Определить спектральную плотность энергетической светимости. Характеристики теплового излучения

Итак, что такое тепловое излучение?

Тепловое излучение - это электромагнитное излучение, которое возникает за счет энергии вращательного и колебательного движения атомов и молекул в составе вещества. Тепловое излучение характерно для всех тел, которые имеют температуру, превышающую температуру абсолютного нуля.

Тепловое излучение тела человека относится к инфракрасному диапазону электромагнитных волн. Впервые такое излучение было открыто английским астрономом Вильямом Гершелем. В 1865 английский физик Дж. Максвелл доказал, что ИК - излучение имеет электромагнитную природу и представляет собой волны длиной от 760нм до 1-2мм . Чаще всего весь диапазон ИК - излучения делят на области: ближнюю (750нм -2.500нм ), среднюю (2.500нм - 50.000нм ) и дальнюю (50.000нм -2.000.000нм ).

Рассмотрим случай, когда тело А расположено в полости Б, которая ограничена идеальной отражающей (непроницаемой для излучения) оболочкой С (рис.1). В результате многократного отражения от внутренней поверхности оболочки излучение будет сохраняться в пределах зеркальной полости и частично поглощаться телом А. При таких условиях система полость Б - тело А не будет терять энергию, а будет лишь происходить непрерывный обмен энергией между телом А и излучением, которое заполняет полость Б.

Рис.1 . Многократное отражение тепловых волн от зеркальных стенок полости Б

Если распределение энергии остается неизменным для каждой длины волны, то состояние такой системы будет равновесным, а излучение также будет равновесным. Единственным видом равновесного излучения является тепловое. Если по какой-то причине равновесие между излучением и телом сместится, то начинают протекать такие термодинамические процессы, которые вернут систему в состояние равновесия. Если тело А начинает излучать больше, чем поглощает, то тело начинает терять внутреннюю энергию и температура тела (как мера внутренней энергии) начнет падать, что уменьшит количество излучаемой энергии. Температура тела будет падать до тех пор, пока количество излучаемой энергии не станет равным количеству энергии, поглощаемой телом. Таким образом, наступит равновесное состояние.

Равновесное тепловое излучение имеет такие свойства: однородное (одинаковая плотность потока энергии во всех точках полости), изотропное (возможные направления распространения равновероятны), неполяризованное (направления и значения векторов напряженностей электрического и магнитного полей во всех точках полости изменяются хаотически).

Основными количественными характеристиками теплового излучения являются:

- энергетическая светимость - это количество энергии электромагнитного излучения во всем диапазоне длин волн теплового излучения, которое излучается телом во всех направлениях с единицы площади поверхности за единицу времени: R = E/(S·t), [Дж/(м 2 с)] = [Вт/м 2 ] Энергетическая светимость зависит от природы тела, температуры тела, состояния поверхности тела и длины волны излучения.

- спектральная плотность энергетической светимости - энергетическая светимость тела для данных длин волн (λ + dλ) при данной температуре (T + dT): R λ,T = f(λ, T).

Энергетическая светимость тела в пределах каких-то длин волн вычисляется интегрированием R λ,T = f(λ, T) для T = const:

- коэффициент поглощения - отношение поглощенной телом энергии к падающей энергии. Так, если на тело падает излучение потока dФ пад, то одна его часть отражается от поверхности тела - dФ отр, другая часть проходит в тело и частично превращается в теплоту dФ погл, а третья часть после нескольких внутренних отражений - проходит через тело наружу dФ пр: α = dФ погл /dФ пад.

Коэффициент поглощения α зависит от природы поглощающего тела, длины волны поглощаемого излучения, температуры и состояния поверхности тела.

- монохроматический коэффициент поглощения - коэффициент поглощения теплового излучения данной длины волны при заданной температуре: α λ,T = f(λ,T)

Среди тел есть такие тела, которые могут поглощать все тепловое излучение любых длин волн, которое падает на них. Такие идеально поглощающие тела называются абсолютно черными телами . Для них α =1.

Есть также серые тела, для которых α<1, но одинаковый для всех длин волн инфракрасного диапазона.

Моделью АЧТ является малое отверстие полости с теплонепроницаемой оболочкой. Диаметр отверстия составляет не более 0,1 диаметра полости. При постоянной температуре из отверстия излучается некоторая энергия, соответствующая энергетической светимости абсолютно черного тела. Но АЧТ - это идеализация. Но законы теплового излучения АЧТ помогают приблизиться к реальным закономерностям.

2. Законы теплового излучения

1. Закон Кирхгофа. Тепловое излучение является равновесным - сколько энергии излучается телом, столь ее им и поглощается. Для трех тел, находящихся в замкнутой полости можно записать:

Указанное соотношение будет верным и тогда, когда одно из тел будет АЧ:

Т.к. для АЧТ α λT .
Это закон Кирхгофа: отношение спектральной плотности энергетической светимости тела к его монохроматическому коэффициенту поглощения (при определенной температуре и для определенной длины волны) не зависит от природы тела и равно для всех тел спектральной плотности энергетической светимости при тех же самых температуре и длине волны.

Следствия из закона Кирхгофа:
1. Спектральная энергетическая светимость АЧТ является универсальной функцией длины волны и температуры тела.
2. Спектральная энергетическая светимость АЧТ наибольшая.
3. Спектральная энергетическая светимость произвольного тела равна произведению его коэффициента поглощения на спектральную энергетическую светимость абсолютно черного тела.
4. Любое тело при данной температуре излучает волны той же длины волны, которое оно излучает при данной температуре.

Систематическое изучение спектров ряда элементов позволило Кирхгофу и Бунзену установить однозначную связь между спектрами поглощения и излучения газов и индивидуальностью соответствующих атомов. Так был предложен спектральный анализ , с помощью которого можно выявить вещества, концентрация которых составляет 0,1нм.

Распределение спектральной плотности энергетической светимости для абсолютно черного тела, серого тела, произвольного тела. Последняя кривая имеет несколько максимумов и минимумов, что указывает на избирательность излучения и поглощения таких тел.

2. Закон Стефана-Больцмана.
В 1879 году австрийские ученые Йозеф Стефан (экспериментально для произвольного тела) и Людвиг Больцман (теоретически для АЧТ) установили, что общая энергетическая светимость во всем диапазоне длин волн пропорциональна четвертой степени абсолютной температуры тела:

3. Закон Вина.
Немецкий физик Вильгельм Вин в 1893 году сформулировал закон, который определяет положение максимума спектральной плотности энергетической светимости тела в спектре излучения АЧТ в зависимости от температуры. Согласно закону, длина волны λ max , на которую приходится максимум спектральной плотности энергетической светимости АЧТ, обратно пропорционален его абсолютной температуре Т: λ max = в/t, где в = 2,9*10 -3 м·К- постоянная Вина.

Таким образом, при увеличении температуры изменяется не только полная энергия излучения, но и сама форма кривой распределения спектральной плотности энергетической светимости. Максимум спектральной плотности при увеличении температуры смещается в сторону более коротких длин волн. Поэтому закон Вина называют законом смещения.

Закон Вина применяется в оптической пирометрии - метода определения температуры по спектру излучения сильно нагретых тел, которые отдалены от наблюдателя. Именно этим методом впервые была определена температура Солнца (для 470нм Т=6160К).

Представленные законы не позволяли теоретически найти уравнения распределения спектральной плотности энергетической светимости по длинам волн. Труды Релея и Джинса, в которых ученые исследовали спектральный состав излучения АЧТ на основе законов классической физики, привели к принципиальным трудностям, названных ультрафиолетовой катастрофой. В диапазоне УФ-волн энергетическая светимость АЧТ должна была достигать бесконечности, хотя в опытах она уменьшалась к нулю. Эти результаты противоречили закону сохранения энергии.

4. Теория Планка. Немецкий ученый в 1900 году выдвинул гипотезу о том, что тела излучают не непрерывно, а отдельными порциями - квантами. Энергия кванта пропорциональна частоте излучения: E = hν = h·c/λ , где h = 6,63*10 -34 Дж·с постоянная Планка.

Руководствуясь представлениями о квантовом излучении АЧТ, он получил уравнение для спектральной плотности энергетической светимости АЧТ:

Эта формула находится в соответствии с опытными данными во всем интервале длин волн при всех температурах.

Солнце - основной источник теплового излучения в природе. Солнечное излучение занимает широкий диапазон длин волн: от 0,1нм до 10м и более. 99% солнечной энергии приходится на диапазон от 280 до 6000нм . На единицу площади Земной поверхности приходится в горах от 800 до 1000 Вт/м 2 . До земной поверхности доходит одна двухмиллиардная часть тепла - 9,23 Дж/см 2 . На диапазон теплового излучения от 6000 до 500000нм приходится 0,4% энергии Солнца. В атмосфере Земли большая часть ИК-излучения поглощается молекулами воды, кислорода, азота, диоксида углерода. Радиодиапазон тоже большей частью поглощается атмосферой.

Количество энергии, которую приносят солнечные лучи за 1с на площадь в 1 кв.м, расположенную за пределами земной атмосферы на высоте 82 км перпендикулярную солнечным лучам называется солнечной постоянной. Она равна 1,4*10 3 Вт/м 2 .

Спектральное распределение нормальной плотности потока солнечного излучения совпадает с таким для АЧТ при температуре 6000 градусов. Поэтому Солнце относительно теплового излучения - АЧТ.

3. Излучение реальных тел и тела человека

Тепловое излучение с поверхности тела человека играет большую роль в теплоотдаче. Существуют такие способы теплоотдачи: теплопроводность (кондукция), конвекция, излучение, испарение. В зависимости от условий, в которых окажется человек, каждый из этих способов может иметь доминирующее значение (так, например, при очень высоких температурах среды ведущая роль принадлежит испарению, а в холодной воде - кондукции, причем температура воды 15 градусов является смертельной средой для обнаженного человека, и через 2-4 часа наступает обморок и смерть вследствие переохлаждения мозга). Доля излучения в общей теплоотдаче может составлять от 75 до 25%. В нормальных условиях около 50% при физиологическом покое.

Тепловое излучение, которое играет роль в жизни живых организмов делится на коротковолновую (от 0,3 до 3 мкм) и длинноволновую (от 5 до 100мкм ). Источником коротковолнового излучения служат Солнце и открытое пламя, а живые организмы являются исключительно реципиентами такого излучения. Длинноволновая радиация и излучается, и поглощается живыми организмами.

Величина коэффициента поглощения зависит от соотношения температур среды и тела, площади их взаимодействия, ориентации этих площадей, а для коротковолнового излучения - от цвета поверхности. Так у негров происходит отражение лишь 18% коротковолнового излучения, тогда как у людей белой расы около 40% (скорее всего, цвет кожи негров в эволюции не имел отношение к теплообмену). Для длинноволнового излучения коэффициент поглощения приближен к 1.

Расчет теплообмена излучением - очень трудная задача. Для реальных тел использовать закон Стефана-Больцмана нельзя, поскольку у них более сложная зависимость энергетической светимости от температуры. Оказывается, она зависит от температуры, природы тела, формы тела и состояния его поверхности. Со сменой температуры изменяется коэффициент σ и показатель степени температуры. Поверхность тела человека имеет сложную конфигурацию, человек носит одежду, которая изменяет излучение, на процесс влияет поза, в которой находится человек.

Для серого тела мощность излучения во всем диапазоне определяется по формуле: P = α с.т. σ·T 4 ·S Считая с определенными приближениями реальные тела (кожа человека, ткани одежды) близкими к серым телам, можно найти формулу для вычисления мощности излучения реальными телами при определенной температуре: P = α·σ·T 4 ·S В условиях разных температур излучающего тела и окружающей среды: P = α·σ·(T 1 4 - T 2 4)·S
Существуют особенности спектральной плотности энергетической светимости реальных тел: при 310К , что соответствует средней температуре тела человека, максимум теплового излучения приходится на 9700нм . Любое изменение температуры тела приводит к изменению мощности теплового излучения с поверхности тела (0,1 градус достаточно). Поэтому исследование участков кожи, через ЦНС связанных с определенными органами, способствует выявлению заболеваний, в результате которых температура изменяется довольно значительно (термография зон Захарьина-Геда ).

Интересен метод бесконтактного массажа биополем человека (Джуна Давиташвили). Мощность теплового излучения ладони 0,1Вт , а тепловая чувствительность кожи 0,0001 Вт/см 2 . Если действовать на вышеупомянутые зоны, можно рефлекторно стимулировать работу этих органов.

4. Биологическое и терапевтическое действие тепла и холода

Тело человека постоянно излучает и поглощает тепловое излучение. Этот процесс зависит от температур тела человека и окружающей среды. Максимум ИК-излучения тела человека приходится на 9300нм.

При маленьких и средних дозах облучения ИК-лучами усиливаются метаболические процессы и ускоряются ферментативные реакции, процессы регенерации и репарации.

В результате действия ИК-лучей и видимого излучения в тканях образуются БАВ (брадикинин, калидин, гистамин, ацетилхолин, в основном вазомоторные вещества, которые играют роль в осуществлении и регуляции местного кровотока).

В результате действия ИК-лучей в коже активируются терморецепторы, информация от которых поступает в гипоталамус, в результате чего расширяются сосуды кожи, увеличивается объем циркулирующей в них крови, усиливается потовыделение.

Глубина проникновения ИК-лучей зависит от длины волны, влажности кожи, наполнения ее кровью степени пигментации и т.д.

На коже человека под действием ИК-лучей возникает красная эритема.

Применяется в клинической практике для влияния на местную и общую гемодинамику, усиления потовыделения, расслабления мышц, снижения болевого ощущения, ускорения рассасывания гематом, инфильтратов и т.д.

В условиях гипертермии усиливается противоопухолевое действие лучевой терапии - терморадиотерапия.

Основные показания применения ИК-терапии: острые негнойные воспалительные процессы, ожоги и обморожения, хронические воспалительные процессы, язвы, контрактуры, спайки, травмы суставов, связок и мышц, миозиты, миалгии, невралгии. Основные противопоказания: опухоли, гнойные воспаления, кровотечения, недостаточность кровообращения.

Холод применяется для остановки кровотечений, обезболивания, лечения некоторых заболеваний кожи. Закаливание ведет к долголетию.

Под действием холода снижается частота сердечных сокращений, артериальное давление, угнетаются рефлекторные реакции.

В определенных дозах холод стимулирует заживление ожогов, гнойных ран, трофических язв, эрозий, коньюктивитов.

Криобиология - изучает процессы, которые происходят в клетках, тканях, органах и организме под действием низких, нефизиологических температур.

В медицине используются криотерапия и гипертермия . Криотерапия включает методы, основанные на дозированном охлаждении тканей, органов. Криохирургия (часть криотерапии) использует локальное замораживание тканей с целью их удаления (часть миндалины. Если вся - криотонзилоэктомия. Можно удалять опухоли, например, кожи, шейки матки и т.д.) Криоэкстракция, основанная на криоадгезии (прилипании влажных тел к замороженному скальпелю) - выделение из органа части.

При гипертермии можно некоторое время сохранить функции органов ин виво. Гипотермию с помощью наркоза используют для сохранения функции органов при отсутствии кровоснабжения, поскольку замедляется обмен веществ в тканях. Ткани становятся стойкими к гипоксии. Применяют холодовой наркоз.

Осуществляют действие тепла с помощью ламп накаливания (лампа Минина, солюкс, ванна светотепловая, лампа ИК-лучей) с использованием физических сред, имеющих высокую теплоемкость, плохую теплопроводность и хорошую теплосохранящую способность: грязи, парафин, озокерит, нафталин и т.д.

5. Физические основы термографии.Тепловизоры

Термография, или тепловидение - это метод функциональной диагностики, основанный на регистрации ИК-излучения тела человека.

Существует 2 разновидности термографии:

- контактная холестерическая термография : в методе используются оптические свойства холестерических жидких кристаллов (многокомпонентные смеси сложных эфиров и других производных холестерина). Такие вещества избирательно отражают разные длины волн, что дает возможным получать на пленках этих веществ изображения теплового поля поверхности тела человека. На пленку направляют поток белого света. Разные длины волн по-разному отражаются от пленки в зависимости от температуры поверхности, на которую нанесен холестерик.

Под действием температуры холестерики могут изменять цвет от красного до фиолетового. В результате формируется цветное изображение теплового поля тела человека, которое легко расшифровать, зная зависимость температура-цвет. Существуют холестерики, позволяющие фиксировать разницу температур 0,1 градус. Так, можно определить границы воспалительного процесса, очаги воспалительной инфильтрации на разных стадиях ее развития.

В онкологии термография позволяет выявить метастатические узлы диаметром 1,5-2мм в молочной железе, коже, щитовидной железе; в ортопедии и травматологии оценить кровоснабжение каждого сегмента конечности, например, перед ампутацией, опередить глубину ожога и т.д.; в кардиологии и ангиологии выявить нарушения нормального функционирования ССС, нарушения кровообращения при вибрационной болезни, воспалении и закупорке сосудов; расширение вен и т.д.; в нейрохирургии определить расположение очагов повреждения проводимости нерва, подтвердить место нейропаралича, вызванного апоплексией; в акушерстве и гинекологии определить беременность, локализацию детского места; диагностировать широкий спектр воспалительных процессов.

- Телетермография - базируется на превращение ИК-излучения тела человека в электрические сигналы, которые регистрируются на экране тепловизора или другом записывающем устройстве. Метод бесконтактный.

ИК-излучение воспринимается системой зеркал, после чего ИК-лучи направляются на приемник ИК-волн, основную часть которого составляет детектор (фотосопротивление, металлический или полупроводниковый болометр, термоэлемент, фотохимический индикатор, электронно-оптический преобразователь, пьезоэлектрические детекторы и т.д.).

Электрические сигналы от приемника передаются на усилитель, а потом - на управляющее устройство, которое служит для перемещения зеркал (сканирование объекта), разогревания точечного источника света ТИС (пропорционально тепловому излучению), движения фотопленки. Каждый раз пленка засвечивается ТИС соответственно температуре тела в месте исследования.

После управляющего устройства сигнал может передаваться на компьютерную систему с дисплеем. Это позволяет запоминать термограммы, обрабатывать их с помощью аналитических программ. Дополнительные возможности предоставляет цветные тепловизоры (близкие по температуре цвета обозначить контрастными цветами), провести изотермы.

Многие копании в последнее время признают тот факт, что «достучаться» до потенциального клиента, порой, достаточно сложно, его информационное поле настолько загружено различного рода рекламными сообщениями, что таковые просто перестают восприниматься.
Активные продажи по телефону становятся одним из наиболее эффективных способов увеличения продаж в короткие сроки. Холодные звонки направлены на привлечение клиентов, которые ранее не обращались за товаром или услугой, но по ряду факторов являются потенциальными клиентами. Набрав телефонный номер, менеджер активных продаж должен четко осознавать цель холодного звонка. Ведь телефонные переговоры требуют от sales manager особого мастерства и терпения, а так же знание техники и методики ведения переговоров.

Энергетическая светимость тела - - физическая величина, являющаяся функцией температуры и численно равная энергии, испускаемой телом в единицу времени с единицы площади поверхности по всем направлениям и по всему спектру частот. Дж/с·м²=Вт/м²

Спектральная плотность энергетической светимости - функция частоты и температуры характеризующая распределение энергии излучения по всему спектру частот (или длин волн). , Аналогичную функцию можно написать и через длину волны

Можно доказать, что спектральная плотность энергетической светимости, выраженная через частоту и длину волны, связаны соотношением:

Абсолютно чёрное тело - физическая идеализация, применяемая в термодинамике, тело, поглощающее всё падающее на него электромагнитное излучение во всех диапазонах и ничего не отражающее. Несмотря на название, абсолютно чёрное тело само может испускать электромагнитное излучение любой частоты и визуально иметь цвет. Спектр излучения абсолютно чёрного тела определяется только его температурой.

Важность абсолютно чёрного тела в вопросе о спектре теплового излучения любых (серых и цветных) тел вообще, кроме того, что оно представляет собой наиболее простой нетривиальный случай, состоит ещё и в том, что вопрос о спектре равновесного теплового излучения тел любого цвета и коэффициента отражения сводится методами классической термодинамики к вопросу об излучении абсолютно чёрного (и исторически это было уже сделано к концу XIX века, когда проблема излучения абсолютно чёрного тела вышла на первый план).

Абсолютно чёрных тел в природе не существует, поэтому в физике для экспериментов используется модель. Она представляет собой замкнутую полость с небольшим отверстием. Свет, попадающий внутрь сквозь это отверстие, после многократных отражений будет полностью поглощён, и отверстие снаружи будет выглядеть совершенно чёрным. Но при нагревании этой полости у неё появится собственное видимое излучение. Поскольку излучение, испущенное внутренними стенками полости, прежде, чем выйдет (ведь отверстие очень мало), в подавляющей доле случаев претерпит огромное количество новых поглощений и излучений, то можно с уверенностью сказать, что излучение внутри полости находится в термодинамическом равновесии со стенками. (На самом деле, отверстие для этой модели вообще не важно, оно нужно только чтобы подчеркнуть принципиальную наблюдаемость излучения, находящегося внутри; отверстие можно, например, совсем закрыть, и быстро приоткрыть только тогда, когда равновесие уже установилось и проводится измерение).

2. Закон излучения Кирхгофа - физический закон, установленный немецким физиком Кирхгофом в 1859 году. В современной формулировке закон звучит следующим образом: Отношение излучательной способности любого тела к его поглощательной способности одинаково для всех тел при данной температуре для данной частоты и не зависит от их формы, химического состава и проч.

Известно, что при падении электромагнитного излучения на некоторое тело часть его отражается, часть поглощается и часть может пропускаться. Доля поглощаемого излучения на данной частоте называется поглощательной способностью тела . С другой стороны, каждое нагретое тело излучает энергию по некоторому закону , именуемым излучательной способностью тела .

Величины и могут сильно меняться при переходе от одного тела к другому, однако согласно закону излучения Кирхгофа отношение испускательной и поглощательной способностей не зависит от природы тела и является универсальной функцией частоты (длины волны) и температуры:

По определению, абсолютно чёрное тело поглощает всё падающее на него излучение, то есть для него . Поэтому функция совпадает с излучательной способностью абсолютно чёрного тела, описываемой законом Стефана - Больцмана, вследствие чего излучательная способность любого тела может быть найдена исходя лишь из его поглощательной способности.

Закон Стефана - Больцмана - закон излучения абсолютно чёрного тела. Определяет зависимость мощности излучения абсолютно чёрного тела от его температуры. Формулировка закона: Мощность излучения абсолютно чёрного тела прямопропорциональна площади поверхности и четвёртой степени температуры тела: P = S εσT 4 , где ε - степень черноты (для всех веществ ε < 1, для абсолютно черного тела ε = 1).

При помощи закона Планка для излучения, постоянную σ можно определить как где - постоянная Планка, k - постоянная Больцмана, c - скорость света.

Численное значение Дж·с −1 ·м −2 · К −4 .

Немецкий физик В. Вин (1864-1928), опираясь на законы термо- и электродина­мики, установил зависимость длины во­лны l max , соответствующей максимуму функции r l , T , от температуры Т. Согласно закону смещения Вина, l max =b/Т

т. е. длина волны l max , соответствующая максимальному значению спектральной плотности энергетической светимости r l , T черного тела, обратно пропорциональна его термодинамической температуре, b - постоянная Вина: ее экспериментальное значение равно 2,9 10 -3 м К. Выраже­ние (199.2) потому называют законом сме­щения Вина, что оно показывает смещение положения максимума функции r l , T по ме­ре возрастания температуры в область коротких длин волн. Закон Вина объясня­ет, почему при понижении температуры нагретых тел в их спектре все сильнее преобладает длинноволновое излучение (например, переход белого каления в красное при остывании металла).

Несмотря на то что законы Стефана - Больцмана и Вина играют, в теории тепло­вого излучения важную роль, они являют­ся частными законами, так как не дают общей картины распределения энергии по частотам при различных температурах.

3. Пусть стенки этой полости полностью отражают падающий на них свет. Поместим в полость какое-либо тело, которое будет излучать световую энергию. Внутри полости возникнет электромагнитное поле и, в конце концов, ее заполнит излучение, находящееся в состоянии теплового равновесия с телом. Равновесие наступит и в том случае, когда каким-либо способом нацело устранится обмен теплом исследуемого тела с окружающей его средой (например, будем проводить этот мысленный опыт в вакууме, когда отсутствуют явления теплопроводности и конвекции). Лишь за счет процессов испускания и поглощения света обязательно наступит равновесие: излучающее тело будет иметь температуру, равную температуре электромагнитного излучения, изотропно заполняющего пространство внутри полости, а каждая выделенная часть поверхности тела будет излучать в единицу времени столько энергии, сколько она поглощает. При этом равновесие должно наступить независимо от свойств тела, помещенного внутрь замкнутой полости, влияющих, однако, на время установления равновесия. Плотность энергии электро­магнитного поля в полости, как будет показано ниже, в состоянии рав­новесия определяется только температурой.

Для характеристики равновесного теплового излучения важна не только объемная плотность энергии, но и распределение этой энергии по спектру. Поэтому будем характеризовать равновесное излучение, изотропно заполняющее пространство внутри полости, с помощью функции u ω - спектральной плотности излучения, т. е. средней энергии единицы объема электромагнитного поля, распределенной в интервале частот от ω до ω + δω и отнесенной к величине этого интервала. Очевидно, что значение u ω должно существенно зависеть от температуры, поэтому обозначим ее u (ω,T). Полная плотность энергии U (T ) связана с u (ω,T ) формулой .

Строго говоря, понятие температуры применимо лишь для равновесного теплового излучения. В условиях равновесия температура должна оставаться постоянной. Однако часто понятие температуры также используют для характеристики раскаленных тел, не находящихся в равновесии с излучением. Более того, при медленном изменении параметров системы можно в каждый данный промежуток времени характеризовать ее температурой, которая будет медленно изменяться. Так, например, если отсутствует приток тепла и излучение обусловлено уменьшением энергии светящегося тела, то его температура также будет уменьшаться.

Установим связь между испускательной способностью абсолютно черного тела и спектральной плотностью равновесного излучения. Для этого подсчитаем поток энергии, падающий на единичную площадку, расположенную внутри замкнутой полости, заполненной электромагнитной энергией средней плотности U ω . Пусть излучение падает на единичную площадку в направлении, определяемом углами θ и ϕ (рис. 6а) в пределах телесного угла dΩ:

Так как равновесное излучение изотропно, то в данном телесном угле распространяется доля, равная от всей энергии, заполняющей полость. Поток электромагнитной энергии, проходящей через единичную площадку в единицу времени

Заменяя выражением и интегрируя по ϕ в пределах (0, 2π) и по θ в пределах (0, π/2), получим полный поток энергии, падающий на единичную площадку:

Очевидно, что в условиях равновесия надо приравнять выра­жение (13) испускательной способности абсолютно черного тела r ω , характеризующей поток энергии, излучаемый площадкой, в единичном интервале частот вблизи ω:

Таким образом, показано, что испускательная способность аб­солютно черного тела с точностью до множителя с/4 совпадает со спек­тральной плотностью равновесного излучения. Равенство (14) должно выполняться для каждой спектральной составляющей излучения, следовательно отсюда вытекает, что f (ω,T )= u (ω,T ) (15)

В заключение укажем, что излу­чение абсолютного черного тела (на­пример, свет, испускаемый малым отверстием в полости) уже не будет равновесным. В частности, это излу­чение не изотропно, так как оно рас­пространяется не по всем направле­ниям. Но распределение энергии по спектру для такого излучения будет совпадать со спектральной плотностью равновесного излучения, изотропно заполняющего пространство внутри полости. Это и позволяет пользовать­ся соотношением (14), справедливым при любой температуре. Никакой другой источник света не имеет сходного распределения энергии по спектру. Так, например, элек­трический разряд в газах или свечение под действием химических реакций имеет спектры, существенно отличные от свечения абсолютно черного тела. Распределение энергии по спектру раскаленных тел также заметно отличается от свечения абсолютно черного тела, что было выше сравнением спектров распространенного источника света (лампы накаливания с вольфра­мовой нитью) и абсолютно черного тела.

4. Основываясь на законе о равнораспределении энергии по степеням свободы: на каждое электромагнитное колебание приходится в среднем энергия, складываемая из двух частей kT. Одну половинку вносит электрическая составляющая волны, а вторую -- магнитная. Само по себе, равновесное излучение в полости, можно представить как систему стоячих волн. Количество стоячих волн в трехмерном пространстве дается выражением:

В нашем случае скорость v следует положить равной c , более того, в одном направлении могут двигаться две электромагнитные волны с одной частотой, но со взаимно перпендикулярными поляризациями, тогда (1) в добавок следует помножить на два:

Итак, Релей и Джинс, каждому колебанию приписали энергию . Помножив (2) на ,получим плотность энергии, которая приходится на интервал частот dω:

Зная связь испускательной способности абсолютно черного тела f (ω,T ) с равновесной плотностью энергией теплового излучения , для f (ω,T ) находим: Выражения (3) и (4), называют формулой Релея-Джинса .

Формулы (3) и (4) удовлетворительно согласуются с экспериментальными данными лишь для больших длин волн, на более коротких волнах согласие с экспериментом резко расходится. Более того, интегрирование (3) по ω в пределах от 0 до для равновесной плотности энергии u (T ) дает бесконечно большое значение. Этот результат, получивший название ультрафиолетовой катастрофы , очевидно, входит в противоречие с экспериментом: равновесие между излучением и излучающим телом должно устанавливаться при конечных значениях u (T ).

Ультрафиоле́товая катастро́фа - физический термин, описывающий парадокс классической физики, состоящий в том, что полная мощность теплового излучения любого нагретого тела должна быть бесконечной. Название парадокс получил из-за того, что спектральная плотность мощности излучения должна была неограниченно расти по мере сокращения длины волны. По сути этот парадокс показал если не внутреннюю противоречивость классической физики, то во всяком случае крайне резкое (абсурдное) расхождение с элементарными наблюдениями и экспериментом.

5. Гипо́теза Пла́нка - гипотеза, выдвинутая 14 декабря 1900 года Максом Планком и заключающаяся в том, что при тепловом излучении энергия испускается и поглощается не непрерывно, а отдельными квантами (порциями). Каждая такая порция-квант имеет энергию , пропорциональной частоте ν излучения:

где h или - коэффициент пропорциональности, названный впоследствии постоянной Планка. На основе этой гипотезы он предложил теоретический вывод соотношения между температурой тела и испускаемым этим телом излучением - формулу Планка.

Формула Планка - выражение для спектральной плотности мощности излучения абсолютно чёрного тела, которое было получено Максом Планком. Для плотности энергии излучения u (ω,T ):

Формула Планка была получена после того, как стало ясно, что формула Рэлея - Джинса удовлетворительно описывает излучение только в области длинных волн. Для вывода формулы Планк в 1900 году сделал предположение о том, что электромагнитное излучение испускается в виде отдельных порций энергии (квантов), величина которых связана с частотой излучения выражением:

Коэффициент пропорциональности впоследствии назвали постоянной Планка, = 1.054 · 10 −27 эрг·с.

Для объяснения свойств теплового излучения пришлось ввести представление об испускании электромагнитного излучения порциями (квантами). Квантовая природа излучения подтверждается также существованием коротковолновой границы тормозного рентгеновского спектра.

Рентгеновское излучение возникает при бомбардировке твердых мишеней быстрыми электронами Здесь анод выполнен из W, Mo, Cu, Pt – тяжелых тугоплавких или с высоким коэффициентом теплопроводности металлов. Только 1–3 % энергии электронов идет на излучение, остальная часть выделяется на аноде в виде тепла, поэтому аноды охлаждают водой. Попав в вещество анода, электроны испытывают сильное торможение и становятся источником электромагнитных волн (рентгеновских лучей).

Начальная скорость электрона при попадании на анод определяется по формуле:

где U – ускоряющее напряжение.

>Заметное излучение наблюдается лишь при резком торможении быстрых электронов, начиная с U ~ 50 кВ, при этом (с – скорость света). В индукционных ускорителях электронов – бетатронах, электроны приобретают энергию до 50 МэВ, = 0,99995 с . Направив такие электроны на твердую мишень, получим рентгеновское излучение с малой длиной волны. Это излучение обладает большой проникающей способностью. Согласно классической электродинамике при торможении электрона должны возникать излучения всех длин волн от нуля до бесконечности. Длина волны, на которую приходится максимум мощности излучения, должна уменьшиться по мере увеличения скорости электронов. Однако есть принципиальное отличие от классической теории: нулевые распределения мощности не идут к началу координат, а обрываются при конечных значениях – это и есть коротковолновая граница рентгеновского спектра .

Экспериментально установлено, что

Существование коротковолновой границы непосредственно вытекает из квантовой природы излучения. Действительно, если излучение возникает за счёт энергии, теряемой электроном при торможении, то энергия кванта не может превысить энергию электрона eU , т.е. , отсюда или .

В данном эксперименте можно определить постоянную Планка h . Из всех методов определения постоянной Планка метод, основанный на измерении коротковолновой границы тормозного рентгеновского спектра, является самым точным.

7. Фотоэффе́кт - это испускание электронов вещества под действием света (и, вообще говоря, любого электромагнитного излучения). В конденсированных веществах (твёрдых и жидких) выделяют внешний и внутренний фотоэффект.

Законы фотоэффекта :

Формулировка 1-го закона фотоэффекта : количество электронов, вырываемых светом с поверхности металла за единицу времени на данной частоте, прямо пропорционально световому потоку, освещающему металл .

Согласно 2-ому закону фотоэффекта , максимальная кинетическая энергия вырываемых светом электронов линейно возрастает с частотой света и не зависит от его интенсивности .

3-ий закон фотоэффекта : для каждого вещества существует красная граница фотоэффекта, то есть минимальная частота света ν 0 (или максимальная длина волны λ 0), при которой ещё возможен фотоэффект, и если ν 0 , то фотоэффект уже не происходит .

Теоретическое объяснение этих законов было дано в 1905 году Эйнштейном. Согласно ему, электромагнитное излучение представляет собой поток отдельных квантов (фотонов) с энергией hν каждый, где h - постоянная Планка. При фотоэффекте часть падающего электромагнитного излучения от поверхности металла отражается, а часть проникает внутрь поверхностного слоя металла и там поглощается. Поглотив фотон, электрон получает от него энергию и, совершая работу выхода, покидает металл: h ν = A out + W e , где W e - максимальная кинетическая энергия, которую может иметь электрон при вылете из металла.

Из закона сохранения энергии, при представлении света в виде частиц (фотонов), следует формула Эйнштейна для фотоэффекта: h ν = A out + Ek

где A out - т. н. работа выхода (минимальная энергия, необходимая для удаления электрона из вещества), Ek - кинетическая энергия вылетающего электрона (в зависимости от скорости может вычисляться как кинетическая энергия релятивистской частицы, так и нет), ν - частота падающего фотона с энергией h ν, h - постоянная Планка.

Работа выхода - разница между минимальной энергией (обычно измеряемой в электрон-вольтах), которую необходимо сообщить электрону для его «непосредственного» удаления из объема твёрдого тела, и энергией Ферми.

«Красная» грани́ца фотоэффе́кта - минимальная частота или максимальная длина волны λ max света, при которой еще возможен внешний фотоэффект, то есть начальная кинетическая энергия фотоэлектронов больше нуля. Частота зависит только от работы выхода A out электрона: , где A out - работа выхода для конкретного фотокатода, h - постоянная Планка, а с - скорость света. Работа выхода A out зависит от материала фотокатода и состояния его поверхности. Испускание фотоэлектронов начинается сразу же, как только на фотокатод падает свет с частотой или с длиной волны .

Спектральная плотность энергетической светимости (яркости) - это функция, показывающая распределение энергетической светимости (яркости) по спектру излучения.
Имея ввиду, что:
Энергетическая светимость - это поверхностная плотность потока энергии, излучаемой поверхностью
Энергетическая яркость - это величина потока, излучаемого единицей площади в единицу телесного угла в данном направлении

Абсолютно чёрное тело - физическая идеализация, применяемая в термодинамике, тело, поглощающее всё падающее на него электромагнитное излучение во всех диапазонах и ничего не отражающее. Несмотря на название, абсолютно чёрное тело само может испускать электромагнитное излучение любой частоты и визуально иметь цвет. Спектр излучения абсолютно чёрного тела определяется только его температурой.

Абсолютно черное тело

Абсолютно черное тело - это физическая абстракция (модель), под которой понимают тело, полностью поглощающее всё падающее на него электромагнитное излучение

Для абсолютно черного тела

Серое тело

Серое тело - это такое тело, коэффициент поглощения которого не зависит от частоты, а зависит только от температуры

- для серого тела

Закон кирхгофа для теплового излучения

Отношение излучательной способности любого тела к его поглощательной способности одинаково для всех тел при данной температуре для данной частоты и не зависит от их формы и химической природы.

Температурная зависимость спектральной плотности энергетической светимости абсолютно черного тела

зависимости спектральной плотности энергии излучения L (Т) черного тела от температуры Т в микроволновом диапазоне излучения, устанавливается для диапазона температур от 6300 до 100000 К.

Закон смещения Вина даёт зависимость длины волны, на которой поток излучения энергии чёрного тела достигает своего максимума, от температуры чёрного тела.

B=2,90* м*К

Закон Стефана-Больцмана

Формула рэлея-джинса

формула планка

постоянная планка

Фотоэффе́кт - это испускание электронов веществом под действием света (и, вообще говоря, любого электромагнитного излучения). В конденсированных веществах (твёрдых и жидких) выделяют внешний и внутренний фотоэффект.

Законы фотоэффекта :

Формулировка 1-го закона фотоэффекта : количество электронов, вырываемых светом с поверхности металла за единицу времени на данной частоте, прямо пропорционально световому потоку, освещающему металл .

Согласно 2-му закону фотоэффекта , максимальная кинетическая энергия вырываемых светом электронов линейно возрастает с частотой света и не зависит от его интенсивности .

3-ий закон фотоэффекта : для каждого вещества существует красная граница фотоэффекта, то есть минимальная частота света (или максимальная длина волны λ 0), при которой ещё возможен фотоэффект, и если , то фотоэффект уже не происходит .

Фото́н - элементарная частица, квант электромагнитного излучения (в узком смысле -света). Это безмассовая частица, способная существовать только двигаясь со скоростью света. Электрический заряд фотона также равен нулю.

Уравнение Эйнштейна для внешнего фотоэффекта

Фотоэлемент - электронный прибор, который преобразует энергию фотонов в электрическую энергию. Первый фотоэлемент, основанный на внешнем фотоэффекте, создал Александр Столетов в конце XIX века.

энергия масса и импульс фотона

Давление света - это давление, которое производят электромагнитные световые волны, падающие на поверхность какого-либо тела.

Давление р, оказываемое волной на поверхность металла можно было рассчитать, как отношение равнодействующей сил Лоренца, действующих на свободные электроны в поверхностном слое металла, к площади поверхности металла:

Квантовая теория света объясняетдавление света как результат передачи фотонами своего импульса атомам или молекулам вещества.

Эффект Комптона (Комптон-эффект) - явление изменения длины волны электромагнитного излучения вследствие упругого рассеивания его электронами

Комптоновская длина волны

Гипотеза де Бройля заключается в том, что французский физик Луи де Бройль выдвинул идею приписать волновые свойства электрону. Проводя аналогию между квантом, де Бройль предположил, что движение электрона или какой-либо другой частицы, обладающей массой покоя, связано с волновым процессом.

Гипотеза де Бройля устанавливает, что движущейся частице, обладающей энергией E и импульсом p, соответствует волновой процесс, частота которого равна:

а длина волны:

где p - импульс движущейся частицы.

Опыт Дэвиссона-Джермера - физический эксперимент по дифракции электронов, проведённый в 1927 г. американскими учёными Клинтоном Дэвиссоном и Лестером Джермером.

Проводилось исследование отражения электронов от монокристалла никеля. Установка включала в себя монокристалл никеля, сошлифованный под углом и установленный на держателе. На плоскость шлифа направлялся перпендикулярно пучок монохроматических электронов. Скорость электронов определялась напряжением на электронной пушке:

Под углом к падающему пучку электронов устанавливался цилиндр Фарадея, соединённый с чувствительным гальванометром. По показаниям гальванометра определялась интенсивность отражённого от кристалла электронного пучка. Вся установка находилась в вакууме.

В опытах измерялась интенсивность рассеянного кристаллом электронного пучка в зависимости от угла рассеяния от азимутального угла , от скорости электронов в пучке.

Опыты показали, что имеется ярко выраженная селективность (выборочность) рассеяния электронов. При различных значениях углов и скоростей, в отражённых лучах наблюдаются максимумы и минимумы интенсивности. Условие максимума:

Здесь - межплоскостное расстояние.

Таким образом наблюдалась дифракция электронов на кристаллической решётке монокристала. Опыт явился блестящим подтверждением существования у микрочастиц волновых свойств.

Волнова́я фу́нкция , или пси-функция - комплекснозначная функция, используемая в квантовой механике для описания чистого состояния системы. Является коэффициентом разложения вектора состояния по базису (обычно координатному):

где - координатный базисный вектор, а - волновая функция в координатном представлении.

Физический смысл волновой функции заключается в том, что согласно копенгагенской интерпретации квантовой механики плотность вероятностинахождения частицы в данной точке пространства в данный момент времени считается равной квадрату абсолютного значения волновой функции этого состояния в координатном представлении.

Принцип неопределённости Гейзенбе́рга (или Га́йзенберга ) в квантовой механике - фундаментальное неравенство (соотношение неопределённостей), устанавливающее предел точности одновременного определения пары характеризующих квантовую систему физических наблюдаемых (см. физическая величина), описываемых некоммутирующими операторами (например, координаты и импульса, тока и напряжения, электрического и магнитного поля). Соотношение неопределенностей [* 1] задаёт нижний предел для произведения среднеквадратичных отклонений пары квантовых наблюдаемых. Принцип неопределённости, открытый Вернером Гейзенбергом в 1927 г., является одним из краеугольных камней квантовой механики.

Определение Если имеется несколько (много) идентичных копий системы в данном состоянии, то измеренные значения координаты и импульса будут подчиняться определённому распределению вероятности - это фундаментальный постулат квантовой механики. Измеряя величину среднеквадратического отклонения координаты и среднеквадратического отклонения импульса, мы найдем что:

Уравнение шредингера

Потенциа́льная я́ма – область пространства, где присутствует локальный минимум потенциальной энергии частицы.

Тунне́льный эффект , туннели́рование - преодоление микрочастицей потенциального барьера в случае, когда её полная энергия (остающаяся при туннелировании неизменной) меньше высоты барьера. Туннельный эффект - явление исключительно квантовой природы, невозможное и даже полностью противоречащее классической механике. Аналогом туннельного эффекта в волновой оптике может служить проникновение световой волны внутрь отражающей среды (на расстояния порядка длины световой волны) в условиях, когда, с точки зрения геометрической оптики, происходит полное внутреннее отражение. Явление туннелирования лежит в основе многих важных процессов в атомной и молекулярной физике, в физике атомного ядра, твёрдого тела и т. д.

Гармонический осциллятор в квантовой механике представляет собой квантовый аналог простого гармонического осциллятора, при этом рассматривают не силы, действующие на частицу, а гамильтониан, то есть полную энергию гармонического осциллятора, причём потенциальная энергия предполагается квадратично зависящей от координат. Учёт следующих слагаемых в разложении потенциальной энергии по координате ведёт к понятию ангармонического осциллятора.

Изучение строения атомов показало, что атомы состоят из положительно заряженного ядра, в котором сосредоточена почти вся масс. ч атома, и движущихся вокруг ядра отрицательно заряженных электронов.

Планетарная модель атома Бора-Резерфорда . В 1911 году Эрнест Резерфорд, проделав ряд экспериментов, пришёл к выводу, что атом представляет собой подобие планетной системы, в которой электроны движутся по орбитам вокруг расположенного в центре атома тяжёлого положительно заряженного ядра («модель атома Резерфорда»). Однако такое описание атома вошло в противоречие с классической электродинамикой. Дело в том, что, согласно классической электродинамике, электрон при движении с центростремительным ускорением должен излучать электромагнитные волны, а, следовательно, терять энергию. Расчёты показывали, что время, за которое электрон в таком атоме упадёт на ядро, совершенно ничтожно. Для объяснения стабильности атомов Нильсу Бору пришлось ввести постулаты, которые сводились к тому, что электрон в атоме, находясь в некоторых специальных энергетических состояниях, не излучает энергию («модель атома Бора-Резерфорда»). Постулаты Бора показали, что для описания атома классическая механика неприменима. Дальнейшее изучение излучения атома привело к созданию квантовой механики, которая позволила объяснить подавляющее большинство наблюдаемых фактов.

Спектры излучения атомов обычно получаются при высокой температуре источника света (плазма, дуга или искра), при которой происходит испарение вещества, расщепление его молекул на отдельные атомы и возбуждение атомов к свечению. Атомный анализ может быть как эмиссионным - исследование спектров излучения, так и абсорбционным - исследование спектров поглощения.
Спектр излучения атома представляет собой набор спектральных линий. Спектральная линия появляется в результате монохроматического светового излучения при переходе электрона с одного допускаемого постулатом Бора электронного подуровня на другой подуровень разных уровней. Это излучение характеризуется длиной волны К, частотой v или волновым числом со.
Спектр излучения атома представляет собой набор спектральных линий. Спектральная линия появляется в результате монохроматического светового излучения при переходе электрона с одного допускаемого постулатом Бора электронного подуровня на другой подуровень разных уровней.

Бо́ровская моде́ль а́тома (Моде́ль Бо́ра) - полуклассическая модель атома, предложенная Нильсом Бором в 1913 г. За основу он взял планетарную модель атома, выдвинутую Резерфордом. Однако, с точки зрения классической электродинамики, электрон в модели Резерфорда, двигаясь вокруг ядра, должен был бы излучать непрерывно, и очень быстро, потеряв энергию, упасть на ядро. Чтобы преодолеть эту проблему Бор ввел допущение, суть которого заключается в том, что электроны в атоме могут двигаться только по определенным (стационарным) орбитам, находясь на которых они не излучают, а излучение или поглощение происходит только в момент перехода с одной орбиты на другую. Причем стационарными являются лишь те орбиты, при движении по которым момент количества движения электрона равен целому числу постоянных Планка : .

Используя это допущение и законы классической механики, а именно равенство силы притяжения электрона со стороны ядра и центробежной силы, действующей на вращающийся электрон, он получил следующие значения для радиуса стационарной орбиты и энергии находящегося на этой орбите электрона:

Здесь - масса электрона, Z - количество протонов в ядре, - диэлектрическая постоянная, e - заряд электрона.

Именно такое выражение для энергии можно получить, применяя уравнение Шрёдингера, решая задачу о движении электрона в центральном кулоновском поле.

Радиус первой орбиты в атоме водорода R 0 =5,2917720859(36)·10 −11 м , ныне называется боровским радиусом, либо атомной единицей длины и широко используется в современной физике. Энергия первой орбиты эВ представляет собойэнергию ионизации атома водорода.

Постулаты Бора

§ Атом может находиться только в особенных стационарных, или квантовых, состояниях, каждому из которых отвечает определенная энергия. В стационарном состоянии атом не излучает электромагнитных волн.

§ Электрон в атоме, не теряя энергии, двигается по определённым дискретным круговым орбитам, для которых момент импульса квантуется: , где - натуральные числа, а - постоянная Планка. Пребывание электрона на орбите определяет энергию этих стационарных состояний.

§ При переходе электрона с орбиты (энергетический уровень) на орбиту излучается или поглощается квант энергии , где - энергетические уровни, между которыми осуществляется переход. При переходе с верхнего уровня на нижний энергия излучается, при переходе с нижнего на верхний - поглощается.

Используя данные постулаты и законы классической механики, Бор предложил модель атома, ныне именуемую Боровской моделью атома . В дальнейшем Зоммерфельд расширил теорию Бора на случай эллиптических орбит. Её называют моделью Бора-Зоммерфельда.

Опыты франка и герца

опыт показал, что электроны передают свою энергию атомам ртути порциями , причем 4,86 эВ – наименьшая возможная порция, которая может быть поглощена атомом ртути в основном энергетическом состоянии

Формула бальмера

Для описания длин волн λ четырех видимых линий спектра водорода И. Бальмер предложил формулу

где n = 3, 4, 5, 6; b = 3645,6 Å.

В настоящее время для серии Бальмера используют частный случай формулы Ридберга:

где λ - длина волны,

R ≈ 1,0974·10 7 м −1 - постоянная Ридберга,

n - главное квантовое число исходного уровня - натуральное число, большее или равное 3.

Водородоподобный атом - атом, содержащий в электронной оболочке один и только один электрон.

Рентге́новское излуче́ние - электромагнитные волны, энергия фотонов которых лежит на шкале электромагнитных волн между ультрафиолетовым излучением и гамма-излучением, что соответствует длинам волн от 10 −2 до 10 3 Å (от 10 −12 до 10 −7 м)

Рентге́новская тру́бка - электровакуумный прибор, предназначенный для генерации рентгеновского излучения.

Тормозное излучение - электромагнитное излучение, испускаемое заряженной частицей при её рассеянии (торможении) в электрическом поле. Иногда в понятие «тормозное излучение» включают также излучение релятивистских заряженных частиц, движущихся в макроскопических магнитных полях (в ускорителях, в космическом пространстве), и называют его магнитотормозным; однако более употребительным в этом случае является термин «синхротронное излучение».

ХАРАКТЕРИСТИЧЕСКОЕ ИЗЛУЧЕНИЕ - рентг. излучение линейчатого спектра. Характерно для атомов каждого элемента.

Химическая связь - явление взаимодействия атомов, обусловленное перекрыванием электронных облаков связывающихся частиц, которое сопровождается уменьшением полной энергии системы.

молекуляр­ный спектр - спектр излучения (по­глощения), возникающий при квантовых переходах между уровнями энергии моле­кул

Энергетический уровень - собственные значения энергии квантовых систем, то есть систем, состоящих из микрочастиц (электронов, протонов и других элементарных частиц) и подчиняющихся законам квантовой механики.

Квантовое число n главное . Оно определяет энергию электрона в атоме водорода и одноэлектронных системах (He + , Li 2+ и т. д.). В этом случае энергия электрона

где n принимает значения от 1 до ∞. Чем меньше n , тем больше энергия взаимодействия электрона с ядром. При n = 1 атом водорода находится в основном состоянии, при n > 1 – в возбужденном.

Правилами отбора в спектроскопии называют ограничения и запрет на переходы между уровнями квантомеханической системы с поглощением или излучением фотона, наложенные законами сохранения и симметрией.

Многоэлектронными атомами называются атомы с двумя и более электронами.

Эффе́кт Зе́емана - расщепление линий атомных спектров в магнитном поле.

Обнаружен в 1896 г. Зееманом для эмиссионных линий натрия.

Суть явления электронного парамагнитного резонанса заключается в резонансном поглощении электромагнитного излучения неспаренными электронами. Электрон имеет спин и ассоциированный с ним магнитный момент.


.

ИСПУСКАНИЕ И ПОГЛОЩЕНИЕ ЭНЕРГИИ

АТОМАМИ И МОЛЕКУЛАМИ

ВОПРОСЫ К ЗАНЯТИЮ ПО ТЕМЕ:

1.Тепловое излучение. Его основные характеристики: поток излучения Ф, энергетическая светимость (интенсивность) R, спектральная плотность энергетической светимости r λ ; коэффициент поглощения α, монохроматический коэффициент поглощения α λ. Абсолютно чёрное тело. Закон Кирхгофа.

2. Спектры теплового излучения а.ч.т. (график). Квантовый характер теплового излучения (гипотеза Планка; формулу для ε λ запоминать не надо). Зависимость спектра а.ч.т. от температуры (график). Закон Вина. Закон Стефана-Больцмана для а.ч.т. (без вывода) и для других тел.

3. Строение электронных оболочек атомов. Энергетические уровни. Испускание энергии при переходах между энергетическими уровнями. Формула Бора (для частоты и для длины волны ). Спектры атомов. Спектр атома водорода. Спектральные серии. Общее понятие о спектрах молекул и конденсированных сред (жидкости, твёрдые тела). Понятие о спектральном анализе и его использовании в медицине.

4. Люминесценция. Виды люминесценции. Флюоресценция и фосфоресценция. Роль метастабильных уровней. Спектры люминесценции. Правило Стокса. Люминесцентный анализ и его использование в медицине.

5. Закон поглощения света (закон Бугера; вывод). Коэффициент пропускания τ и оптическая плотность D. Определение концентрации растворов по поглощению света.

Лабораторная работа: «съёмка спектра поглощения и определение концентрации раствора с помощью фотоэлектроколориметра».

ЛИТЕРАТУРА:

Обязательная: А.Н.Ремизов. «Медицинская и биологическая физика», М., «Высшая школа», 1996, гл. 27, §§ 1–3; гл.29, §§ 1,2

  • дополнительная: Испускание и поглощение энергии атомами и молекулами, лекция, ризограф, изд. кафедры, 2002 г.

ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ И ФОРМУЛЫ

1. Тепловое излучение

Все тела даже без всякого внешнего воздействия испускают электромагнитные волны. Источником энергии для этого излучения является тепловое движение составляющих тело частиц, поэтому оно называется тепловым излучением. При высоких температурах (порядка 1000 К и более) это излучение попадает частично в диапазон видимого света, при более низких температурах испускаются инфракрасные лучи, а при очень низких – радиоволны.

Поток излучения Ф - это мощность излучения, испускаемого источником , или энергия излучения, испускаемая в единицу времени: Ф = Р = ; единица потока - ватт.

Энергетическая светимость R - это поток излучения, который испускается с единицы поверхности тела:
;
единица энергетической светимости – Вт.м –2 .

Спектральная плотность энергетической светимости r λ - это отношение энергетической светимости тела в пределах небольшого интервала длин волн (Δ R λ ) к величине этого интервала Δ λ:

Размерность r λ – Вт.м - 3

Абсолютно чёрным телом (а.ч.т.) называется тело, которое полностью поглощает падающее излучение. В природе таких тел нет, но хорошей моделью а.ч.т. является небольшое отверстие в замкнутой полости.

Способность тел поглощать падающее излучение характеризует коэффициент поглощения α , то есть отношение поглощённого потока излучения к падающему:
.

Монохроматический коэффициент поглощения - это значение коэффициента поглощения, измеренное в узком спектральном интервале около некоторого значения λ.

Закон Кирхгофа: при постоянной температуре отношение спектральной плотности энергетической светимости при определённой длине волны к монохроматическому коэффициенту поглощения при той же длине волны одинаково для всех тел и равно спектральной плотности энергетической светимости а.ч.т. при этой длине волны:

(иногда r λ А.Ч.Т обозначают ε λ)

Абсолютно чёрное тело поглощает и испускает излучение всех длин волн, поэтому спектр а.ч.т. всегда сплошной. Вид этого спектра зависит от температуры тела. С повышением температуры , во-первых, значительно растёт энергетическая светимость; во-вторых, длина волны, соответствующая максимуму излучения max ) , сдвигается в сторону коротких длин волн :
, где b ≈ 29090 мкм.К -1 (закон Вина).

Закон Стефана-Больцмана: энергетическая светимость а.ч.т. пропорциональна четвёртой степени температуры тела по шкале Кельвина: R = σT 4

2. Испускание энергии атомами и молекулами

Как известно, в электронной оболочке атома энергия электрона может принимать только строго определённые, характерные для данного атома, значения. По-другому говорят, что электрон может находиться только на определённых энергетических уровнях. Когда электрон находится на данном энергетическом уровне, он не изменяет своей энергии, то есть не поглощает и не испускает свет. При переходе с одного уровня на другой энергия электрона изменяется, и при этом поглощается или испускается квант света (фотон). Энергия кванта равна разности энергий уровней, между которыми происходит переход: Е КВАНТА = hν = Е n – E m где n и m – номера уровней (формула Бора).

Переходы электронов между различными уровнями происходят с разной вероятностью. В ряде случаев вероятность перехода очень близка к нулю; соответствующие спектральные линии в обычных условиях не наблюдаются. Такие переходы называют запрещёнными.

Во многих случаях энергия электрона может не преобразовываться в энергию кванта, а переходить в энергию теплового движения атомов или молекул. Такие переходы называются безызлучательными.

Кроме вероятности перехода яркость спектральных линий прямо пропорциональна числу атомов излучающего вещества. Эта зависимость лежит в основе количественного спектрального анализа.
3. Люминесценция

Люминесценцией называют любое не тепловое излучение. Источники энергии для этого излучения могут быть различными, соответственно говорят о разных видах люминесценции. Наиболее важными из них являются: хемолюминесценция – свечение, возникающее при некоторых химических реакциях; биолюминесценция – это хемолюминесценция в живых организмах; катодолюминесценция – свечение под действием потока ълектронов, которое используется в кинескопах телевизоров, электронно-лучевых трубках, газосветных лампах и др.; электролюминесценция – свечение, возникающее в электрическом поле (чаще всего в полупроводниках). Наиболее интересным видом люминесценции является фотолюминесценция. Это такой процесс, при котором атомы или молекулы поглощают свет (или УФ-излучение) в одном диапазоне длин волн, а испускают в другом (например, поглощают синие лучи, а испускают жёлтые). При этом вещество поглощает кванты с относительно большой энергией hν 0 (с малой длиной волны). Далее электрон может вернуться не сразу на основной уровень, а сначала перейти на промежуточный, а затем – на основной (промежуточных уровней может быть и несколько). В большинстве случаев часть переходов являются безызлучательными, то есть энергия электрона переходит в энергию теплового движения. Поэтому энергия квантов, испускаемых при люминесценции, будет меньше, чем энергия поглощённого кванта. Длины волн испускаемого света при этом должны быть больше, чем длина волны поглощённого света. Если сказанное сформулировать в общем виде, получим закон Стокса : спектр люминесценции сдвинут в сторону более длинных волн относительно спектра излучения, вызывающего люминесценцию.

Люминесцирующие вещества бывают двух типов. В одних свечение прекращается практически мгновенно после выключения возбуждающего света. Такое кратковременное свечение называется флуоресценция.

В веществах другого типа после выключения возбуждающего света свечение угасает постепенно (по экспоненциальному закону). Такое длительное свечение называется фосфоресценция. Причина длительного свечения состоит в том, что в атомах или молекулах таких веществ имеются метастабильные уровни. Метастабильным называется такой энергетический уровень, на котором электроны могут задерживаться значительно дольше, чем на обычных уровнях. Поэтому длительность фосфоресценции может составлять минуты, часы и даже сутки.
4. Закон поглощения света (закон Бугера)

Когда поток излучения проходит через вещество, он теряет часть своей энергии (поглощённая энергия переходит в тепловую). Закон поглощения света называется закон Бугера: Ф = Ф 0 ∙ е – κ λ · L ,

где Ф 0 - падающий поток, Ф – поток, прошедший через слой вещества толщиной L; коэффициент κ λ носит название натуральный показатель поглощения (его величина зависит от длины волны). Для практических расчётов предпочитают вместо натуральных логарифмов пользоваться десятичными. Тогда закон Бугера принимает вид: Ф = Ф 0 ∙10 – k λ ∙ L ,

где k λ – десятичный показатель поглощения.

Коэффициентом пропускания называют величину

Оптическая плотность D - это величина, определяемая равенством:
.
М ожно сказать и по-другому: оптическая плотность D- это величина, стоящая в показателе степени в формуле закона Бугера: D = k λ ∙ L
Для растворов большинства веществ оптическая плотность прямо пропорциональна концентрации растворённого вещества: D = χ λ C L ;

коэффициент χ λ называется молярный показатель поглощения (если концентрация указана в молях) или удельный показатель поглощения (если концентрация указана в граммах). Из последней формулы получаем: Ф = Ф 0 ∙10 - χ λ C L (закон Бугера – Бера )

Эти формулы лежат в основе наиболее распространённого в клинических и биохимических лабораториях метода определения концентраций растворённых веществ по поглощению света.

ЗАДАЧИ ОБУЧАЮЩЕГО ТИПА С РЕШЕНИЯМИ

(В дальнейшем для краткости пишем просто «обучающие задачи»)


Обучающая задача № 1

Электрический нагреватель (радиатор) излучает поток инфракрасных лучей 500 Вт. Площадь поверхности радиатора 3300 см 2 . Найти энергию, излучаемую радиатором за 1 час и энергетическую светимость радиатора.

Дано: Найти

Ф = 500 Вт W и R

t = 1 час = 3600 c

S = 3300 см 2 = 0,33 м 2

Решение:

Поток излучения Ф – это мощность излучения или энергия, излучаемая в единицу времени:
. Отсюда

W = Ф·t = 500 Вт·3600 с = 18·10 5 Дж = 1800 кДж

Обучающая задача № 2

При какой длине волны тепловое излучение кожи человека максимально (то есть r λ = max) ? Температура кожи на открытых частях тела (лицо, руки) примерно 30 о С.

Дано: Найти:

Т = 30 о С = 303 К λ max

Решение:

Подставляем данные в формулу Вина:
,

то есть практически всё излучение лежит в ИК-диапазоне спектра.

Обучающая задача № 3

Электрон находится на энергетическом уровне с энергией 4,7.10 –19 Дж

При облучении светом с длиной волны 600 нм он перешёл на уровень с более высокой энергией. Найти энергию этого уровня.

Решение:

Обучающая задача № 4

Десятичный показатель поглощения воды для солнечного света равен 0,09 м –1 . Какая доля излучения дойдёт до глубины L = 100 м?

Дано Найти:

L = 100 м

k = 0,09 м – 1

Решение:

Запишем закон Бугера:
. Доля излучения, доходящего до глубины L, есть, очевидно,
,

то есть до глубины 100 м дойдёт одна миллиардная солнечного света.
Обучающая задача № 5

Свет проходит последовательно через два светофильтра. У первого оптическая плотность D 1 = 0,6; у второго D 2 = 0,4. Какой процент потока излучения пройдёт через эту систему?

Дано: Найти:

D 1 = 0,6 (в %%)

Решение:

Решение начинаем с рисунка данной системы

СФ-1 СФ-2

Находим Ф 1: Ф 1 = Ф 0 ·10 – D 1

Аналогично, поток, прошедший через второй светофильтр, равен:

Ф 2 = Ф 1 ·10 – D 2 = Ф 0 ·10 – D 1 ·10 – D 2 = Ф 0 ·10 – (D 1 + D 2)

Полученный результат имеет общее значение : если свет проходит последовательно через систему из нескольких объектов, общая оптическая плотность будет равна сумме оптических плотностей этих объектов .

В условиях нашей задачи через систему двух светофильтров пройдёт поток Ф 2 = 100%∙10 – (0,6 + 0,4) = 100%∙10 – 1 = 10%


Обучающая задача № 6

По закону Бугера-Бэра можно, в частности, определять концентрацию ДНК. В видимой области растворы нуклеиновых кислот прозрачны, но они сильно поглощают в УФ части спектра; максимум поглощения лежит около 260 нм. Очевидно, что именно в данной области спектра и надо измерять поглощение излучения; при этом чувствительность и точность измерения будут наилучшми.

Условия задачи : при измерении поглощения раствором ДНК УФ-лучей с длиной волны 260 нм прошедший поток излучения был ослаблен на 15%. Длина пути луча в кювете с раствором « х » равна 2 см. Молярный показатель поглощения (десятичный) для ДНК при длине волны 260 нм равен 1,3.10 5 моль – 1 .см 2 Найти концентрацию ДНК в растворе.

Дано:

Ф 0 = 100%; Ф = 100% – 15% = 85% Найти: С ДНК

х = 2 см; λ = 260 нм

χ 260 = 1,3.10 5 моль –1 .см 2

Решение:

(мы „перевернули“ дробь, чтобы избавиться от отрицательного показателя степени). . Теперь логарифмируем:
, и
; подставляем:

0,07 и С =
2,7.10 – 7 моль/см 3

Обратите внимание на высокую чувствительность метода!


ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ
При решении задач принять значения постоянных:

b = 2900 мкм.К; σ = 5,7.10 – 8 Вт.К 4; h = 6,6.10 – 34 Дж.с; c = 3.10 8 м.с –1


1. Чему равна энергетическая светимость поверхности тела человека, если максимум излучения приходится на длину волны 9,67 мкм? Кожу можно считать абсолютно чёрным телом.

2. Две лампочки имеют совершенно одинаковую конструкцию за исключением того, что в одной нить накала сделана из чистого вольфрама (α = 0,3), а в другой покрыта платиновой чернью (α = 0,93). У какой лампочки поток излучения больше? Во сколько раз?

3. В каких областях спектра лежат длины волн, соответствующие максимуму спектральной плотности энергетической светимости, если источником излучения является: а) спираль электрической лампочки (Т = 2 300 К); б) поверхность Солнца (Т = 5 800 К); в) поверхность огненного шара ядерного взрыва в момент, когда её температура около 30 000 К? Отличием в свойствах указанных источников излучения от а.ч.т. пренебречь.

4. Раскалённое металлическое тело, поверхность которого 2.10 – 3 м 2 , при температуре поверхности 1000 К излучает поток 45,6. Вт. Чему равен коэффициент поглощения поверхности этого тела?

5. Лампочка имеет мощность 100 Вт. Площадь поверхности нити накаливания 0,5.10 – 4 м 2 .Температура нити накаливания 2 400 К. Чему равен коэффициент поглощения поверхности нити?

6. При температуре кожи 27 0 С с каждого квадратного сантиметра поверхности тела излучается 0,454 Вт. Можно ли (с точностью не хуже 2 %) считать кожу абсолютно чёрным телом?

7. В спектре голубой звезды максимум излучения соответствует длине волны 0,3 мкм. Чему равна температура поверхности этой звезды?

8. Какую энергию за один час излучает тело с поверхностью 4 000 см 2

при температуре 400 К, если коэффициент поглощения тела равен 0,6 ?

9. Пластинка (А) имеет площадь поверхности 400 см 2 ; её коэффициент поглощения равен 0,4. У другой пластинки (Б) площадью 200 см 2 коэффициент поглощения 0,2. Температура пластинок одинакова. Какая пластинка излучает больше энергии и во сколько раз?

10 – 16. Качественный спектральный анализ. На основании спектра поглощения одного из органических соединений, спектры которых

приведены на рисунке, определить, какие функциональные группы входят в состав данного вещества, Использовать данные таблицы:


Группа; тип связи

Поглощаемые длины волн, мкм

Группа, тип связи

Поглощаемые

длины волн, мкм



-ОН

2,66 – 2,98

-NH 4

7,0 – 7,4

-NH

2,94 – 3,0

-SH

7,76

 CH

3,3

-CF

8,3

-N  N

4,67

-NH 2

8,9

-C = N

5,94

-NO

12,3

-N = N

6,35

-SO 2

19,2

-CN 2

6,77

-C = O

23,9

10 – график а); 11 – график б); 12 – график в); 13 – график г);

14 – график д); 15 – график е); 16 – график ж).

Обратите внимание на то, какая величина на Вашем графике отложена по вертикальной оси!

17. Свет проходит последовательно через два светофильтра с коэффициентами пропускания 0,2 и 0,5. Какой процент излучения выйдет из такой системы?

18. Свет проходит последовательно через два светофильтра с оптическими плотностями 0,7 и 0,4. Какой процент излучения пройдёт через такую систему?

19. Для защиты от светового излучения ядерного взрыва необходимы очки, ослабляющие свет не менее, чем в миллион раз. Стекло, из которого хотят сделать такие очки при толщине 1 мм имеет оптическую плотность 3. Какой толщины стекло надо взять, чтобы достичь требуемого результата?

20 Для предохранения глаз при работе с лазером требуется, чтобы в глаз мог попасть поток излучения, не превосходящий 0,0001% от потока, создаваемого лазером. Какой оптической плотностью должны обладать очки, чтобы обеспечить безопасность?

Общее задание к задачам 21 – 28 (количественный анализ):

На рисунке приведены спектры поглощения окрашенных растворов некоторых веществ. Кроме того, в задачах указаны величины D (оптическая плотность раствора при длине волны, соответствующей максимальному поглощению света) и х (толщина кюветы). Найти концентрацию раствора.

Обратите внимание на то, в каких единицах указана величина показателя поглощения на Вашем графике.

21. График а). D = 0,8 х = 2 см

22. График б). D = 1.2 х = 1 см

… 23. График в). D = 0,5 х = 4 см

24. График г). D = 0,25 х = 2 см

25 График д). D = 0,4 х = 3 см

26. График е) D = 0,9 х = 1 см

27. График ж). D = 0,2 х = 2 см

Энергия, которую теряет тело вследствие теплового излучения, характеризуется следующими величинами.

Поток излучения (Ф) - энергия, излучаемая за единицу времени со всей поверхности тела.

Фактически, это мощность теплового излучения. Размерность потока излучения - [Дж/с = Вт].

Энергетическая светимость (Re) - энергия теплового излучения, испускаемого за единицу времени с единичной поверхности нагретого тела:

В системе СИ энергетическая светимость измеряется - [Вт/м 2 ].

Поток излучения, и энергетическая светимость зависят от строения вещества и его температуры: Ф = Ф(Т),

Распределение энергетической светимости по спектру теплового излучения характеризует ее спектральная плотность. Обозначим энергию теплового излучения, испускаемого единичной поверхностью за 1 с в узком интервале длин волн от λ до λ + dλ, через dRe.

Спектральной плотностью энергетической светимости(r) или испускательной способностью называется отношение энергетической светимости в узком участке спектра (dRe) к ширине этого участка (dλ):

Примерный вид спектральной плотности и энергетичекая светимость (dRe) в интервале волн от λ до λ + dλ, показаны на рис. 13.1.

Рис. 13.1. Спектральная плотность энергетической светимости

Зависимость спектральной плотности энергетической светимости от длины волны называют спектром излучения тела . Знание этой зависимости позволяет рассчитать энергетическую светимость тела в любом диапазоне длин волн. Формула для расчета энергетической светимости тела в диапазоне длин волн имеет вид:

Полная светимость равна:

Тела не только испускают, но и поглощают тепловое излучение. Способность тела к поглощению энергии излучения зависит от его вещества, температуры и длины волны излучения. Поглощательную способность тела характеризует монохроматический коэффициент поглощенияα .

Пусть на поверхность тела падает поток монохроматического излучения Φ λ с длиной волны λ. Часть этого потока отражается, а часть поглощается телом. Обозначим величину поглощенного потока Φ λ погл.



Монохроматическим коэффициентом поглощения α λ называется отношение потока излучения, поглощенного данным телом, к величине падающего монохроматического потока:

Монохроматический коэффициент поглощения - величина безразмерная. Его значения лежат между нулем и единицей: 0 ≤ α ≤ 1.

Функция α = α(λ,Τ) , выражающая зависимость монохроматического коэффициента поглощения от длины волны и температуры, называется поглощательной способностью тела. Ее вид может быть весьма сложным. Ниже рассмотрены простейшие типы поглощения.

Абсолютно черное тело - это тело, коэффициент поглощения которого равен единице для всех длин волн: α = 1.

Серое тело - это тело, для которого коэффициент поглощения не зависит от длины волны: α = const < 1.

Абсолютно белое тело - это тело, коэффициент поглощения которого равен нулю для всех длин волн: α = 0.

Закон Кирхгофа

Закон Кирхгофа - отношение испускательной способности тела к его поглощательной способности одинаково для всех тел и равно спектральной плотности энергетической светимости абсолютно черного тела:

= /

Следствие из закона:

1. Если тело при данной температуре не поглощает какое-либо излучение, то оно его и не испускает. Действительно, если для некоторой длины волны коэффициент поглощения α = 0, то и r = α∙ε(λT) = 0

1. При одной и той же температуречерное тело излучает больше чем любое другое. Действительно, для всех тел, кроме черного, α < 1, поэтому для них r = α∙ε(λT) < ε

2. Если для некоторого тела экспериментально определить зависимость монохроматического коэффициент поглощения от длины волны и температуры - α = r = α(λT), то можно рассчитать спектр его излучения.