Кто и как открыл электричество? Что такое электричество и что значит работа тока? Объясняем доступным языком

Добавить сайт в закладки

Что нужно знать об электричестве новичкам?

К нам часто обращаются читатели, которые раньше не сталкивались с работами по электричеству, но хотят в этом разобраться. Для этой категории создана рубрика "Электричество для начинающих".

Рисунок 1. Движение электронов в проводнике.

Прежде чем приступить к работам, связанным с электричеством, необходимо немного «подковаться» теоретиче­ски в этом вопросе.

Термин "электричество" подразумевает движение электронов под действием электромагнитного поля.

Главное - понять, что электричест­во - это энергия мельчайших заряженных частиц, которые движутся внутри проводников в определенном направлении (рис. 1).

Постоянный ток практически не меняет своего направления и величины во времени. Допустим, в обычной батарейке постоянный ток. Тогда заряд будет перетекать от минуса к плюсу, не меняясь, пока не иссякнет.

Переменный ток - это ток, который с определенной периодичностью меняет направление движения и величину. Представьте ток как поток воды, те­кущий по трубе. Через какой-то промежуток времени (например, 5 с) вода будет устремляться то в одну сторону, то в другую.

Рисунок 2. Схема устройства трансформатора.

С током это происходит на­много быстрее, 50 раз в секунду (частота 50 Гц). В течение одного периода колебания величина тока повышается до максимума, затем проходит через ноль, а потом происходит обратный процесс, но уже с другим знаком. На вопрос, почему так происходит и зачем нужен такой ток, можно ответить, что получение и передача переменного тока намного проще, чем постоянного. Получение и передача переменного тока тесно связаны с таким устройством, как трансформатор (рис. 2).

Генератор, который вырабатывает переменный ток, по устройству гораздо проще, чем генератор постоянного тока. Кроме того, для передачи энергии на дальнее расстояние переменный ток подходит лучше всего. С его помощью при этом теряется меньше энергии.

При помощи транс­форматора (специаль­ного устройства в виде катушек) переменный ток преобразу­ется с низкого напряжения на высокое, и наоборот, как это представлено на иллюстрации (рис. 3).

Именно по этой причине большинство приборов работает от сети, в которой ток переменный. Однако постоянный ток также применяется достаточно широко: во всех видах батарей, в химической промышленности и некоторых других областях.

Рисунок 3. Схема передачи переменного тока.

Многие слышали такие загадочные слова, как одна фаза, три фазы, ноль, заземление или земля, и знают, что это важные понятия в мире электричества. Однако не все понимают, что они обозначают и какое отношение имеют к окружающей действительности. Тем не менее знать это надо обязательно.

Не углубляясь в технические подробности, которые не нужны домашнему мастеру, можно сказать, что трехфазная сеть - это такой способ передачи электрического тока, когда переменный ток течет по трем проводам, а по одному возвращается назад. Вышесказанное надо немного пояснить. Любая электри­ческая цепь состоит из двух проводов. По одному ток идет к потребителю (например к чайнику), а по другому воз­вращается обратно. Если разомкнуть такую цепь, то ток идти не будет. Вот и все описание однофазной цепи (рис. 4 А).

Тот провод, по которому ток идет, называется фазовым, или просто фазой, а по которому возвращается - нулевым, или нолем. Трехфазная цепь состоит из трех фазовых проводов и одного обратного. Такое возможно потому, что фаза переменного тока в каждом из трех проводов сдвинута по отношению к соседнему на 120° (рис. 4 Б). Более подробно на этот вопрос поможет ответить учебник по электромеханике.

Рисунок 4. Схема электрических цепей.

Передача переменного тока происходит именно при помощи трехфазных сетей. Это выгодно экономически: не нужны еще два нулевых провода. Подходя к потребителю, ток разделяется на три фазы, и каждой из них дается по нолю. Так он попадает в квартиры и дома. Хотя иногда трехфазная сеть заводится прямо в дом. Как правило, речь идет о частном секторе, и такое положение дел имеет свои плюсы и минусы.

Земля, или, правильнее сказать, заземление - третий провод в однофазной сети. В сущности, рабочей нагрузки он не несет, а служит своего рода предо­хранителем.

Например, в случае когда электричество выходит из-под контроля (например, короткое замыкание), возникает угроза пожара или удара током. Чтобы этого не произошло (то есть значение тока не должно превышать безопасный для человека и приборов уровень), вводится заземление. По этому проводу избыток элек­тричества в буквальном смысле слова уходит в землю (рис. 5).

Рисунок 5. Простейшая схема заземления.

Еще один пример. Допустим, в работе электродвигателя стиральной машины возникла небольшая поломка и часть электрического тока попадает на внешнюю металлическую оболочку прибора.

Если заземления нет, этот заряд так и будет блуждать по стиральной машине. Когда человек прикоснется к ней, он моментально станет самым удобным выходом для данной энергии, то есть получит удар током.

При наличии провода заземления в этой ситуации излишний заряд стечет по нему, не причинив никому вреда. В дополнение можно сказать, что нулевой проводник также может быть заземлением и, в принципе, им и является, но только на электростанции.

Ситуация, когда в доме нет заземления, небезопасна. Как с ней справиться, не меняя всю проводку в доме, будет рассказано в дальнейшем.

ВНИМАНИЕ!

Некоторые умельцы, полагаясь на начальные знания по электротехнике, устанавливают нулевой провод как заземляющий. Никогда так не делайте.

При обрыве нулевого провода корпуса заземленных приборов окажутся под напряжением 220 В.

Что приходит вам в голову, когда вы слышите слово «электричество» или «электрический»? Один человек представит себе розетку, другой - линию электропередач, трансформатор или сварочный аппарат, рыбак подумает о молнии, домохозяйка вспомнит пальчиковую батарейку или зарядное устройство для мобильного телефона, токарь - электродвигатель, а кто-нибудь и вовсе представит , сидящего в своей лаборатории возле извергающей молнии индукционной катушки, испытывающей резонанс.

Так или иначе, проявлений электричества в современном мире очень много. Цивилизацию сегодняшнего дня вообще невозможно представить без электричества. Однако что мы знаем о нем? Давайте освежим в памяти эти сведения.

От электростанции - к электроприбору

Когда мы у себя дома вставляем вилку в розетку, включая электрочайник, или нажимаем на выключатель, привычно желая зажечь электрическую лампочку, то в этот момент мы замыкаем электрическую цепь между и , чтобы предоставить электрическому заряду путь для движения, например через спираль чайника.

Источником электричества у нас дома, как правило, является розетка. Движущийся через проводник (которым в нашем примере является нихромовая спираль чайника) электрический заряд - это и есть . Проводник соединяет розетку с потребителем двумя проводами: по одному проводу заряд движется от розетки - к потребителю, по второму проводу в этот же самый момент - от потребителя - к розетке. Если ток переменный, то провода меняются ролями по 50 раз каждую секунду.

Источником энергии для движения электрических зарядов (или проще говоря - источником электричества) в городской сети прежде всего выступает электростанция. На электростанции электричество вырабатывается посредством мощного , ротор которого приводится во вращение ядерной установкой или силовой установкой другого типа (например гидротурбиной).

Внутри генератора намагниченный ротор пересекает провода статора, наводя в них , порождающую напряжение между выводами генератора. И это всегда именно , поскольку ротор генератора имеет 2 магнитных полюса и вращается с частотой 3000 оборотов в минуту, либо имеет 4 полюса и частоту вращения 1500 оборотов в минуту.

От трансформаторов электростанций сверхвысокое переменное напряжение величиной 110, 220 или 500 киловольт подается на провода , с которых оно затем поступает на понижающие подстанции, где с помощью трансформаторов в конце концов и понижается до уровня бытовых сетей - 220 вольт.

Это и есть напряжение в нашей розетке, которым мы пользуемся каждый день, даже не задумываясь от электростанции до нашей розетки со скоростью света (299792458 метров в секунду - скорость распространения по проводам электрического поля, которое толкает внутри них электроны, создавая ток).

Переменное напряжение 220 вольт в розетке

Генерируемое для розеток напряжение является переменным потому, что: во-первых, его легко можно трансформировать (понизить или повысить), а во-вторых генерируется оно проще и передается с меньшими потерями в проводах, чем постоянное.

Подавая на провода, к которым присоединен , переменное напряжение, мы получаем , который гармонически изменяя свое направление 50 раз в секунду, способен генерировать в магнитопроводе трансформатора переменное магнитное поле, которое в свою очередь опять же способно возбуждать электрический ток в проводах вторичных обмоток, обвивающих магнитопровод…

Если бы магнитное поле было постоянным в пространстве, охваченном обмоткой, то ток бы в обмотках просто не навелся (см. ).

Чтобы получить ток, необходимо изменять магнитный поток в пространстве, тогда вокруг получится , оно станет действовать на электрический заряд, который например может находится внутри медного провода (свободные электроны), расположенного вокруг этого пространства с изменяющимся магнитным потоком.

На данном принципе основана работа как генераторов, так и трансформаторов, с той лишь разницей, что в трансформаторе отсутствуют движущиеся рабочие части: источником переменного магнитного потока в трансформаторе выступает переменный ток первичной обмотки, а в генераторе - вращающийся ротор с постоянным магнитным полем.

И там и там изменяющееся магнитное поле по закону электромагнитной индукции порождает вихревое электрическое поле, которое действует на свободные электроны внутри проводников, приводя эти электроны в движение. Если цепь замкнуть на потребитель - получится ток через потребитель.

Накопление электричества и постоянный ток

Накапливать электричество в быту удобнее всего в форме химической энергии, а именно . Химическая реакция меду электродами способна создать ток при замкнутой на потребитель внешней цепи, и чем больше площадь электродов аккумулятора - тем больший ток может быть от него получен, а в зависимости от материала электродов и от количества соединенных последовательно внутри аккумулятора ячеек - генерируемое аккумулятором напряжение может быть разным.

Так, для литий-ионного аккумулятора стандартное напряжение одной ячейки составляет 3,7 вольта и может достигать 4,2 вольта. Положительно заряженные ионы лития при разряде движутся в электролите от анода(-) на основе меди и графита - к катоду(+) на основе алюминия, а при заряде - от катода - к аноду, где под действием ЭДС зарядного устройства образуется соединение графита с литием, в результате чего и накапливается энергия в форме химического соединения.

Похожим образом работают электролитические конденсаторы, отличающиеся от аккумуляторов меньшей электроемкостью, но большим количеством жизненных циклов заряда-разряда.

Для литий-ионного аккумулятора продолжительность полноценной жизни ограничивается максимум 1000 циклами заряда-разряда, а удельная энергоемкость достигает 250 Втч/кг. Что касается электролитических конденсаторов, то их ресурс работы на выпрямленном токе исчисляется десятками тысяч часов, но энергоемкость обычно менее 0,25 Втч/кг.

Статическое электричество

Если шелковую простыню постелить на шерстяное покрывало, хорошенько прижать их друг к другу, а затем попытаться развести в стороны, то возникнет . Это случится потому, что в условиях трения тел с разной диэлектрической проницаемостью произойдет разделение зарядов на их поверхностях: материал с большей диэлектрической проницаемостью зарядится положительно, а с меньшей диэлектрической проницаемостью - отрицательно.

Чем больше разница этих параметров - тем сильнее электризация. При трении ногами о шерстяной ковер, вы заряжаетесь отрицательно, а ковер - положительно. Уровни потенциалов могут достигать здесь десятков тысяч вольт, и дотронувшись например до водопроводного крана, соединенного с чем-нибудь заземленным, вы испытаете удар током. Но поскольку электроемкость мизерна, это неприятное событие не окажется крупной угрозой для вашей жизни.

Другое дело - электрофорная машина, в которой статический заряд, получаемый трением, накапливается в конденсаторе. Накопленный в лейденской банке заряд уже опасен для жизни.

Это упорядоченное движение определенных заряженных частиц. Для того чтобы грамотно использовать весь потенциал электричества, необходимо четко понимать все принципы устройства и работы электрического тока. Итак, давайте разберемся, что же такое работа и мощность тока.

Откуда вообще берется электрический ток?

Несмотря на кажущуюся простоту вопроса, немногие способны дать на него вразумительный ответ. Конечно, в наши дни, когда технологии развиваются с неимоверной скоростью, человек особо не задумывается о таких элементарных вещах, как принцип действия электрического тока. Откуда берется электричество? Наверняка многие ответят "Ну, из розетки, ясное дело" или же просто пожмут плечами. А между тем, очень важно понимать, как происходит работа тока. Это следует знать не только ученым, но и людям, никак не связанным с миром наук, для их же всеобщего разностороннего развития. А вот уметь грамотно использовать принцип работы тока под силу не каждому.

Итак, для начала следует понять, что электричество не возникает ниоткуда: его вырабатывают специальные генераторы, которые находятся на различных электростанциях. Благодаря работе вращения лопастей турбин паром, полученным в результате нагрева воды углями или нефтью, возникает энергия, которая впоследствии с помощью генератора превращается в электричество. Генератор устроен очень просто: в центре устройства находится огромный и очень сильный магнит, который заставляет электрические заряды двигаться по медным проводам.

Каким образом электрический ток доходит до наших домов?

После того как с помощью энергии (тепловой или ядерной) было получено определенное количество электрического тока, его можно подавать людям. Работает такая подача электричества следующим образом: чтобы электричество успешно дошло до всех квартир и предприятий, его нужно "подтолкнуть". А для этого потребуется увеличить силу, которая и будет это делать. Она называется напряжением электрического тока. Принцип действия выглядит так: ток проходит через трансформатор, который увеличивает его напряжение. Далее электрический ток идет по кабелям, установленным глубоко под землей или же на высоте (ибо напряжение порой достигает 10000 Вольт, что является смертельно опасным для человека). Когда ток добирается до места своего назначения, он снова должен пройти через трансформатор, который теперь уже уменьшит его напряжение. Затем он проходит по проводам к установленным щитам в многоквартирных домах или других зданиях.

Проведенное через провода электричество можно использовать благодаря системе розеток, подключая к ним бытовые приборы. В стенах же проводятся дополнительные провода, через которые течет электрический ток, и благодаря именно ему работает освещение и вся техника в доме.

Что такое работа тока?

Энергия, которую несет в себе электрический ток, с течением времени преобразуется в световую или же тепловую. Например, когда мы включаем лампу, электрический вид энергии превращается в световую.

Если говорить доступным языком, то работа тока - это то действие, которое произвело само электричество. При этом ее можно очень легко подсчитать по формуле. Исходя из закона о сохранении энергии, можем сделать вывод, что электрическая энергия не пропала, она полностью или частично перешла в другой вид, отдав при этом определенное количество теплоты. Эта теплота и есть работа тока, когда он проходит по проводнику и нагревает его (происходит теплообмен). Так выглядит формула Джоуля-Ленца: A = Q = U*I*t (работа равна количеству теплоты или же произведению мощности тока на время, за которое он протекал по проводнику).

Что означает постоянный ток?

Электрический ток бывает двух видов: переменный и постоянный. Они различаются тем, что последний не меняет своего направления, он имеет два зажима (положительный "+" и отрицательный "-") и начинает свое движение всегда из "+". А переменный ток имеет две клеммы - фазу и ноль. Именно из-за наличия одной фазы на конце проводника, его называют также однофазным.

Принципы устройства однофазного переменного и постоянного электрического тока абсолютно разные: в отличие от постоянного, переменный меняет и свое направление (образуя поток как из фазы в направлении к нулю, так из нуля по направлению к фазе), и свою величину. Так, например, переменный ток периодически меняет значение своего заряда. Получается, что при частоте 50 Гц (50 колебаний в секунду) электроны меняют направление своего движения ровно 100 раз.

Где используется постоянный ток?

Постоянный электрический ток обладает некоторыми особенностями. Ввиду того, что он течет строго по одному направлению, его сложнее трансформировать. Источниками постоянного тока можно считать следующие элементы:

  • аккумуляторы (как щелочные, так и кислотные);
  • обычные батарейки, используемые в мелких приборах;
  • а также различные устройства типа преобразователей.

Работа постоянного тока

Каковы его главные характеристики? Это работа и мощность тока, причем оба эти понятия очень тесно связаны друг с другом. Мощность подразумевает под собой скорость работы в единицу времени (за 1 с). По закону Джоуля-Ленца получаем, что работа постоянного электрического тока равна произведению силы самого тока, напряжения и времени, в течение которого была совершена работа электрического поля по переносу зарядов вдоль проводника.

Так выглядит формула по нахождению работы тока с учетом закона Ома о сопротивлении в проводниках: A = I 2 *R*t (работа равна квадрату силы тока умноженному на значение сопротивления проводника и еще раз умноженному на значение времени, за которое совершалась работа).

ЭЛЕКТРИЧЕСТВО

ЭЛЕКТРИЧЕСТВО , форма энергии, существующая в виде статических или подвижных ЭЛЕКТРИЧЕСКИХ ЗАРЯДОВ. Заряды могут быть положительными или отрицательными. Одинаковые заряды отталкиваются, противоположные притягиваются. Силы взаимодействия между зарядами описаны ЗАКОНОМ КУЛОНА. Когда заряды движутся в магнитном поле, они испытывают воздействие магнитной силы и в свою очередь создают противоположно направленное магнитное поле (ЗАКОНЫ ФАРАДЕЯ). Электричество и МАГНЕТИЗМ представляют собою различные аспекты одного и того же явления, ЭЛЕКТРОМАГНЕТИЗМА. Поток зарядов образует ЭЛЕКТРИЧЕСКИЙ ток, который в проводнике представляет собою поток отрицательно заряженных ЭЛЕКТРОНОВ. Для того, чтобы в ПРОВОДНИКЕ возник электрический ток, необходима ЭЛЕКТРОДВИЖУЩАЯ СИЛА или РАЗНОСТЬ ПОТЕНЦИАЛОВ между концами проводника. Ток, который движется только в одном направлении, называется постоянным. Такой ток создается, когда источником разности потенциалов является БАТАРЕЙКА. Ток, меняющий направление дважды за цикл, называется переменным. Источником такого тока являются центральные сети. Единицей измерения тока служит АМПЕР, единицей заряда - КУЛОН, ом - это единица сопротивления, а вольт - единица электродвижущей силы. Основными средствами для вычисления параметров электрической цепи являются ЗАКОН ОМА и ЗАКОНЫ КИРХГОФА (о суммировании величин напряжения и тока в цепи). см. также ЭЛЕКТРИЧЕСКИЙ ТОК , ЭЛЕКТРОНИКА .

Электрическую энергию можно получить при помощи индукции в генераторе; напряжение в первичной обмотке создает переменный ток во внешней цепи. Наличие индуктивности или емкости (либо того и другого вместе) приводит к смещению фазы (А) между напряжением V и током I. На рисунке показано, что емкость вызывала смещение фазы на 90°, в результате чего средняя величина мощности равна 0, хотя кривая мощности no-прежнему имеет вид синусоиды. Понижение мощности Р, вызванное смещением фаз, называют коэффициентом мощности. Если три фазы переменного тока смещены между собою, каждая на 120°, то сумма их величин тока или напряжения всегда будет равна нулю (В). Такие трехфазные токи используют в короткозамк-нугых асинхронных электродвигателях с ротором (С). В этой конструкции имеется три электромагнита, вращающихся в созданном магнитном поле. Переменный ток производится также в замкнутых (D) и открытых (Е) колебательных контурах. Высокочастотные электромаг нитные волны, используемые в некоторых системах коммуникации, ПРОИЗВОДЯТСЯ ТЭКИМ1 цепями.


Научно-технический энциклопедический словарь .

Синонимы :

Смотреть что такое "ЭЛЕКТРИЧЕСТВО" в других словарях:

    - (от греч. elektron янтарь, так как янтарь притягивает легкие тела). Особенное свойство некоторых тел, проявляющееся только при известных условиях, напр. при трении, теплоте, или химических реакциях, и обнаруживающееся притягиванием более легких… … Словарь иностранных слов русского языка

    ЭЛЕКТРИЧЕСТВО, электричества, мн. нет, ср. (греч. elektron). 1. Субстанция, лежащая в основе строения материи (физ.). || Своеобразные явления, сопровождающие движение и перемещение частиц этой субстанции, форма энергии (электрический ток и т.п.) … Толковый словарь Ушакова

    Совокупность явлений, обусловленных существованием, движением и взаимодействием заряженных тел или частиц носителей электрических зарядов. Связь электричества и магнетизма взаимодействие неподвижных электрических зарядов осуществляется… …

    - (от греч. elektron янтарь) совокупность явлений, в которых обнаруживается существование, движение и взаимодействие (посредством электромагнитного поля) заряженных частиц. Учение об электричестве один из основных разделов физики. Часто под… … Большой Энциклопедический словарь

    Лепиздричество, электроток, лепестричество, лепистричество, ток, электроэнергия, освещение Словарь русских синонимов. электричество сущ., кол во синонимов: 13 актиноэлектричество … Словарь синонимов

    ЭЛЕКТРИЧЕСТВО - в самом общем смысле представляет одну из форм движения материи. Обычно же под этим словом понимают или электрический заряд как таковой или самое учение об электрических зарядах, их движении и взаимодействии. Слово Э. происходит от греч. электрон … Большая медицинская энциклопедия

    электричество - (1) EN electricity (1) set of phenomena associated with electric charges and electric currents NOTE 1 - Examples of usage of this concept: static electricity, biological effects of electricity. NOTE 2 - In… … Справочник технического переводчика

    ЭЛЕКТРИЧЕСТВО, а, ср. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

    Электричество - – 1. Проявление одной из форм энергии, присущая электрическим зарядам как движущимися, так и находящимися в статическом состоянии. 2. Область науки и техники, связанная с электрическими явлениями. [СТ МЭК 50(151) 78] Рубрика термина:… … Энциклопедия терминов, определений и пояснений строительных материалов

    ЭЛЕКТРИЧЕСТВО - совокупность явлений, в которых обнаруживаются существование, движение и взаимодействие (посредством электромагнитного поля) электрических зарядов (см. (4)). Учение об электричестве один из основных разделов физики … Большая политехническая энциклопедия

Сегодня я хочу рассказать Вам вкратце, что такое электричество.

А то все изучаем темы по электричеству, а про основы и внутренние процессы его возникновения даже не задумываемся.

Сильно углубляться в изучение происхождения и возникновения электричества мы не будем, т.к. это очень трудоемко и время затратно, а вот рассмотреть основы я считаю нужно.

Как Вы все знаете из курса школьной физики, а может и не знаете, все тела состоят из следующих мельчайших частиц:

  • молекула
  • молекула в свою очередь состоит из атомов
  • атом состоит из протонов, нейтронов и электронов

Так вот каждая из перечисленных частиц обладает своим электрическим зарядом.

Заряд бывает положительным, либо отрицательным. Соответственно, тело с положительным зарядом всегда притягивается к телу с отрицательным зарядом. А два тела с положительными зарядами, либо отрицательными, всегда отталкиваются друг от друга.

Разноименные заряженные тела притягиваются, а одноименные — отталкиваются, т.е. в этот момент можно наблюдать тенденцию движения этих тел.

Интенсивность и скорость движения мельчайших частиц в телах зависит от множества следующих факторов:

  • температура
  • деформация
  • трение
  • химические реакции

Происхождение и возникновение электричества

Чуть выше я упоминал, что атом состоит из протонов, нейтронов и электронов. Так вот протоны (положительно заряженные) и нейтроны (нейтрально заряженные) это и есть само ядро атома. На изображении ниже смотрите из чего состоит атом.

Ядро атома всегда имеет положительный заряд. Нейтрон (показаны красным цветом) не обладает электрическим зарядом. Протон (показаны голубым цветом) обладает всегда положительным зарядом.

Вокруг этого ядра вращаются отрицательно заряженные электроны (изображены синим цветом), которые могут находиться от ядра на различном расстоянии, в зависимости от материала вещества. Расстояние, а точнее, энергетический уровень электрона, зависит от энергии, которую электрон может поглощать из вне (обычно от фотонов) и излучать. Этим занимаются электроны внешних электронных оболочек (самые удалённые от ядра). Если электрон «захапает» слишком много энергии, то может покинуть атом, о чём и говорится чуть ниже. Т.е. взаимодействие атома с другими атомами и прочими частицами происходит благодаря внешним электронам.

Заряд электрона в точности равен заряду протона по величине и противоположен по знаку. Поэтому в целом атом нейтрален.

Взаимодействие положительных протонов ядра с отрицательными электронами не всегда постоянно, и по мере удаления электронов от ядра оно уменьшается.

Т.е. получается, что количество электронов в атомах мы можем изменить.

Способы воздействия и факторы, воздействующие на тела я упоминал выше — это свет, температура, деформация, трение и различные химические реакции. А теперь о каждом воздействии поговорим подробнее.

Свет

Например, под воздействием светового излучения на вещество, из него могут вылететь электроны, которые в свою очередь заряжаются положительным зарядом. Такое явление в физике названо фотоэффектом . О нем мы поговорим в следующих статьях. Чтобы не пропустить новые статьи — подпишитесь на получение уведомления о выходе новых статей на сайте.

На явлении фотоэффекта основан принцип действия фотоэлементов.

Температура

При воздействии на вещество (тело) высокой температурой, удаленные от ядра электроны увеличивают свою скорость вращения вокруг ядра и в один прекрасный момент им хватает кинетической энергии, чтобы оторваться от ядра. В этом случае электроны становятся свободными частицами с отрицательными зарядами.

Такое явление в физике называется термоэлектронной эмиссией . Применяется это явление достаточно обширно. Но об этом в следующих статьях. Следите за обновлениями на сайте.

Химическая реакция

При химических реакциях в результате переноса зарядов образуются положительные и отрицательные полюсы. На этом основано устройство аккумуляторов.

Трение и деформация

При воздействии на некоторые тела трением, сжатием, растяжением или же просто деформировать их, то на их поверхности могут появиться электрические заряды. Такое явление физики называют пьезоэлектрическим эффектом, или сокращенно, пьезоэффектом .

Электродвижущая сила

При каждом способе воздействия на тело, в результате появляются небольшие источники двух полярностей: положительной и отрицательной. Каждая из этих полярностей имеет свою величину, которая называется потенциалом. Все Вы наверное слышали такое выражение.

Потенциал — это запасенная потенциальная энергия единицы количества электричества, находящейся в определенной точке электрического поля.

Так вот, чем больше потенциал, тем больше разница между положительным и отрицательным полюсами. Эта вот самая разница потенциалов и есть электродвижущая сила (ЭДС).

Если цепь замкнуть, то под действием ЭДС источника в цепи появится электрический ток.

Единицей измерения разницы потенциалов является вольт. Измерить разницу потенциалов можно вольтметром, или .

P.S. Все перечисленные способы получения электричества являются лишь небольшими примерами. Человек же создал на их основе более крупные источники энергии, такие как генераторы, аккумуляторы и прочее.