неспаренных электронов

2) неподеленных электронных пар на орбиталях валентных уровней

3) пустых электронных орбиталей валентного уровня

Валентные возможности атома водорода

Изобразим электронно-графическую формулу атома водорода:

Было сказано, что на валентные возможности могут влиять три фактора — наличие неспаренных электронов, наличие неподеленных электронных пар на внешнем уровне, а также наличие вакантных (пустых) орбиталей внешнего уровня. Мы видим на внешнем (и единственном) энергетическом уровне один неспаренный электрон. Исходя из этого, водород может точно иметь валентность, равную I. Однако на первом энергетическом уровне есть только один подуровень — s, т.е. атом водорода на внешнем уровне не имеет как неподеленных электронных пар, так и пустых орбиталей.

Таким образом, единственная валентность, которую может проявлять атом водорода, равна I.

Валентные возможности атома углерода

Рассмотрим электронное строение атома углерода. В основном состоянии электронная конфигурация его внешнего уровня выглядит следующим образом:

Т.е. в основном состоянии на внешнем энергетическом уровне невозбужденного атома углерода находится 2 неспаренных электрона. В таком состоянии он может проявлять валентность, равную II. Однако атом углерода очень легко переходит в возбужденное состояние при сообщении ему энергии, и электронная конфигурация внешнего слоя в этом случае принимает вид:

Несмотря на то что на процесс возбуждения атома углерода тратится некоторое количество энергии, траты с избытком компенсируются при образовании четырех ковалентных связей. По этой причине валентность IV намного более характерна для атома углерода. Так, например, валентность IV углерод имеет в молекулах углекислого газа, угольной кислоты и абсолютно всех органических веществ.

Помимо неспаренных электронов и неподеленных электронных пар на валентные возможности также влияет наличие вакантных () орбиталей валентного уровня. Наличие таких орбиталей на заполняемом уровне приводит к тому, что атом может выполнять роль акцептора электронной пары, т.е. образовывать дополнительные ковалентные связи по донорно-акцепторному механизму. Так, например, вопреки ожиданиям, в молекуле угарного газа CO связь не двойная, а тройная, что наглядно показано на следующей иллюстрации:

Валентные возможности атома азота

Запишем электронно-графическую формулу внешнего энергетического уровня атома азота:

Как видно из иллюстрации выше, атом азота в своем обычном состоянии имеет 3 неспаренных электрона, в связи с чем логично предположить о его способности проявлять валентность, равную III. Действительно, валентность, равная трём, наблюдается в молекулах аммиака (NH 3), азотистой кислоты (HNO 2), треххлористого азота (NCl 3) и т.д.

Выше было сказано, что валентность атома химического элемента зависит не только от количества неспаренных электронов, но также и от наличия неподеленных электронных пар. Связано это с тем, что ковалентная химическая связь может образоваться не только, когда два атома предоставляют друг другу по одному электрону, но также и тогда, когда один атом, имеющий неподеленную пару электронов — донор() предоставляет ее другому атому с вакантной () орбиталью валентного уровня (акцептору). Т.е. для атома азота возможна также валентность IV за счет дополнительной ковалентной связи, образованной по донорно-акцепторному механизму. Так, например, четыре ковалентных связи, одна из которых образована по донорно-акцепторному механизму, наблюдается при образовании катиона аммония:

Несмотря на то что одна из ковалентных связей образуется по донорно-акцепторному механизму, все связи N-H в катионе аммония абсолютно идентичны и ничем друг от друга не отличаются.

Валентность, равную V, атом азота проявлять не способен. Связано это с тем, что для атома азота невозможен переход в возбужденное состояние, при котором происходит распаривание двух электронов с переходом одного из них на свободную орбиталь, наиболее близкую по уровню энергии. Атом азота не имеет d -подуровня, а переход на 3s-орбиталь энергетически настолько затратен, что затраты энергии не покрываются образованием новых связей. Многие могут задаться вопросом, а какая же тогда валентность у азота, например, в молекулах азотной кислоты HNO 3 или оксида азота N 2 O 5 ? Как ни странно, валентность там тоже IV, что видно из нижеследующих структурных формул:

Пунктирной линией на иллюстрации изображена так называемая делокализованная π -связь. По этой причине концевые связи NO можно назвать «полуторными». Аналогичные полуторные связи имеются также в молекуле озона O 3 , бензола C 6 H 6 и т.д.

Валентные возможности фосфора

Изобразим электронно-графическую формулу внешнего энергетического уровня атома фосфора:

Как мы видим, строение внешнего слоя у атома фосфора в основном состоянии и атома азота одинаково, в связи с чем логично ожидать для атома фосфора так же, как и для атома азота, возможных валентностей, равных I, II, III и IV, что и наблюдается на практике.

Однако в отличие от азота, атом фосфора имеет на внешнем энергетическом уровне еще и d -подуровень с 5-ю вакантными орбиталями.

В связи с этим он способен переходить в возбужденное состояние, распаривая электроны 3s -орбитали:

Таким образом, недоступная для азота валентность V для атома фосфора возможна. Так, например, валентность, равную пяти, атом фосфора имеет в молекулах таких соединений, как фосфорная кислота, галогениды фосфора (V), оксид фосфора (V) и т.д.

Валентные возможности атома кислорода

Электронно-графическая формула внешнего энергетического уровня атома кислорода имеет вид:

Мы видим на 2-м уровне два неспаренных электрона, в связи с чем для кислорода возможна валентность II. Следует отметить, что данная валентность атома кислорода наблюдается практически во всех соединениях. Выше при рассмотрении валентных возможностей атома углерода мы обсудили образование молекулы угарного газа. Связь в молекуле CO тройная, следовательно, кислород там трехвалентен (кислород — донор электронной пары).

Из-за того что атом кислорода не имеет на внешнем уровне d -подуровня, распаривание электронов s и p- орбиталей невозможно, из-за чего валентные возможности атома кислорода ограничены по сравнению с другими элементами его подгруппы, например, серой.

Валентные возможности атома серы

Внешний энергетический уровень атома серы в невозбужденном состоянии:

У атома серы, как и у атома кислорода, в обычном состоянии два неспаренных электрона, поэтому мы можем сделать вывод о том, что для серы возможна валентность, равная двум. И действительно, валентность II сера имеет, например, в молекуле сероводорода H 2 S.

Как мы видим, у атома серы на внешнем уровне появляется d -подуровень с вакантными орбиталями. По этой причине атом серы способен расширять свои валентные возможности в отличие от кислорода за счет перехода в возбужденные состояния. Так, при распаривании неподеленной электронной пары 3p -подуровня атом серы приобретает электронную конфигурацию внешнего уровня следующего вида:

В таком состоянии атом серы имеет 4 неспаренных электрона, что говорит нам о возможности проявления атомами серы валентности, равной IV. Действительно, валентность IV сера имеет в молекулах SO 2 , SF 4 , SOCl 2 и т.д.

При распаривании второй неподеленной электронной пары, расположенной на 3s -подуровне, внешний энергетический уровень приобретает конфигурацию:

В таком состоянии уже становится возможным проявление валентности VI. Примером соединений с VI-валентной серой являются SO 3 , H 2 SO 4 , SO 2 Cl 2 и т.д.

Аналогично можно рассмотреть валентные возможности остальных химических элементов.

Sc 1,3 Ti 1,5 V 1,6 Cr 1,6 Mn 1,5

Fe 1,8 Co 1,9 Ni 1,9 Cu 1,9 Zn 1,6

Y 1,2 Zr 1,4 Nb 1,6 Mo 1,8 Tc 1,9

Ru 2,2 Rn 2,2 Pd 2,2 Ag 1,9 Cd 1,7

La 1,0 Hf 1,3 Ta 1,5 W 1,7 Re 1,9

Os 2,2 Ir 2,2 Pt 2,2 Au 2,4 Hg 1,9

Таким образом, чем более типичным металлом является элемент, тем ниже его электроотрицательность и наоборот, чем более типичным неметаллом является элемент, тем выше его электроотрицательность.

В периодах электроотрицательность растет, а в группах уменьшается с ростом Z , то есть растет от Cs к F по диагонали периодической системы. Это обстоятельство до некоторой степени определяет диагональное сходство элементов .

В главных и побочных подгруппах свойства элементов меняются немонотонно, что обусловлено так называемой вторичной периодичностью , связанной с влиянием d - и f -электронных слоев.

Из анализа периодичности геометрических и энергетических параметров атомов следует, что периодическим законом можно пользоваться для определения физико-химических констант, предсказывать изменение радиусов, энергий ионизации и сродства к электрону, и, следовательно, кислотно-основные и окислительно-восстановительные свойства их соединений.

Зависимость кислотно-основных свойств оксидов от положения элемента в периодической системе и его степени окисления.

Слева направо по периоду у элементов происходит ослабление металлических свойств, и усиление неметаллических. Основные свойства оксидов ослабевают, а кислотные свойства оксидов усиливаются.

По главным подгруппам неметаллические свойства элементов ослабевают, а металлические усиливаются, поэтому сверху вниз по главной группе возрастают основные свойства оксидов, а кислотные ослабевают.

Если один и тот же элемент образует несколько оксидов с разными степенями окисления, то чем выше степень окисления элемента в оксиде, тем выше его кислотные свойства.

Например, Pb +2 O – основной оксид, Pb +4 O 2 – амфотерный. Cr +2 O - основный оксид, Cr 2 +3 O 3 – амфотерный, Cr +6 O 3 – кислотный.

Характер изменения свойств оснований в зависимости от положения металла в периодической системе и его степени окисления.

По периоду слева направо наблюдается постепенное ослабление основных свойств гидроксидов. Например, Mg(OH) 2 более слабое основание, чем NaOH, но более сильное основание, чем Al(OH) 3 .

По главным группам сверху вниз сила оснований возрастает. Так, Са(ОН) 2 более сильное основание, чем Mg(OH) 2 , но Mg(OH) 2 более сильное основание, чем Ве(ОН) 2 .

Если металл образует несколько гидроксидов, находясь в различной степени окисления, то чем выше степень окисления металла, тем более слабыми основными свойствами обладает гидроксид. Так, Cr(OH) 3 более слабое основание, чем Cr(OH) 2 .

Зависимость силы кислот от положения элемента в периодической системе и его степени окисления.

По периоду для кислородосодержащих кислот слева направо возрастает сила кислот. Так, Н 3 РО 4 более сильная, чем Н 2 SiO 3 ; в свою очередь, H 2 SO 4 более сильная, чем Н 3 РО 4 .

По группе кислородсодержащих кислот сверху вниз сила кислот уменьшается. Так, угольная кислота (Н 2 СО 3) более сильная, чем кремневая (Н 2 SiO 3).

Чем выше степень окисления кислотообразующего элемента, тем сильнее кислота: серная кислота (H 2 S +6 O 4) сильнее, чем сернистая (H 2 S +4 O 3).

Сила бескислородных кислот в главных подгруппах с ростом атомного номера элемента возрастает: HF → HCl → HBr → HI

H 2 S → H 2 Se → H 2 Te

СИЛА КИСЛОТ РАСТЕТ

По периоду слева направо сила бескислородных кислот возрастает. Так HCl более сильная кислота, чем H 2 S, а HBr - чем H 2 Se.

Учение о химической связи – центральный вопрос современной химии. Без него нельзя понять причин многообразия химических соединений, механизма их образования, строения и реакционной способности.

Образование молекул из атомов приводит к выигрышу энергии, так как в обычных условиях молекулярное состояние устойчивее, чем атомное. Учение о строении атомов объясняет механизм образования молекул, а также природу химической связи. У атомов на внешнем энергетическом уровне может быть от одного до восьми электронов. Если на внешнем уровне содержится максимальное число электронов, которое он может вместить, то такой уровень называют завершенным. Завершенные уровни характеризуются большой прочностью. Такие уровни имеют атомы благородных газов. Атомы других элементов имеют незавершенные энергетические уровни и в процессе химического взаимодействия завершают их.

Химическая связь – это совокупность сил, действующих между атомами или группой атомов. Химическая связь осуществляется валентными электронами. По современным представлениям химическая связь имеет электронную природу, но осуществляется она по-разному. Поэтому различают три основных типа химической связи: ковалентную, ионную, металлическую . Между молекулами возникает водородная связь , и происходят вандерваальсовые взаимодействия .

К основным характеристикам химической связи, относятся:

Длина связи – это межъядерное расстояние между химически связанными атомами. Она зависит от природы взаимодействующих атомов и от кратности связи. С увеличением кратности длина связи уменьшается, а, следовательно, увеличивается ее прочность.

Кратность связи – определяется числом электронных пар, связывающих два атома. С увеличением кратности энергия связи возрастает.

Угол связи – угол между воображаемыми прямыми проходящими через ядра двух химически взаимосвязанных соседних атомов.

Энергия связи (Е СВ ) – это энергия, которая выделяется при образовании данной связи и затрачивается на ее разрыв (кДж/моль).

Химическая связь, образованная путем обобществления пары электронов двумя атомами, называется ковалентной.

Объяснение химической связи возникновением общих электронных пар между атомами легло в основу спиновой теории валентности, инструментом которой является метод валентных связей (МВС) , открытый Льюисом в 1916 году.

Основные принципы образования химической связи по МВС:

1. Химическая связь образуется за счет валентных (неспаренных) электронов.

2. Электроны с антипараллельными спинами, принадлежащие двум различным атомам, становятся общими.

3. Химическая связь образуется только в том случае, если при сближении двух и более атомов полная энергия системы понижается.

4. Основные силы, действующие в молекуле, имеют электрическое, кулоновское происхождение.

5. Связь тем прочнее, чем в большей степени перекрываются взаимодействующие электронные облака.

Существует два механизма образования ковалентной связи.

Обменный механизм . Связь образована путем обобществления валентных электронов двух нейтральных атомов. Каждый атом дает по одному неспаренному электрону в общую электронную пару (рис. 9).

Рис.9. Обменный механизм образования ковалентной связи:

а – не полярной; б ‑ полярной.

Донорно-акцепторный механизм . Один атом (донор) предоставляет электронную пару, а другой атом (акцептор) предоставляет для этой пары свободную орбиталь (рис. 10).

Соединения образованные по донорно-акцепторному механизму относятся к комплексным соединениям.

донор акцептор

Рис.10. Донорно-акцепторный механизм образования ковалентной связи.

Ковалентная связь имеет определенные характеристики.

Насыщаемость – свойство атомов образовывать строго определенное число ковалентных связей. Благодаря насыщаемости связей молекулы имеют определенный состав.

Направленность – т. е. связь образуется в направлении максимального перекрытия электронных облаков. Относительно линии соединяющей центры атомов образующих связь различают: σ и π (рис. 11).

σ связьобразована перекрыванием АО по линии соединяющей центры взаимодействующих атомов,

Рис. 11. Схема перекрывания орбиталей при образовании δ-связей (а, б, в) и π-связей (г)

π связь- это связь возникающая в направлении оси перпендикулярной прямой соединяющей ядра атома.

Направленность связи обусловливает пространственную структуру молекул, то есть их геометрическую форму.

Гибридизация ‑ это изменение формы некоторых орбиталей при образовании ковалентной связи для достижения более эффективного перекрывания орбиталей. Химическая связь, образуемая с участием электронов гибридных орбиталей, более прочная, чем связь с участием электронов негибридных s- и р-орбиталей, так как происходит большее перекрывание.

Различают следующие виды гибридизации (рис. 12):

s p – гибридизация ‑ одна s- орбиталь и одна p- орбиталь превращаются в две одинаковые "гибридные" орбитали, угол между осями которых равен 180°. Молекулы, в которых осуществляется sp- гибридизация, имеют линейную геометрию (BeCl 2).

s p 2 гибридизация . ‑одна s- орбиталь и две p- орбитали превращаются в три одинаковые "гибридные" орбитали, угол между осями которых равен 120°. Молекулы, в которых осуществляется sp 2 - гибридизация, имеют плоскую геометрию. (BF 3 , AlCl 3).

s p 3 гибридизация ‑ одна s- орбиталь и три p- орбитали превращаются в четыре одинаковые "гибридные" орбитали, угол между осями которых равен 109°28". Молекулы, в которых осуществляется sp 3 - гибридизация, имеют тетраэдрическую геометрию (CH 4 , NH 3).

Рис. 12. Виды гибридизаций валентных орбиталей: а ‑ sp -гибридизация валентных орбиталей; б – sp 2 –гибридизация валентных орбиталей; в ‑ sp 3 –гибридизация валентных орбиталей

Полярность - если электронная плотность расположена симметрично между атомами, ковалентная связь называется неполярной (рис.9.а), если электронная плотность смещена в сторону одного из атомов, то ковалентная связь называется полярной (рис.9.б). Полярность связи тем больше, чем больше разность электроотрицательностей атомов, молекула называется диполем.

Диполь – это система, в которой имеется два электрических заряда, равных по величине, но противоположных по знаку, расположенных на некотором расстоянии друг от друга.

Произведение длины диполя (l), т.е. расстояния между полюсами в молекуле, на величину заряда электрона (ē) называется дипольным моментом (μ).

Дипольный момент молекулы служит количественной мерой ее полярности. Дипольные моменты молекул измеряют в дебаях (D). 1D = 3,33 · 10 -30 Кл·м.

Чем больше длина диполя (дипольный момент), тем больше полярность молекулы (, и др.).

Дипольный момент направлен от положительного конца диполя к отрицательному. Поэтому дипольный момент многоатомной молекулы следует рассматривать как векторную сумму дипольных моментов связей: он зависит не только от полярности каждой связи, ни и от взаимного расположения этих связей.

Поляризуемость – способность молекулы становиться полярной. Данное явление происходит под действием внешнего электрического поля или под влиянием другой молекулы, являющейся партнером по реакции.

Существует обратная зависимость между полярностью и поляризуемостью ковалентной связи: чем больше полярность связи, тем меньше остается возможности для их дальнейшего смещения под действием внешних сил.

Для квантово-механического описания химической связи и строения молекул применяют еще один метод – метод молекулярных орбиталей (ММО). Данный метод исходит из предположения, что состояние электронов в молекуле может быть описано как совокупность молекулярных электронных орбиталей, причем каждой молекулярной орбитали (МО) соответствует определенный набор молекулярных квантовых чисел.

Основные положения метода МО:

1. Молекулярная орбиталь (МО) является аналогом атомной орбитали (АО): подобно тому, как электрны в атомах располагаются на АО, общие электроны в молекуле располагаются на МО.

2. Для образования МО атомные орбитали должны обладать приблизительно одинаковой энергией и симметрией относительно направления взаимодействия.

3. Число МО равно общему числу АО, из которых комбинируются МО.

4. Если энергия МО оказывается ниже энергии исходных АО, то такие МО называются связывающие , а если выше энергии исходных АО, то – разрыхляющие МО (рис. 13).

5. Электроны заполняют МО, как и АО в порядке возрастания энергии, при этом соблюдается принцип Паули и правило Гунда.

6. МО двухатомных молекул первого периода и второго (до N 2) располагают в ряд:

Рис. 13. Энергетическая диаграмма образования МО из двух АО

σ связ 1s < σ разр 1s < σ связ 2s < σ разр 2s < π связ y = π связ z < σ связ 2 p x < π разр y = π разр z < σ разр 2 p x .

МО двухатомных молекул конца второго периода по возрастанию энергии располагают: σ связ 1s < σ разр 1s < σ связ 2s < σ разр 2s < σ связ 2 p x < π связ y = π связ z < π разр y = π разр z < σ разр 2 p x .

7. В методе МО вместо кратности связи вводится понятие порядок связи (n) – полуразность числа связывающих и числа разрыхляющих электронов:

(59)

Порядок связи может быть равен нулю, целому или дробному положительному числу. При n = 0 молекула не образуется.

8. Если на МО имеются неспаренные электроны, молекула парамагнитна , т.е. обладает магнитными свойствами. Если все электроны спарены – диамагнитна , т.е. не обладает магнитными свойствами.

ММО по сравнению с МВС позволяет получить реальные представления о химической связи и свойствах различных частиц (молекул, ионов). Электронные конфигурации молекул рассмотрим на примере образования химической связи двухатомной молекулы водорода, представленного через электронную формулу: 2Н → H 2 [(σ связ 1s) 2 ].

Как видно (рис. 14), из двух s-орбиталей образуется две МО: одна связывающая и одна разрыхляющая. При этом МО принадлежат к σ-типу: они образованы взаимодействием s-орбиталей. Порядок связи:

Характеризуя ММО и МВС, необходимо заметить, что оба квантово-механических подхода к описанию химической связи – приближены. ММО придает преувеличенное значение делокализации электрона в молекуле и основывается на одноэлектронных волновых функциях – молекулярных орбиталях. МВС преувеличивает роль локализации электронной плотности и основывается на том, что элементарная связь осуществляется только парой электронов между двумя атомами.

Рис. 14. Энергетическая диаграмма образования МО водорода из двух АО

Сравнивая МВС и ММО, следует отметить, что достоинством первого является его наглядность: насыщаемость связи объясняется как максимальная ковалентность, направленность вытекает из направленности атомных и гибридных орбиталей; дипольный момент молекулы складывается из дипольных моментов связей, разности ОЭО атомов, образующих молекулу, и наличия неподеленных электронных пар.

Однако существование некоторых соединений невозможно объяснить с позиции МВС. Это электрон-дефицитные соединения (Н 2 +) и соединения благородных газов. Их строение легко объясняет ММО. Устойчивость молекулярных ионов и атомов в сравнении с молекулами легко предсказывается с позиции ММО. И, наконец, магнетизм и окраска вещества также легко объясняются ММО.

Количественные расчеты в ММО, несмотря на свою громоздкость, все же гораздо проще, чем в МВС. Поэтому в настоящее время в квантовой химии МВС почти не применяется. В тоже время качественно выводы МВС гораздо нагляднее и шире используются экспериментаторами, чем ММО. Основанием для этого служит тот факт, что реально в молекуле вероятность пребывания данного электрона между связанными атомами гораздо больше, чем на других атомах, хотя и там она не равна нулю. В конечном счете, выбор метода определяется объектом исследования и поставленной задачей.

Ионная (электровалентная) связь -это сильнополярная ковалентная связь. В ее основе лежит электростатическое взаимодействие ионов. Согласно ей, атомы элементов с числом электронов в наружном слое меньше восьми присоединяют или теряют такое число электронов, которое делает наружный электронный слой таким, как у атома ближайшего инертного газа.

Атом, потерявший электроны, превращается в положительно заряженный ион (катион). Атом, присоединивший электроны, становится отрицательно заряженным ионом (анион). Разноименно заряженные ионы притягиваются друг к другу (рис. 15).

Возникновение ионной связи имеет место только в том случае, если элементы, атомы которых реагируют между собой, обладают резко отличными значениями энергии ионизации и сродства к электрону. Ионных соединений немного. Они обладают основными свойствами: в расплавленном состоянии обладают электропроводностью, в воде легко диссоциируют на ионы (растворяются), имеют высокую температуру плавления и кипения.

Рис. 15. Образование хлорида натрия из простых веществ

Ионная связь характеризуется следующими показателями:

Ненаправленность . Ионы – заряженные шары, их силовые поля равномерно распределяются во всех направлениях в пространстве, поэтому они притягивают противоположный по знаку ион в любом направлении.

Ненасыщаемость. Взаимодействие двух ионов не может привести к полной взаимной компенсации их силового поля. Поэтому у них сохраняется способность притягивать ионы противоположного знака и по другим направлениям. Так, ионный кристалл () является гигантской молекулой из ионов. Из отдельных молекул ионные соединения состоят только в парообразном состоянии.

Металлическая связь основана на обобществлении валентных электронов, принадлежащих не двум, а практически всем атомам металла в кристалле.

В металлах валентных электронов намного меньше, чем свободных орбиталей. Это создает условия для свободного перемещения электронов по орбиталям разных атомов металла. Внутри металла происходит непрерывное хаотичное движение электронов от атома к атому, то есть электроны становятся общими. При создании разности потенциалов происходит согласованное движение электронов – это объясняет электрическую проводимость данных веществ. В металлах небольшое число электронов одновременно связывает множество атомных ядер – эта особенность называется делокализацией. Данный тип связи характерен для веществ, находящихся в твердом или жидком состоянии.

Водородная связь одна из разновидностей взаимодействия между полярными молекулами, бывает внутри- и межмолекулярной (рис.16).

Рис.16. Образование водородной связи: а – внутримолекулярной;

б – межмолекулярной.

Она образуется между электроотрицательными атомами одной молекулы и атомами водорода другой, типа Н-Х (Х – это F , O , N , Cl , Br , I ) за счет сил электростатического притяжения. Связь между водородом и одним из этих атомов характеризуется достаточной полярностью, поскольку связующее электронное облако смещено в сторону более электроотрицательного атома. Водород в данном случае расположен на положительном конце диполя. Два и более таких диполя взаимодействуют между собой так, ядро атома водорода одной молекулы (положительный конец диполя) притягивается неподеленной электронной парой второй молекулы. Данная связь проявляется в газах, жидкостях и твердых телах. Она относительно прочна. Понижение температуры способствует образованию водородной связи. Наличие водородной связи обусловливает повышение устойчивости молекул вещества, а также повышению их температуры кипения и плавления. Образование водородных связей играет важную роль, как в химических, так и в биологических системах.

Разные агрегатные состояния веществ свидетельствует о том, что между частицами (атомами, ионами, молекулами) имеет место взаимодействие, обусловленное ван-дер-ваальсовыми силами притяжения. Наиболее важной и отличительной чертой этих сил является их универсальность, так как они действуют без исключения между всеми атомами и молекулами.

Межмолекулярные силы (Ван-дер-ваальсовые силы) взаимодействие между молекулами, в результате которого вещество переходит в жидкое или твердое состояние. Межмолекулярные силы имеют электрическую природу. Они обусловлены полярностью и поляризуемостью молекул. Различают три типа межмолекулярного взаимодействия: дипольное, индукционное, дисперсионное (рис. 17).

При ориентационном (дипольном) . взаимодействии полярные молекулы, сближаясь, ориентируются относительно друг друга противоположно заряженными концами диполей. Чем более полярны молекулы, тем прочнее взаимодействие. При повышении температуры ориентационное взаимодействие уменьшается, так как тепловое движение молекул нарушает ориентацию.

При индуцированным взаимодействии происходит взаимное притяжение полярных и неполярных молекул. Постоянный диполь полярной молекулы создает в неполярной временный диполь (за счет деформации электронного облака), благодаря которому и происходит взаимодействие. Оно не зависит от температуры, зависит от напряженности электрического поля полярной молекулы.

Сближение двух неполярных молекул приводит к дисперсионному взаимодействию. Оно возникает вследствие вращения электронов и колебательного движения атомных ядер, в атоме возникают небольшие мгновенные деформации электронного облака, создающие асимметрию в распределении зарядов, возникают мгновенные диполи. На дисперсионном взаимодействии основан процесс сжижения благородных газов и двухатомных элементарных газов.

Рис. 17. Межмолекулярные взаимодействия молекул:

а – ориентационное; б – индукционное; в – дисперсионное

В молекулах, образованных более чем двумя атомами различных элементов существуют разные типы связей.

Энергия межмолекулярного взаимодействия намного меньше энергии химических связей (8-47 кДж/моль), она быстро уменьшается при увеличении расстояния между молекулами, однако, ее достаточно для стягивания молекул веществ в агрегаты. Ван-дер-ваальсовые силы проявляются при переходе вещества из газообразного состояния в жидкое, при кристаллизации сжиженных газов, адсорбции и других процессов.

Вещество может существовать в трех агрегатных состояниях: газообразном, жидком и твердом. Плазму часто называют четвертым агрегатным состоянием. Свойства веществ зависят от агрегатного состояния (табл. 32).

Электроотрицательность атомов элементов. Относительная электроотрицательность. Изменение в периодах и группах Периодической системы. Полярность химической связи,полярность молекул и ионов.

Электроотрицательность (э.о.)- это способность атома смещать к себе электронные пары.
Мерой э.о. является энергия равняя арифметически ½ сумме энергии ионизации I и энергии сходства к электронц Е
Э.О. = ½ (I+E)

Относительная электроотрицательность. (ОЭО)

Фтору как самому сильному э.о элементу присваивается значение 4.00 относительно которого рассматриваются остальные элементы.

Изменения в периодах и группах Периодической системы.

Внутри периодов с увеличением заряда ядра слева направо увеличивается электроотрицательность.

Наименьшее значение наблюдается у щелочных и щелочноземельных металлов.

Наибольшее - у галогенов.

Чем выше электроотрицательность, тем сильнее у элементов выражены неметаллические свойства.

Электроотрицательность (χ) - фундаментальное химическое свойство атома, количественная характеристика способности атома в молекуле смещать к себе общие электронные пары.

Современное понятие об электроотрицательности атомов было введено американским химиком Л. Полингом. Л. Полинг использовал понятие электроотрицательности для объяснения того факта, что энергия гетероатомной связи A-B (A, B - символы любых химических элементов) в общем случае больше среднего геометрического значения гомоатомных связей A-A и B-B.

Самое выское значение э.о. у фтора,а самое низкое –цезий.

Теоретическое определение электроотрицательности было предложено американским физиком Р. Малликеном. Исходя из очевидного положения о том, что способность атома в молекуле притягивать к себе электронный заряд зависит от энергии ионизации атома и его сродства к электрону, Р. Малликен ввёл представление об электроотрицательности атома А как о средней величине энергии связи наружных электронов при ионизации валентных состояний (например, от А− до А+) и на этой основе предложил очень простое соотношение для электроотрицательности атома:

где J1A и εA - соответственно энергия ионизации атома и его сродство к электрону.
Строго говоря, элементу нельзя приписать постоянную электроотрицательность. Электроотрицательность атома зависит от многих факторов, в частности, от валентного состояния атома, формальной степени окисления, координационного числа, природы лигандов, составляющих окружение атома в молекулярной системе, и от некоторых других. В последнее время все чаще для характеристики электроотрицательности используют так называемую орбитальную электроотрицательность, зависящую от типа атомной орбитали, участвующей в образовании связи, и от её электронной заселённости, т. е. от того, занята атомная орбиталь неподелённой электронной парой, однократно заселена неспаренным электроном или является вакантной. Но, несмотря на известные трудности в интерпретации и определении электроотрицательности, она всегда остаётся необходимой для качественного описания и предсказания природы связей в молекулярной системе, включая энергию связи, распределение электронного заряда и степень ионности, силовую постоянную и т. д.Одним из наиболее развитых в настоящее время подходов является подход Сандерсона. В основу этого подхода легла идея выравнивания электроотрицательностей атомов при образовании химической связи между ними. В многочисленных исследованиях были найдены зависимости между электроотрицательностями Сандерсона и важнейшими физико-химическими свойствами неорганических соединений подавляющего большинства элементов периодической таблицы. Очень плодотворной оказалась и модификация метода Сандерсона, основанная на перераспределении электроотрицательности между атомами молекулы для органических соединений.

2)Полярность химической связи, полярность молекул и ионов.

То,что есть в конспекте и в учебнике-Полярность связана с дипольным моментом.Проявляется в результате смещения общей электронной пары к одному из атомов.Полярность так же зависит от разности электроотрицательности связываемых атомов.Чем выше значение э.о. двух атомов,тем более полярной является хим.связь между ними.В зависимости от того,как происходит перераспределение электронной плотности при образовании химической связи,различают несколько ее типов.Предельный случай поляризации хим.связи – полный переход от одного атома к другому.

При этом образуется два иона, между которыми возникает ионная связь.Для того чтобы два атома смогли создать ионную связь,необходимо, чтобы их э.о. очень сильно различались.Если э.о. равны,то образуется неполярная ковалентная связь.Чаще всего встречается полярная ковалентная связь- она образуется между любыми атомами,имеющими разное значение э.о.

Количественной оценкой полярности связи могут служить эффективные заряды атомов.эффективный заряд атома характерезует разность между числом электоронов,принадлежащих данному атому в химическом соединении, и числом электронов свободного атома.атом более электроотрицательного элемента притягивает электроны сильнее,поэтому электроны оказываются ближе к нему,и он получает некоторый отрицательный заряд,который называют эффективным,а у его партнера появляется такой же положительный эффективный заряд.Если электроны,образующие связь между атомами, принадлежат им в равной степени,эффективные заряяды равны нулю.

Для двухатомных молекул охарактеризовать полярность связи и определить эффективные заряды атомов можно на основе измерения дипольного момента M=q*r где q-заряд полюса диполя,равный для двухатомной молекулы эффективному заряду, r-межъядерное расстояние.Диполный момент связи является векторной величиной. Он направлен от положительно зарядной части молекулы к ее отрицательной части.Эффектичный заряд на атоме элемента не совпадает со степенью окисления.

Полярность молекул в значительной мере определяет свойства веществ. Полярные молекулы поворачиваются друг к другу разноимённо заряженными полюсами, и между ними возникает взаимное притяжение. Поэтому вещества, образованные полярными молекулами, имеют более высокие температуры плавления и кипения, чем вещества, молекулы которых неполярны.

Жидкости, молекулы которых полярны, имеют более высокую растворяющую способность. При этом чем больше полярность молекул растворителя, тем выше растворимость в ней полярных или ионных соединений. Эта зависимость объясняется тем, что полярные молекулы растворителя за счет диполь-дипольного или ион-дипольного взаимодействия с растворяемым веществом способствуют распаду растворяемого вещества на ионы. Например, раствор хлороводорода в воде, молекулы которой полярны, хорошо проводит электрический ток. Раствор хлороводорода в бензоле не обладает заметной электропроводностью. Это указывает на отсутствие ионизации хлороводорода в бензольном растворе, так как молекулы бензола неполярны.

Ионы, подобно электрическому полю, оказывают поляризующее действие друг на друга. При встрече двух ионов происходит их взаимная поляризация, т.е. смещение электронов внешних слоев относительно ядер. Взаимная поляризация ионов зависит от зарядов ядра и иона, радиуса иона и других факторов.

Внутри групп э.о. уменьшается.

Металлические свойства элементов возрастают.

Металлические элементы на внешнем энергетическом уровне содержат 1,2,3 электрона и характеризуются низким значением ионизационных потенциалов и э.о. потому что металлы проявляют выраженную тенденцию к отдаче электронов.
Неметаллические элементы отличаются более высоким значением энергии ионизации.
По мере заполнения наружной оболочки у неметаллов внутри периодов уменьшается радиус атомов. На внешней оболочке число электронов равно 4,5,6,7,8.

Полярность химической связи. Полярность молекул и ионов.

Полярность химической с вязи – определяется смещением связей электронной пары к одному из атомов.

Химическая связь возникает за счет перераспределения электронов валентных орбиталей, в результате чего возникает устойчивая электронная конфигурация благородного газа, за счет образования ионов или образования общих электронных пар.
Химическая связь характеризуется энергией и длиной.
Мерой прочности связи служит энергия, затрачиваемая на разрушение связи.
Например. Н – Н = 435 кДжмоль-1

Электроотрицательность атомово элементов
Электроотрицательность - химическое свойство атома, количественная характеристика способности атома в молекуле притягивать к себе электроны от атомов других элементов.
Относительная электроотрицательность

Первой и наиболее известной шкалой относительной электроотрицательности является шкала Л.Полинга, полученная из термохимических данных и предложенная в 1932 г. За начало отсчета в этой шкале произвольно принята величина электроотрицательности наиболее электроотрицательного элемента фтора, (F) = 4,0.

Элементы VIII группы периодической системы (благородные газы) имеют нулевую электроотрицательность;
Условной границей между металлами и неметаллами считается значение относительной электроотрицательности равное 2.

Электроотрицательность элементов периодической системы, как правило, последовательно возрастает слева направо в каждом периоде. В пределах каждой группы, за несколькими исключениями, электроотрицательность последовательно убывает сверху вниз. С помощью электроотрицательностей можно охарактеризовать химическую связь.
Связи с меньшей разностью электроотрицательностей атомов относят к полярным ковалентным связям. Чем меньше разность электроотрицательностей атомов, образующих химическую связь, тем меньше степень ионности этой связи. Нулевая разность электроотрицательностей атомов указывает на отсутствие ионного характера у образованной ими связи, т. е. на ее сугубую ковалентность.

Полярность химической связи, полярность молекул и ионов
Полярность химических связей, характеристика химической связи, показывающая перераспределение электронной плотности в пространстве вблизи ядер по сравнению с исходным распределением этой плотности в нейтральных атомах, образующих данную связь.

Практически все химические связи, за исключениям связей в двухатомных гомоядерных молекулах - в той или иной степени полярны. Обычно ковалентные связи слабо полярны, ионные связи сильно полярны.

Например:
ковалентная неполярная: Cl2, O2, N2, H2,Br2

ковалентная полярная: H2O, SO2, HCl, NH3 и т.д.