Почему тектонические плиты движутся. Теории дрейфа материков и литосферных плит

Литосферные плиты – крупные жесткие блоки литосферы Земли, ограниченные сейсмически и тектонически активными зонами разломов.

Плиты, как правило, разделены глубокими разломами и перемещаются по вязкому слою мантии относительно друг друга со скоростью 2-3 см в год. В местах схождения континентальных плит происходит их столкновение, образуются горные пояса . При взаимодействии континентальной и океанической плит плита с океанической земной корой пододвигается под плиту с континентальной земной корой, в результате образуются глубоководные желоба и островные дуги.

Движение литосферных плит связано с перемещением вещества в мантии. В отдельных частях мантии существуют мощные потоки тепла и вещества, поднимающегося из его глубин к поверхности планеты.

Более 90 % поверхности Земли покрыто 13 -ю крупнейшими литосферными плитами.

Рифт огромный разлом в земной коре, образующийся при ее горизонтальном растяжении (т. е. там, где расходятся потоки тепла и вещества). В рифтах происходит излияние магмы, возникают новые разломы, горсты, грабены. Формируются срединно-океанические хребты.

Первым гипотезу о дрейфе материков (т.е. горизонтальном движении земной коры) выдвинул в начале ХХ века А. Вегенер . На ее основе создана теория литосферных пли т. Согласно этой теории, литосфера не является монолитом, а состоит из крупных и мелких плит, «плавающих» на астеносфере. Пограничные области между литосферными плитами называют сейсмическими поясами - это самые «беспокойные» области планеты.

Земная кора разделяется на устойчивые (платформы) и подвижные участки (складчатые области — геосинклинали).

– мощные подводные горные сооружения в пределах дна океана, занимающие чаще всего срединное положение. Близ срединно-океанических хребтов происходит раздвижение литосферных плит и возникает молодая базальтовая океаническая кора. Процесс сопровождается интенсивным вулканизмом и высокой сейсмичностью.

Континентальными рифтовыми зонами являются, например, Восточно-Африканская рифтовая система, Байкальская система рифтов. Рифты, так же как и срединно-океанические хребты, характеризуются сейсмической активностью и вулканизмом.

Тектоника плит – гипотеза, предполагающая, что литосфера разбита на крупные плиты, которые перемещаются по мантии в горизонтальном направлении. Близ срединно-океанических хребтов литосферные плиты раздвигаются и наращиваются за счет вещества, поднимающегося из недр Земли; в глубоководных желобах одна плита подвигается под другую и поглощается мантией. В местах столкновения плит образуются складчатые сооружения.


Дрейф материков

Обратимся к наиболее важным для обитателей Земли представлениям теории тектоники литосферных плит – крупных, до многих миллиона км 2 , глыб земной литосферы, фундамент которых образуют сильно смятые в складки магматические, метаморфизированные и гранитные породы, прикрытые сверху 3-4 километровым "чехлом" осадочных пород. Рельеф платформы составляют обширные равнины и отдельные горные хребты. Ядром каждого материка является одна или несколько древних платформ, окаймленных горными хребтами. Движение литосферных плит лежит в основе .

Начало XX в. ознаменовалось появлением гипотезы, которой в дальнейшем было суждено сыграть ключевую роль в науках о Земле. Ф. Тейлор (1910), а вслед за ним А. Вегенер (1912) высказали идею о горизонтальных перемещениях материков на большие расстояния (дрейфе материков), но "В 30-е годы XX в. в тектонике утвердилось течение, считавшее ведущим типом движений земной коры вертикальные движения, в основе которых лежали процессы дифференциации вещества мантии Земли. Оно получило название фиксизма, ибо признавало постоянно фиксированным положение блоков коры относительно подстилающей мантии". Однако в 1960-х гг. после открытия в океанах глобальной системы срединно-океанических хребтов, опоясывающих весь земной шар и местами выходящих на сушу, и ряда других результатов происходит возврат к идеям начала XX в. о дрейфе континентов, но уже в новой форме – тектоники плит, которая остается ведущей теорией в науках о Земле. Она вытеснила господствовавшее в середине XX века представление о ведущей роли в смещениях и деформациях земной коры вертикальных движений и вывела на первое место горизонтальные перемещения литосферных плит, включавших не только кору, но и верхи мантии.

Основные положения тектоники плит сводятся к следующему. Литосфера подстилается менее вязкой астеносферой. Литосфера разделена на ограниченное число больших (7) и малых плит, границы которых проводятся по сгущению очагов землетрясений. К числу крупных плит принадлежат: Тихоокеанская, Евразиатская, Северо-Американская, Южно-Американская, Африканская, Индо-Австралийская, Антарктическая. Литосферные плиты, движущиеся по астеносфере, обладают жёсткостью и монолитностью. При этом «континенты не прокладывают себе путь сквозь океаническое дно под воздействием какой-то невидимой силы (что предполагалось в первоначальной версии «дрейфа материков»), а пассивно плывут по мантийному материалу, который поднимается вверх под гребнем хребта и затем распространяется от него в обе стороны». В этой модели океаническое дно «представляется гигантской конвейерной лентой, выходящей на поверхность в рифтовых зонах срединно-океанических хребтов и затем скрывающихся в глубоководных желобах»: расширение (спрединг) ложа океанов в связи с расхождением плит вдоль осей срединных хребтов и рождение новой океанской коры компенсируется её поглощением в зонах поддвига (субдукции) океанской коры в глубоководных желобах, благодаря чему объём Земли остаётся постоянным. Этот процесс сопровождается «многочисленными мелкофокусными землетресениями (с эпицентрами на глубинах нескольких десятков километров) в рифтовых зонах и глубокофокусными землетресениями в районе глубоководных желобов (рис. 12.2, 12.3) .

Рис. 12.2. Схема конвекционного течения в мантии, вызываемого разностью плотностей (по Рингвуду и Грину (из [Стейси, с. 80]). На этой схеме указаны предполагаемые фазовые и химические превращения, сопровождающие конвекционные перемещения вещества мантии из-за изменения давления и температуры на разных глубинах.

Рис.12.3. Схематический разрез Земли на основе гипотезы разрастания (спрединга) океанического дна - б; район глубоководного желоба - в: литосферная плита погружается в астеносферу (А), упирается в ее днище (Б и В) и разламывается – отламывается часть ("слэб") (Г) –. В зоне «трения» плит – мелкофокусные землетрясения (черные кружки), в зоне «упора» и «разлома» плиты – глубокофокусные землетрясения (белые кружки) (по Уеда, 1980)

"Данные сейсмической томографии свидетельствуют о погружении глубоко в мантию наклонных зон повышенных сейсмических скоростей – пластин-слэбов океанской литосферы. Эти данные совпадают с давно установленными по гипоцентрам землетрясений сейсмофокальными поверхностями, достигающими кровли нижней мантии. Впервые было обнаружено, что в ряде случаев слэбы опускаются и на большие глубины, проникая в нижнюю мантию. Поведение погружающихся слэбов оказывается неоднозначным: одни из них, достигая нижней мантии, не пересекают ее, а отклоняются вдоль поверхности, принимая практически горизонтальное положение; другие – пересекают кровлю нижней мантии, но затем образуют раздув и не погружаются глубже; третьи же уходят на большие глубины, в некоторых районах достигая ядра… Важный, результат новейших сейсмотомографических исследований – открытие отрыва нижней части погружающегося слэба. Это явление также не было полной неожиданностью. Сейсмологи констатировали в отдельных регионах исчезновение на некоторой глубине очагов землетрясений, а затем их возникновение вновь еще глубже" [Хаин 2002].

Причина перемещения литосферных плит – тепловая конвекция в мантии Земли. Над восходящими ветвями конвективных течений литосфера испытывает подъём и растяжение, приводящее к раздвигу плит в возникающих рифтовых зонах. С удалением от срединно-океанических рифтов литосфера уплотняется, тяжелеет, поверхность её опускается, что объясняет увеличение глубины океана, и в конечном счёте погружается в глубоководных желобах. В континентальных рифтах затухание восходящих потоков разогретой мантии ведёт к охлаждению и погружению литосферы с образованием бассейнов, заполняемых осадками. В зонах схождения и столкновения плит кора и литосфера испытывают сжатие, мощность коры возрастает, и начинаются интенсивные восходящие движения, ведущие к горообразованию. Все эти процессы, включая движение литосферных плит и слэбов, имеют непосредственное отношение к механизмам формирования полезных ископаемых.

Современные тектонические движения изучаются геодезическими методами, показывающими, что они происходят непрерывно и повсеместно. Скорость вертикальных движений составляет от долей до первых десятков мм, горизонтальных на порядок выше - от долей до первых десятков см в год (Скандинавский п-ов за 25 тыс. лет поднялся на 250 м, Санкт-Петербург за время своего существования поднялся на 1 м). Т.е. причиной землетрясений, извержений вулканов, медленных вертикальных (горы высотой в тысячи метров образуются за миллионы лет) и горизонтальных перемещений (за сотни миллионов лет это приводит к смещениям в тысячи километров) являются медленные, но чрезвычайно мощные перемещения вещества мантии.

«Положения теории тектоники плит прошли экспериментальную проверку в ходе начатого в 1968 г. глубоководного бурения с американского научно-исследовательского судна "Гломар Челленджер", подтвердившего образование океанов в процессе спрединга, в результате исследований рифтовых долин срединных хребтов, дна Красного моря и Аденского залива со спускаемых подводных аппаратов, также установивших реальность спрединга и существование пересекающих срединные хребты трансформных разломов, и, наконец, в изучении современных движений плит различными методами космической геодезии. С позиций тектоники плит находят объяснение многие геологические явления, но вместе с тем выяснилась большая, чем предусматривалась исходной теорией, сложность процессов взаимных перемещений плит… Не получило объяснения в тектонике плит периодическое изменение интенсивности тектонических движений и деформаций, существование устойчивой глобальной сети глубоких разломов и некоторые др. Остаётся открытым вопрос о начале действия тектоники плит в истории Земли, поскольку прямые признаки плитно-тектонических процессов … известны лишь с позднего протерозоя. Тем не менее некоторые исследователи признают проявление тектоники плит начиная с архея или раннего протерозоя. Из др. планет Солнечной системы некоторые признаки тектоники плит усматриваются на Венере".

Тектоника плит, первоначально встреченная со скепсисом, особенно в нашей стране, – пишет академик В.Е. Хаин, – получила убедительное подтверждение в ходе глубоководного бурения и наблюдений с подводных спускаемых аппаратов в океанах, в непосредственных измерениях перемещений литосферных плит методами космической геодезии, в данных палеомагнетизма и других материалах и превратилась в первую действительно научную теорию в истории геологии. Вместе с тем за истекшие четверть века, по мере накопления нового и все более разнообразного фактического материала, добытого с помощью новых инструментов и методов, становилось все более очевидным, что тектоника плит не может претендовать на значение всеобъемлющей, подлинно глобальной модели развития Земли" (Геология…, с.43). Поэтому "довольно скоро после своего оформления, тектоника плит стала превращаться в основу других наук о твердой Земле" …Очень большое взаимовлияние… обнаружилось между геотектоникой и геофизикой с одной стороны, и петрологией (наука о горных породах) и геохимией – с другой. Синтез этих наук уже к началу 70-х годов породил новую, комплексную науку – геодинамику , изучающую всю совокупность глубинных, эндогенных (внутренних) процессов, изменяющих литосферу и определяющих эволюцию ее структуры, изучающей физические процессы, которые обусловливают развитие твердой Земли в целом, и силы, их вызывающие. "Данные сейсмического “просвечивания” Земли, получившего название “сейсмотомография”, показали, что активные процессы, приводящие в конечном счете к изменениям структуры земной коры и рельефа, зарождаются значительно глубже – в нижней мантии и даже на ее границе с ядром. Да и само ядро, как совсем недавно выяснилось, участвует в этих процессах…

Появление сейсмической томографии определило переход геодинамики на следующий уровень, и в середине 80-х годов она породила глубинную геодинамику, ставшую самым молодым и перспективным направлением в науках о Земле. В решении новых задач на помощь, кроме сейсмотомографии, пришли и некоторые другие науки: экспериментальная минералогия, благодаря новой аппаратуре имеющая теперь возможность исследовать поведение минерального вещества при давлениях и температурах, отвечающих максимальным глубинам мантии; изотопная геохимия, изучающая, в частности, баланс изотопов редких элементов и благородных газов в разных оболочках Земли и сравнивающая его с метеоритными данными; геомагнетизм, пытающийся раскрыть механизм и причины инверсий магнитного поля Земли; геодезия, уточняющая фигуру геоида (а также, что не менее важно, горизонтальные и вертикальные перемещения земной коры), и некоторые другие ветви наших знаний о Земле…

Уже первые результаты сейсмотомографических исследований показали, что современная кинематика литосферных плит вполне адекватна… лишь до глубин 300-400 км, а ниже картина перемещений мантийного вещества становится существенно иной…

Однако, теория тектоники литосферных плит продолжает удовлетворительно объяснять развитие земной коры континентов и океанов на протяжении по крайней мере последних 3 млрд лет, а спутниковые измерения перемещения литосферных плит подтвердили наличие перемещений для современной эпохи.

Таким образом, в настоящее время вырисовывается следующая картина. В поперечном сечении земного шара существуют три наиболее активных слоя, каждый мощностью в несколько сотен километров: астеносфера и слой D"" в основании мантии. По-видимому, им принадлежит ведущая роль в глобальной геодинамике, превращающейся в нелинейную геодинамику Земли как открытой системы, т.е. синергетические эффекты типа эффекта Бенара, могут иметь место в мантии и жидком ядре.

Для объяснения непонятного в рамках теории тектоники литосферных плит явления внутриплитного магматизма, и в особенности образования линейных вулканических цепей, в которых возраст построек закономерно увеличивается по мере удаления от современных активных вулканов, была выдвинута в 1963 г. Дж.Вилсоном и обоснована в 1972 г. В.Морганом Гипотеза восходящих мантийных струй (рис. 12.1, 12.5), выступающих на поверхность в “горячих точках” (размещение “горячих точек” на поверхности контролируется ослабленными, проницаемыми зонами в коре и литосфере, классический пример современной “горячей точки” – о. Исландия.). "Эта плюм-тектоника с каждым годом все более популярна.

Она становится… почти равноправным партнером плейт-тектоники (тектоники литосферных плит). Доказывается, в частности, что глобальный масштаб выноса глубинного тепла через “горячие точки” превосходит тепловыделение в зонах спрединга срединно-океанских хребтов… Имеются серьезные основания предполагать, что корни суперплюмов достигают самых низов мантии… Главная проблема – соотношение конвекции, управляющей кинематикой литосферных плит, с адвекцией (горизонтальным перемещением), вызывающей подъем плюмов. Они уже в принципе не могут быть независимыми процессами. Однако поскольку каналы, по которым поднимаются мантийные струи, более узкие, пока нет сейсмотомографических признаков его подъема из нижней мантии.

Очень важен вопрос о стационарности плюмов. Краеугольным камнем гипотезы Вилсона-Моргана было представление о фиксированном положении корней плюмов в подлитосферной мантии и о том, что образование вулканических цепей, с закономерным увеличением возраста построек по мере удаления от современных центров извержений, обязано “прошиванию” движущихся над ними литосферных плит горячими мантийными струями… Однако совершенно бесспорных примеров вулканических цепей гавайского типа не так уж много… Таким образом, в проблеме плюмов остается еще много неясного".

Геодинамика

В геодинамике рассматривается взаимодействие сложных процессов, идущих в коре и мантии. Один из вариантов геодинамики, дающий более сложную картину движения мантии, чем описанная выше (рис.12.2), разрабатывается членом-корреспондентом РАН Е.В. Артюшковым в его книге "Геодинамика" (М., Наука, 1979). На этом примере видно как переплетаются различные физические и химические модели в реальном геодинамическом описании.

Согласно изложенной в этой книге концепции основным источником энергии, для всех тектонических процессов является процесс гравитационной дифференциации вещества, который происходит в нижней мантии. После отделения от породы нижней мантии тяжелой компоненты (железа и пр.), которая опускается в ядро, «остается смесь твердых веществ, более легкая, чем вышележащая нижняя мантия… Расположение слоя легкого материала под более тяжелым веществом неустойчиво… Поэтому накапливающийся под нижней мантией легкий материал периодически собирается в крупные блоки размером порядка 100 км и всплывает в верхние слои планеты. Из этого материала за время жизни Земли сформировалась верхняя мантия.

Нижняя мантия скорее всего представляет собой первичное, еще не продифференцированное вещество Земли. В процессе эволюции планеты происходит рост ядра и верхней мантии за счет нижней мантии.

Наиболее вероятно, что подъем блоков легкого материала в нижней мантии происходит вдоль каналов (см. рис. 12.6), в которых температура вещества сильно повышена, а вязкость резко понижена. Повышение температуры связано с выделением большого количества потенциальной энергии при подъеме легкого материала в поле силы тяжести на расстояние ~2000 км. Пройдя через такой канал, легкий материал также сильно нагревается, на величину ~1000°. Поэтому в верхнюю мантию он поступает аномально нагретым и более легким по отношению к окружающим областям.

Благодаря пониженной плотности легкий материал всплывает в верхние слои верхней мантии, вплоть до глубин в 100-200 км и менее. Температура плавления составляющих его веществ с понижением давления сильно падает. Поэтому на небольших глубинах происходит частичное плавление легкого материала и вторичная дифференциация по плотности, после первичной дифференциации на границе ядро - мантия. Выделяющиеся при дифференциации более плотные вещества погружаются в нижние части верхней мантии, а наиболее легкие - всплывают наверх. Совокупность движений вещества в мантии, связанных с перераспределением в ней веществ с различной плотностью в результате дифференциации, можно назвать химической конвекцией.

Подъем легкого материала по каналам в нижней мантии происходит периодически с интервалами примерно в 200 млн. лет. В эпоху его подъема за время в несколько десятков миллионов лет и менее в верхние слои Земли с границы ядро - мантия поступают крупные массы сильно нагретого легкого материала, соответствующие по объему слою верхней мантии мощностью в несколько десятков километров и более. Однако внедрение легкого материала в верхнюю мантию происходит не повсеместно. Каналы в нижней мантии расположены на больших расстояниях друг от друга, порядка нескольких тысяч километров. Они могут образовывать и линейные системы, где каналы располагаются ближе друг к другу, но сами системы также будут сильно удалены друг от друга. Прошедший через каналы легкий материал в верхней мантии всплывает в основном вертикально и заполняет области, расположенные над каналами (см. рис. 12.6), не распространяясь на большие расстояния в горизонтальном направлении. В верхних частях мантии недавно внедрившиеся крупные объемы легкого материала образуют сильно выраженные высокотемпературные неоднородности с повышенной электропроводностью, пониженными скоростями упругих волн и их повышенным затуханием. Горизонтальный масштаб неоднородностей в поперечном направлении ~ 1000 км…

В верхних слоях верхней мантии происходит резкое понижение вязкости ее вещества. Благодаря этому на глубинах в среднем от 100 до 200 км образуется слой пониженной вязкости -астеносфера . Ее вязкость в областях сравнительно холодной мантии η ~ 10 19 - 10 20 пуаз.

Там, где в астеносфере расположены недавно поднявшиеся с границы ядро-мантия крупные массы легкого нагретого материала, вязкость этого слоя падает еще сильнее, а мощность увеличивается. Над астеносферой находится много более вязкий слой - литосфера , которая в общем случаевключает кору и верхние, наиболее холодные и вязкие слои верхней мантии . Мощность литосферы в стабильных областях ~100 км и достигает несколько сотен км. Значительное повышение вязкости, по крайней мере на три порядка величины, происходит и в мантии под астеносферой.

Химическая конвекция связана с большими перемещениями крупных масс вещества в верхней мантии. Однако течения в мантии сами по себе не приводят к значительным вертикальным или горизонтальным смещениям литосферы. Это связано с резким понижением вязкости в астеносфере, играющей роль смазочного слоя между литосферой и основной частью мантии, расположенной под астеносферой. Из-за существования астеносферы вязкое взаимодействие литосферы с течениями в подстилающей мантии, даже при их большой интенсивности, оказывается слабым. Поэтому тектонические движения земной коры и литосферы не связаны непосредственно с этими течениями" [Артюшков, с. 288-291] и механизмы вертикального и горизонтального движения литосферы требуют особого рассмотрения.

Вертикальные движения литосферных плит

В областях внедрения в астеносферу крупных масс сильно нагретого легкого материала происходит его частичное плавление и дифференциация. Выделившиеся при дифференциации наиболее легкие компоненты легкого материала, всплывая наверх, быстро проходят через астеносферу и достигают подошвы литосферы, где скорость их всплывания резко падает. Это вещество в ряде областей образует скопления так называемой аномальной мантии в верхних слоях Земли. По составу она примерно соответствует нормальной мантии под корой в стабильных областях, но отличается гораздо более высокой температурой, до 1300-1500°, и пониженными скоростями продольных упругих волн. Из-за повышенной температуры плотность аномальной мантии оказывается ниже плотности нормальной мантии. Ее поступление под литосферу приводит к изостатическому поднятию последней (по закону Архимеда).

Благодаря высокой температуре вязкость аномальной мантии очень низка. Поэтому поступая к литосфере, она быстро растекается вдоль ее подошвы, вытесняя ранее располагавшееся здесь менее сильно нагретое и более плотное вещество астеносферы. При своем движении аномальная мантия заполняет те области, где подошва литосферы приподнята, - ловушки, и обтекает глубоко погруженные участки подошвы литосферы - антиловушки. В результате кора над ловушками испытывает изостатическое поднятие, а над антиловушками в первом приближении остается стабильной.

Охлаждение коры и верхнего слоя мантии до глубины ~100 км происходит очень медленно и занимает несколько сотен миллионов лет. Поэтому неоднородности мощности литосферы, обусловленные горизонтальными температурными вариациями, обладают большой инерционностью.

Если ловушка расположена вблизи от восходящего потока аномальной мантии из глубины, то она захватывает ее в большом количестве и сильно нагретой. В результате над ловушкой образуется крупное горное сооружение… По этой схеме возникают высокие поднятия в области эпиплатформенного орогенеза (горообразования) в складчатых поясах на месте бывших невысоких горных сооружений, а также на островных дугах.

Слой аномальной мантии в ловушке под бывшим щитом при охлаждении сжимается на 1-2 км. При этом расположенная над ним кора испытывает погружение, а в образующемся прогибе накапливаются осадки. Под их тяжестью литосфера дополнительно погружается. Конечная глубина сформировавшегося таким образом осадочного бассейна может достигать 5-8 км.

Одновременно с уплотнением мантии в ловушке в нижней части базальтового слоя коры может происходить фазовое превращение базальта в более плотные гранатовый гранулит и эклогит. Оно также способно обеспечить сжатие литосферы на величину до 1-2 км и погружение до 5-8 км при заполнении прогиба осадками.

Описанные процессы сжатия в литосфере развиваются медленно, за времена ³ 10 2 млн. лет. Они приводят к образованию осадочных бассейнов на платформах. Их глубина определяется интенсивностью уплотнения мантии в ловушке и вещества коры в базальтовом слое и может достигать 15-16 км.

Тепловой поток, идущий из аномальной мантии, прогревает вышележащую мантию в литосфере и понижает ее вязкость. Поэтому аномальная мантия постепенно вытесняет расположенную в литосфере более плотную нормальную мантию и поступает на ее место к коре, значительно охладившись. При контакте аномальной мантии имеющей температуру Τ~800-900°С, с базальтовым слоем коры в этом слое за время ~ 1-10 млн. лет развивается фазовый переход в эклогит. Плотность эклогита выше плотности мантии. Поэтому он отрывается от коры и погружается в расположенную ниже астеносферу. Сильно утоненная кора изостатически погружается (см. рис. 12.6), и при этом возникает глубокая впадина, вначале заполняющаяся водой, а впоследствии-мощной толщей осадков. По описанной схеме образуются депрессии внутренних морей с консолидированной корой сильно пониженной мощности. Примерами могут служить Черноморская впадина и глубоководные впадины западного Средиземноморья.

Над областями подъема материала из мантии обычно развиваются как восходящие, так и нисходящие движения. Высокие горные сооружения образуются при заполнении высокотемпературной аномальной мантией (T³1000°С) ловушек под щитами и невысокими горами. Внутренние моря возникают на месте соседних осадочных бассейнов при проникновении к коре охладившейся аномальной мантии с Τ~800-900°С. Сочетание образовавшихся на новейшем этапе высоких гор и глубоких впадин в настоящее время характерно для Альпийского геосинклинального пояса Евразии.

Подъем аномальной мантии из глубины происходит в различных областях Земли. Если ловушки оказываются поблизости от таких областей, то они вновь захватывают аномальную мантию, а расположенная над ними территория снова испытывает поднятия. Антиловушки в большинстве случаев обтекаются аномальной мантией, и кора под ними продолжает погружаться.

Горизонтальные движения литосферных плит

Образование поднятий при поступлении к коре аномальной мантии на океанах и континентах увеличивает потенциальную энергию, запасенную в верхних слоях Земли. Кора и аномальная мантия стремятся растечься в стороны, чтобы сбросить этот излишек энергии. В результате в литосфере возникают большие добавочные напряжения, от нескольких сотен бар до нескольких килобар. С этими напряжениями связаны различные типы тектонических движений земной коры.

Разрастание дна океана и дрейф материков происходят вследствие одновременного расширения срединно-океанических хребтов и погружения в мантию плит океанической литосферы. Под срединными хребтами расположены крупные массы сильно нагретой аномальной мантии (см. рис. 12.6). В осевой части хребтов они находятся непосредственно под корой мощностью не более 5-7 км. Мощность литосферы здесь резко сокращена и не превышает мощности коры. Аномальная мантия растекается из области повышенного давления - из-под гребня хребта в стороны. При этом она легко разрывает тонкую океаническую кору, после чего в окружающих хребет океанических областях в литосфере возникает сжимающая сила Σ ХР ~ 10 9 бар·см. Под действием этой силы возможно перемещение плит океанической литосферы в стороны от оси хребта. Разрыв, образующийся в коре на оси хребта, заполняется базальтовой магмой, выплавляющейся из аномальной мантии. Застывая, она образует новую океаническую кору. Таким образом происходит разрастание дна океана.

Вязкость аномальной мантии под срединными хребтами из-за ее высокой температуры сильно понижена. Она может достаточно быстро растекаться, и поэтому разрастание дна океана происходит с высокой скоростью, в среднем от нескольких сантиметров до десяти сантиметров в год. Океаническая астеносфера также обладает сравнительно низкой вязкостью. При скорости движения литосферных плит ~10 см/год вязкое трение между литосферой и астеносферой под океанами практически не препятствует разрастанию дна океана и слабо влияет на напряжения в литосферном слое…

Литосферные плиты движутся по направлению от хребтов к зонам погружения. Если эти области расположены в одном и том же океане, то движение литосферы по астеносфере, имеющей низкую вязкость, происходит с высокой скоростью. В настоящее время такая ситуация характерна для Тихого океана.

Когда разрастание дна имеет место в одном океане, а компенсирующее его погружение - в другом, то происходит дрейф расположенного между ними континента в сторону области погружения. Вязкость астеносферы под континентами много выше, чем под океанами. Поэтому вязкое трение между литосферой и континентальной астеносферой оказывает заметное сопротивление движению, снижая скорость расширения дна, если оно не компенсируется погружением литосферы в мантию в том же океане. В результате, например, разрастание дна в Атлантическом океане происходит в несколько раз медленнее, чем в Тихом.

На границе между континентальной и океанической плитами в области погружения последней в мантию действует сила сжатия ~ 10 9 бар·см. Быстрое относительное перемещение плит вдоль этой границы в условиях сжимающих напряжений приводит к часто повторяющимся сильным землетрясениям". При этом "общей причиной движения коры и мантии является стремление Земли достичь состояния с минимальной потенциальной энергией".

На прошлой неделе публику всколыхнула новость, что полуостров Крым движется в сторону России не только благодаря политической воле населения, но и согласно законам природы. Что такое литосферные плиты и на каких из них территориально расположена Россия? Что заставляет их двигаться и куда? Какие территории хотят ещё "присоединиться" к России, а какие угрожают "убежать" в США?

"А мы куда-то едем"

Да, мы все куда-то едем. Пока вы читаете эти строки, вы медленно двигаетесь: если вы в Евразии, то на восток со скоростью примерно 2-3 сантиметра в год, если в Северной Америке, то с той же скоростью на запад, а если где-то на дне Тихого океана (как вас туда занесло?), то уносит на северо-запад на 10 сантиметров в год.

Если вы откинетесь в кресле и подождёте примерно 250 миллионов лет, то окажетесь на новом суперконтиненте, который объединит всю земную сушу, - на материке Пангея Ультима, названном так в память о древнем суперконтиненте Пангея, существовавшем как раз 250 миллионов лет назад.

Поэтому известие о том, что "Крым движется", вряд ли можно назвать новостью. Во-первых, потому, что Крым вместе с Россией, Украиной, Сибирью и Евросоюзом является частью Евразийской литосферной плиты, и все они движутся вместе в одну сторону последнюю сотню миллионов лет. Однако Крым - это ещё и часть так называемого Средиземноморского подвижного пояса, он расположен на Скифской плите, а большая часть европейской части России (включая город Санкт-Петербург) - на Восточно-Европейской платформе.

И вот здесь часто возникает путаница. Дело в том, что помимо огромных участков литосферы, таких как Евразийская или Северо-Американская плиты, существуют и совершенно иные "плитки" поменьше. Если очень условно, то земная кора составлена из континентальных литосферных плит. Сами они состоят из древних и очень стабильных платформ и зон горообразования (древних и современных). А уже сами платформы делятся на плиты – более мелкие участки коры, состоящие из двух "слоёв" - фундамента и чехла, и щиты -"однослойные" обнажения.

Чехол у этих нелитосферных плит состоит из осадочных пород (например, известняка, сложенного из множества ракушек морских животных, обитавших в доисторическом океане над поверхностью Крыма) или магматических (выброшенных из вулканов и застывших масс лавы). А ф ундамент плит и щиты чаще всего состоят из очень старых горных пород, главным образом метаморфического происхождения. Так называют магматические и осадочные породы, погрузившиеся в глубины земной коры, где под воздействием высоких температур и огромного давления с ними происходят разнообразные изменения.

Иными словами, большая часть России (за исключением Чукотки и Забайкалья) располагается на Евразийской литосферной плите. Однако её территория "поделена" между Западно-Сибирской плитой, Алданским щитом, Сибирской и Восточно-Европейской платформами и Скифской плитой.

Вероятно, о движении двух последних плит и заявил директор Института прикладной астрономии (ИПА РАН), доктор физико-математических наук Александр Ипатов . А позднее, в интервью изданию Indicator, уточнил: "Мы занимаемся наблюдениями, которые позволяют определить направление движения плит земной коры. Плита, на которой расположена станция Симеиз, движется со скоростью 29 миллиметров в год на северо-восток, то есть туда, где Россия. А плита, где находится Питер, движется, можно сказать, к Ирану, к югу-юго-западу". Впрочем, и это не является таким уж открытием, потому что об этом движении уже несколько десятков лет, а само оно началось ещё в кайнозойскую эру.

Теория Вегенера была принята со скепсисом - в основном потому, что он не мог предложить удовлетворительного механизма, объясняющего движение материков. Он считал, что континенты двигаются, проламывая земную кору, словно ледоколы лёд, благодаря центробежной силе от вращения Земли и приливных сил. Его оппоненты говорили, что континенты-"ледоколы" в процессе движения меняли бы свой облик до неузнаваемости, а центробежные и приливные силы слишком слабы, чтобы служить для них "мотором". Один из критиков подсчитал, что, будь приливное воздействие таким сильным, чтобы настолько быстро двигать континенты (Вегенер оценивал их скорость в 250 сантиметров в год), оно остановило бы вращение Земли меньше чем за год .

К концу 1930-х годов теория дрейфа континента была отвергнута как антинаучная, но к середине XX века к ней пришлось вернуться: были открыты срединно-океанические хребты и оказалось, что в зоне этих хребтов непрерывно образуется новая кора, благодаря чему и "разъезжаются" континенты. Геофизики исследовали намагниченность пород вдоль срединно-океанических хребтов и обнаружили "полосы" с разнонаправленной намагниченностью.

Оказалось, что новая океаническая кора "записывает" состояние магнитного поля Земли в момент образования, и учёные получили отличную "линейку" для измерения скорости этого конвейера. Так, в 1960-е годы теория дрейфа континентов вернулась во второй раз, уже окончательно. И на этот раз учёные смогли понять, что же двигает континенты.

"Льдины" в кипящем океане

"Представьте себе океан, где плавают льдины, то есть в нём есть вода, есть лёд и, допустим, в некоторые льдины вморожены ещё деревянные плоты. Лёд - это литосферные плиты, плоты - это континенты, а плавают они в веществе мантии", -объясняет член-корреспондент РАН Валерий Трубицын, главный научный сотрудник Института физики Земли имени О.Ю. Шмидта.

Он ещё в 1960-е годы выдвинул теорию строения планет-гигантов, а в конце XX века начал создавать математически обоснованную теорию тектоники континентов .

Промежуточный слой между литосферой и горячим железным ядром в центре Земли - мантия - состоит из силикатных пород. Температура в ней меняется от 500 градусов Цельсия в верхней части до 4000 градусов Цельсия на границе ядра. Поэтому с глубины 100 километров, где температура уже более 1300 градусов, вещество мантии ведёт себя как очень густая смола и течёт со скоростью 5-10 сантиметров в год, рассказывает Трубицын.

В результате в мантии, как в кастрюле с кипятком, возникают конвективные ячейки - области, где с одного края горячее вещество поднимается вверх, а с другого - остывшее опускается вниз.

"В мантии есть примерно восемь таких больших ячеек и ещё много мелких", -говорит учёный. Срединно-океанические хребты (например, в центре Атлантики) - это место, где вещество мантии поднимается к поверхности и где рождается новая кора. Кроме того, есть зоны субдукции, места, где плита начинает "подползать" под соседнюю и опускается вниз, в мантию. Зоны субдукции - это, например, западное побережье Южной Америки. Здесь происходят самые мощные землетрясения.

"Таким образом плиты принимают участие в конвективном кругообороте вещества мантии, которое во время нахождения на поверхности временно становится твёрдым. Погружаясь в мантию, вещество плиты снова нагревается и размягчается", - объясняет геофизик.

Кроме того, из мантии к поверхности поднимаются отдельные струи вещества - плюмы, и у этих струй есть все шансы уничтожить человечество. Ведь именно мантийные плюмы являются причиной появления супервулканов (см. ) Такие точки никак не связаны с литосферными плитами и могут оставаться на месте даже при движении плит. При выходе плюма возникает гигантский вулкан. Таких вулканов много, они есть на Гавайях, в Исландии, сходным примером является Йеллоустоунская кальдера. Супервулканы могут порождать извержения в тысячи раз мощнее, чем большинство обычных вулканов типа Везувия или Этны.

"250 миллионов лет назад такой вулкан на территории современной Сибири убил почти всё живое, выжили только предки динозавров", - говорит Трубицын.

Сошлись - разошлись

Литосферные плиты состоят из относительно тяжёлой и тонкой базальтовой океанической коры и более лёгких, но зато значительно более "толстых" континентов. Плита с континентом и "намороженной" вокруг него океанической корой может идти вперёд, при этом тяжёлая океаническая кора погружается под соседа. Но, когда сталкиваются континенты, они уже не могут погружаться друг под друга.

Например, примерно 60 миллионов лет назад Индийская плита оторвалась от того, что потом стало Африкой, и отправилась на север, а примерно 45 миллионов лет назад встретилась с Евразийской плитой, в месте столкновения выросли Гималаи - самые высокие горы на Земле.

Движение плит рано или поздно сведёт все континенты в один, как сходятся в один остров листья в водовороте. В истории Земли континенты примерно четыре-шесть раз объединялись и распадались. Последний суперконтинент Пангея существовал 250 миллионов лет назад, до него был суперконтинент Родиния, 900 миллионов лет назад, до него - ещё два. "И уже, похоже, скоро начнётся объединение нового континента", - уточняет учёный.

Он объясняет, что континенты работают как тепловой изолятор, мантия под ними начинает разогреваться, возникают восходящие потоки и поэтому суперконтиненты через некоторое время снова распадаются.

Америка "унесёт" Чукотку

Крупные литосферные плиты рисуют в учебниках, их может назвать любой: Антарктическая плита, Евразийская, Северо-Американская, Южно-Американская, Индийская, Австралийская, Тихоокеанская. Но на границах между плитами возникает настоящий хаос из множества микроплит.

Например, граница между Северо-Американской плитой и Евразийской проходит совсем не по Берингову проливу, а намного западнее, по хребту Черского. Чукотка, таким образом, оказывается частью Северо-Американской плиты. При этом Камчатка отчасти находится в зоне Охотской микроплиты, а отчасти - в зоне Беринговоморской микроплиты. А Приморье расположено на гипотетической Амурской плите, западный край которой упирается в Байкал.

Сейчас восточная окраина Евразийской плиты и западный край Северо-Американской "крутятся", как шестерёнки: Америка проворачивается против часовой стрелки, а Евразия по часовой. В результате Чукотка может окончательно оторваться "по шву", и в этом случае на Земле может появиться гигантский круговой шов, который будет проходить через Атлантику, Индийский, Тихий и Северный Ледовитый океан (где он пока закрыт). А сама Чукотка продолжит движение "в орбите" Северной Америки.

Спидометр для литосферы

Теория Вегенера возродилась не в последнюю очередь потому, что у учёных появилась возможность с высокой точностью измерять смещение континентов. Сейчас для этого используют спутниковые системы навигации, но есть и другие методы. Все они нужны для построения единой международной системы координат - International Terrestrial Reference Frame (ITRF).

Один из этих методов - радиоинтерферометрия со сверхдлинной базой (РСДБ). Суть её заключается в одновременных наблюдениях с помощью нескольких радиотелескопов в разных точках Земли. Разница во времени получения сигналов позволяет с высокой точностью определять смещения. Два других способа измерить скорость - лазерные дальномерные наблюдения с помощью спутников и доплеровские измерения. Все эти наблюдения, в том числе с помощью GPS, проводятся на сотнях станций, все эти данные сводятся воедино, и в итоге мы получаем картину дрейфа континентов.

Например, крымский Симеиз, где находится станция лазерного зондирования, а также спутниковая станция определения координат, "едет" на северо-восток (по азимуту около 65 градусов) со скоростью примерно 26,8 миллиметра в год. Подмосковный Звенигород движется примерно на миллиметр в год быстрее (27,8 миллиметра в год) и курс держит восточнее - около 77 градусов. А, скажем, гавайский вулкан Мауна-Лоа двигается на северо-запад в два раза быстрее - 72,3 миллиметра в год.

Литосферные плиты тоже могут деформироваться, и их части могут "жить своей жизнью", особенно на границах. Хотя масштабы их самостоятельности значительно скромнее. Например, Крым ещё самостоятельно двигается на северо-восток со скоростью 0,9 миллиметра в год (и при этом растёт на 1,8 миллиметра), а Звенигород с той же скоростью двигается куда-то на юго-восток (и вниз - на 0,2 миллиметра в год).

Трубицын говорит, что эта самостоятельность отчасти объясняется "личной историей" разных частей континентов: основные части континентов, платформы, могут быть фрагментами древних литосферных плит, которые "срослись" со своими соседями. Например, Уральский хребет - один из швов. Платформы относительно жёсткие, но части вокруг них могут деформироваться и ехать по своей воле.

Дивергенция

О том, что Пангея $ 135$ млн. лет тому назад распалась на Лавразию и Гондвану , утверждал еще А. Вегенер . Его гипотеза была названа мобилизмом . Гипотеза стала теорией во второй половине прошлого века. Движение плит литосферы было зафиксировано из космоса.

Земную кору образуют $15$ литосферных плит, из них $ 6$ плит являются самыми крупными.

К ним относятся:

  • Евразийская плита;
  • Североамериканская плита;
  • Южноамериканская плита;
  • Австралийская плита;
  • Антарктическая плита;
  • Тихоокеанская плита.

Скорость движения плит по разным оценкам составляет от $1$ мм-1$8$ см в год.

Относительные перемещения плит могут быть трех типов :

  • Дивергенция;
  • Конвергенция;
  • Сдвиговые перемещения.

Дивергенция или расхождение выражается рифтингом и спредингом .

Раздвижение плит происходит вдоль дивергентных границ. Эти границы в рельефе планеты представлены рифтами , где преобладают деформации растяжения. Кора имеет пониженную мощность, а тепловой поток максимален, в результате происходит интенсивная вулканическая деятельность. В зависимости от того, где находится дивергентная граница, зависит дальнейшее развитие – если граница на континенте , то формируется континентальный рифт . В дальнейшем он может превратиться в океанический бассейн. Рифты на океанической коре приурочены к центральным частям срединно-океанических хребтов, где образуется новая океаническая кора . Её образование происходит за счет того, что из астеносферы поступает магматический базальтовый расплав.

Определение 1

Образование новой океанической коры за счет поступления мантийного вещества получило название спрединг

Срединно-океанические хребты делят на быстро-спрединговые – скорость раздвижения плит составляет $8$-$16$ см в год и медленно-спрединговые. Последние имеют отчетливо выраженную центральную депрессию. Это рифт глубиной $4$-$5$ тыс. метров. Образовавшийся рифт становится началом раскола континента. Постепенно формируется линейная впадина, имеющая глубину сотни метров и ограниченная серией сбросов.

Дальнейшее развитие событий может идти по двум вариантам :

  • Прекращение расширения рифта, заполнение его осадочными породами и превращение в авлакоген ;
  • Раздвижение континентов продолжается и начинается формирование океанической коры.

Определение 2

Авлакоген – это линейная подвижная зона внутри платформы

Конвергенция

Определение 3

Конвергенция – это схождение плит, которое выражается субдукцией и коллизией .

Существует несколько вариантов взаимодействия плит при их столкновении:

  • Столкновение двух океанических плит;
  • Столкновение океанической плиты с континентальной;
  • Столкновение двух континентальных плит.

Замечание 1

Характер столкновения плит может быть разный, в зависимости от этого возможны различные процессы. Процесс субдукции возникает тогда, когда более тяжелая океанская плита поддвигается под континентальную плиту или другую океаническую. Если сталкиваются две океанические плиты, то погружаться будет более древняя , потому что она уже остывшая и плотная. Субдукция связана с формированием новой континентальной коры .

Иногда при взаимодействии континентальной и океанской плит возникает процесс обдукции , но он бывает значительно реже и в наши дни нигде не установлен. Но, тем не менее, участки с эпизодами обдукции известны и произошли они в недавнее геологическое время. В процессе обдукции часть океанской литосферы надвигается на край континентальной плиты. Кора континентальных плит более легкая, чем вещество мантии, поэтому при их столкновении погрузиться в неё не может, что приводит к процессу коллизии . В ходе этого процесса края континентальных плит дробятся и сминаются . В результате происходит формирование крупных надвигов и рост горных сооружений. Например, при столкновении Индостанской и Евразийской плит, произошел рост горных систем Гималаев и Тибета , а океан Тетис в результате этого был закрыт – коллизия завершает закрытие океанического бассейна. Современные конвергентные границы имеют общую протяженность около $57$ тыс. км. Их них $45$ тыс. км являются субдукционными, а остальные относятся к коллизионным границам.

Сдвиговые перемещения по трансформным разломам

Параллельное движение плит и их разная скорость приводит к трансформным разломам , которые представляют собой сдвиговые нарушения . Они очень редки на материках и широко распространены в океанах. В океане эти разломы направлены перпендикулярно срединно-океаническим хребтам и разбивают их на сегменты. На таких участках практически постоянны землетрясения и горообразование. Надвиги, складки, грабены формируются вокруг разлома. На материках такие сдвиговые границы довольно редки и достаточно активным примером такой границы является разлом Сан-Андреас . Он отделяет Тихоокеанскую плиту от Североамериканской плиты. Сан-Андреас тянется на $800$ миль и относится к самым сейсмоактивным районам планеты. Смещение плит здесь относительно друг друга происходит на $0,6$ см в год, а землетрясения, которые возникают один раз в $22$ года, имеют магнитуду более $6$ единиц. В зоне повышенной опасности находится город Сан-Франциско и большая часть бухты одноименного названия, потому что они находятся в непосредственной близости от разлома. Движение плит объясняется мантийной конвекцией, которая является основной их причиной. Конвекция образуется благодаря мантийным теплогравитационным течениям, а источником энергии для них служит разность температуры между центральными областями Земли и частями, близкими к поверхности. Породы, нагретые в центральных зонах, начинают расширяться, уменьшается их плотность и, уступая место более холодным, они всплывают. В результате непрерывности этого процесса возникают замкнутые упорядоченные конвективные ячейки. В её верхней части течение вещества почти горизонтальное, что и определяет перемещение плит.

Замечание 2

Если говорить в общем, то под зонами дивергентных границ располагаются восходящие ветви конвективных ячей, а под зонами конвергентных границ – нисходящие ветви и основной причиной движения литосферных плит является «волочение » конвективными течениями.

Можно назвать еще ряд факторов, действующих на плиты:

  • Гравитационное «соскальзывание» литосферной плиты;
  • Затягивание в зонах субдукции холодной океанской плиты в горячую;
  • Гидравлическое расклинивание базальтами в зонах срединно-океанических хребтов.

Литосферные плиты состоят из океанских и континентальных частей. Ученые считают, что присутствие в составе плиты континента должно «тормозить » движение всей плиты. Так оно и есть, быстрее движутся чисто океанские плиты – Наска, Тихоокеанская . Медленнее движутся плиты, в составе которых большую площадь занимают континенты – Евразийская, Североамериканская, Южноамериканская, Антарктическая, Африканская.

Условно выделяют две группы мезанизмов, которые приводят в движение плиты:

  • Силы мантийного «волочения»;
  • Силы, приложенные к краям плит.

Хотя для каждой плиты движущие механизмы оцениваются индивидуально. Перемещения литосферных плит можно описать на основе теоремы Эйлера . Его теорема утверждает, что у любого вращения трехмерного пространства есть ось и вращение можно описать такими параметрами как координаты оси вращения и угол поворота . При помощи теоремы можно реконструировать положение континентов в прошлые геологические эпохи. Ученые пришли к выводу, анализируя данные о перемещении континентов, что каждые $400$-$600$ млн. лет они снова объединяются в единый суперконтинент, который в дальнейшем подвергается распаду.

Тогда наверняка вы бы хотели знать, что такое литосферные плиты .

Итак, литосферные плиты представляют собой огромные блоки, на которые делится твердый поверхностный слой земли. Учитывая тот факт, что скальные породы под ними расплавлены, плиты медленно, со скоростью от 1 до 10 сантиметров в год, двигаются.

На сегодняшний день насчитывают 13 крупнейших литосферных плит, которые покрывают 90% земной поверхности.

Крупнейшие литосферные плиты:

  • Австралийская плита - 47 000 000 км²
  • Антарктическая плита - 60 900 000 км²
  • Аравийский субконтинент - 5 000 000 км²
  • Африканская плита - 61 300 000 км²
  • Евразийская плита - 67 800 000 км²
  • Индостанская плита - 11 900 000 км²
  • Плита Кокос - 2 900 000 км²
  • Плита Наска - 15 600 000 км²
  • Тихоокеанская плита - 103 300 000 км²
  • Северо-Американская плита - 75 900 000 км²
  • Сомалийская плита - 16 700 000 км²
  • Южно-Американская плита - 43 600 000 км²
  • Филиппинская плита - 5 500 000 км²

Тут надо сказать, что существует земная кора континентальная и океаническая. Некоторые плиты состоят исключительно из одного типа коры (например, тихоокеанская плита), а некоторые из смешанных типов, когда плита начинается в океане и плавно переходит на континент. Толщина этих пластов составляет 70-100 километров.

Литосферные плиты плавают на поверхности частично расплавленного слоя земли – мантии. Когда плиты расходятся, трещины между ними заполняет жидкая порода, которая называется магмой. Когда магма затвердевает, она образует новые кристаллические породы. По поводу магмы поговорим подробнее в статье о вулканах.

Карта литосферных плит

Крупнейшие литосферные плиты (13 шт.)

В начале XX века американец Ф.Б. Тейлор и немец Альфред Вегенер одновременно пришли к выводу, что расположение континентов медленно изменяется. К слову сказать, именно это, в большой степени, является . Но ученые не смогли объяснить, как это происходит, до 60 годов двадцатого века, пока не выработалось учение о геологических процессах на морском дне.


Карта расположения литосферных плит

Именно ископаемые сыграли здесь главную роль. На разных материках были найдены окаменелые останки животных, которые явно не могли переплывать океан. Это вызвало предположение о том, что когда-то все материки были соединены и животные спокойно переходили между ними.

Подписывайтесь на . У нас много интересных фактов и увлекательных историй из жизни людей.