Понятие матрицы. Матрицы. Виды матриц. Основные термины

Матрицей размера m ? n называется прямоугольная таблица чисел, содержащих m строк и n столбцов. Числа, составляющие матрицу, называются элементами матрицы.

Матрицы обозначаются прописными буквами латинского алфавита (A,B,C…) , а для обозначения элементов матрицы используются строчные буквы с двойной индексацией:

Где i - номер строки, j - номер столбца.

Например, матрица

Или в сокращённой записи, A=(); i =1,2…, m ; j=1,2, …, n.

Используются другие обозначения матрицы например: , ? ?.

Две матрицы А и В одного размера называются равными , если они совпадают поэлементно,т.е. = , где i= 1, 2, 3, …, m , а j = 1, 2, 3, …, n.

Рассмотрим основные типы матриц:

1. Пусть m = n, тогда матрица А - квадратная матрица, которая имеет порядок n:

Элементы образуют главную диагональ, элементы образуют побочную диагональ.

Квадратная матрица называется диагональной , если все ее элементы, кроме, возможно, элементов главной диагонали, равны нулю:

Диагональная, а значит квадратная, матрица называется единичной , если все элементы главной диагонали равны 1:

Заметим, что единичная матрица является матричным аналогом единицы во множестве действительных чисел, а также подчеркнем, что единичная матрица определяется только для квадратных матриц.

Приведем примеры единичных матриц:

Квадратные матрицы


называются верхней и нижней треугольными соответственно.

  • 2. Пусть m = 1, тогда матрица А - матрица-строка, которая имеет вид:
  • 3. Пусть n =1, тогда матрица А - матрица-столбец, которая имеет вид:

4. Нулевой матрицей называется матрица порядка mn, все элементы которой равны 0:

Заметим, что нулевая матрица может быть квадратной, матрицей-строкой или матрицей-столбцом. Нулевая матрица есть матричный аналог нуля во множестве действительных чисел.

5. Матрица называется транспонированной к матрице и обозначается, если ее столбцы являются соответствующими по номеру строками матрицы.

Пример . Пусть

Заметим, если матрица А имеет порядок mn , то транспонированная матрица имеет порядок nm .

6. Матрица А называется симметричной, если А=, и кососимметричной, если А = .

Пример . Исследовать на симметричность матрицы А и В .

следовательно, матрица А - симметричная, так как А = .

следовательно, матрица В - кососимметричная, так как В = - .

Заметим, что симметричная и кососимметричная матрицы всегда квадратные. На главной диагонали симметричной матрицы могут стоять любые элементы, а симметрично относительно главной диагонали должны стоять одинаковые элементы, то есть На главной диагонали кососимметричной матрицы всегда стоят нули, а симметрично относительно главной диагонали

матрица квадратный лаплас аннулирование

ОПРЕДЕЛЕНИЕ МАТРИЦЫ. ВИДЫ МАТРИЦ

Матрицей размером m ×n называется совокупность m·n чисел, расположенных в виде прямоугольной таблицы из m строк и n столбцов. Эту таблицу обычно заключают в круглые скобки. Например, матрица может иметь вид:

Для краткости матрицу можно обозначать одной заглавной буквой, например, А или В .

В общем виде матрицу размером m ×n записывают так

.

Числа, составляющие матрицу, называются элементами матрицы . Элементы матрицы удобно снабжать двумя индексами a ij : первый указывает номер строки, а второй – номер столбца. Например, a 23 – элемент стоит во 2-ой строке, 3-м столбце.

Если в матрице число строк равно числу столбцов, то матрица называется квадратной , причём число ее строк или столбцов называется порядком матрицы. В приведённых выше примерах квадратными являются вторая матрица – её порядок равен 3, и четвёртая матрица – её порядок 1.

Матрица, в которой число строк не равно числу столбцов, называется прямоугольной . В примерах это первая матрица и третья.

Различаются также матрицы, имеющие только одну строку или один столбец.

Матрица, у которой всего одна строка , называется матрицей – строкой (или строковой), а матрица, у которой всего один столбец, матрицей – столбцом .

Матрица, все элементы которой равны нулю, называется нулевой и обозначается (0), или просто 0. Например,

.

Главной диагональю квадратной матрицы назовём диагональ, идущую из левого верхнего в правый нижний угол.

Квадратная матрица, у которой все элементы, лежащие ниже главной диагонали, равны нулю, называется треугольной матрицей.

.

Квадратная матрица, у которой все элементы, кроме, быть может, стоящих на главной диагонали, равны нулю, называется диагональной матрицей. Например, или .

Диагональная матрица, у которой все диагональные элементы равны единице, называется единичной матрицей и обозначается буквой E. Например, единичная матрица 3-го порядка имеет вид .

ДЕЙСТВИЯ НАД МАТРИЦАМИ

Равенство матриц . Две матрицы A и B называются равными, если они имеют одинаковое число строк и столбцов и их соответствующие элементы равны a ij = b ij . Так если и , то A=B , если a 11 = b 11 , a 12 = b 12 , a 21 = b 21 и a 22 = b 22 .

Транспонирование . Рассмотрим произвольную матрицу A из m строк и n столбцов. Ей можно сопоставить такую матрицу B из n строк и m столбцов, у которой каждая строка является столбцом матрицы A с тем же номером (следовательно, каждый столбец является строкой матрицы A с тем же номером). Итак, если , то .

Эту матрицу B называют транспонированной матрицей A , а переход от A к B транспонированием .

Таким образом, транспонирование – это перемена ролями строк и столбцов матрицы. Матрицу, транспонированную к матрице A , обычно обозначают A T .

Связь между матрицей A и её транспонированной можно записать в виде .

Например. Найти матрицу транспонированную данной.

Сложение матриц. Пусть матрицы A и B состоят из одинакового числа строк и одинакового числа столбцов, т.е. имеют одинаковые размеры . Тогда для того, чтобы сложить матрицы A и B нужно к элементам матрицы A прибавить элементы матрицы B , стоящие на тех же местах. Таким образом, суммой двух матриц A и B называется матрица C , которая определяется по правилу, например,

Примеры. Найти сумму матриц:

Легко проверить, что сложение матриц подчиняется следующим законам: коммутативному A+B=B+A и ассоциативному (A+B )+C =A +(B+C ).

Умножение матрицы на число. Для того чтобы умножить матрицу A на число k нужно каждый элемент матрицы A умножить на это число. Таким образом, произведение матрицы A на число k есть новая матрица, которая определяется по правилу или .

Для любых чисел a и b и матриц A и B выполняются равенства:

Примеры.

Умножение матриц. Эта операция осуществляется по своеобразному закону. Прежде всего, заметим, что размеры матриц–сомножителей должны быть согласованы. Перемножать можно только те матрицы, у которых число столбцов первой матрицы совпадает с числом строк второй матрицы (т.е. длина строки первой равна высоте столбца второй). Произведением матрицы A не матрицу B называется новая матрица C=AB , элементы которой составляются следующим образом:

Таким образом, например, чтобы получить у произведения (т.е. в матрице C ) элемент, стоящий в 1-ой строке и 3-м столбце c 13 , нужно в 1-ой матрице взять 1-ую строку, во 2-ой – 3-й столбец, и затем элементы строки умножить на соответствующие элементы столбца и полученные произведения сложить. И другие элементы матрицы-произведения получаются с помощью аналогичного произведения строк первой матрицы на столбцы второй матрицы.

В общем случае, если мы умножаем матрицу A = (a ij) размера m ×n на матрицу B = (b ij) размера n ×p , то получим матрицу C размера m ×p , элементы которой вычисляются следующим образом: элемент c ij получается в результате произведения элементов i -ой строки матрицы A на соответствующие элементы j -го столбца матрицы B и их сложения.

Из этого правила следует, что всегда можно перемножать две квадратные матрицы одного порядка, в результате получим квадратную матрицу того же порядка. В частности, квадратную матрицу всегда можно умножить саму на себя, т.е. возвести в квадрат.

Другим важным случаем является умножение матрицы–строки на матрицу–столбец, причём ширина первой должна быть равна высоте второй, в результате получим матрицу первого порядка (т.е. один элемент). Действительно,

.

Примеры.

Таким образом, эти простые примеры показывают, что матрицы, вообще говоря, не перестановочны друг с другом, т.е. A∙B B∙A . Поэтому при умножении матриц нужно тщательно следить за порядком множителей.

Можно проверить, что умножение матриц подчиняется ассоциативному и дистрибутивному законам, т.е. (AB)C=A(BC) и (A+B)C=AC+BC .

Легко также проверить, что при умножении квадратной матрицы A на единичную матрицу E того же порядка вновь получим матрицу A , причём AE=EA=A .

Можно отметить следующий любопытный факт. Как известно произведение 2-х отличных от нуля чисел не равно 0. Для матриц это может не иметь места, т.е. произведение 2-х не нулевых матриц может оказаться равным нулевой матрице.

Например , если , то

.

ПОНЯТИЕ ОПРЕДЕЛИТЕЛЕЙ

Пусть дана матрица второго порядка – квадратная матрица, состоящая из двух строк и двух столбцов .

Определителем второго порядка , соответствующим данной матрице, называется число, получаемое следующим образом: a 11 a 22 – a 12 a 21 .

Определитель обозначается символом .

Итак, для того чтобы найти определитель второго порядка нужно из произведения элементов главной диагонали вычесть произведение элементов по второй диагонали.

Примеры. Вычислить определители второго порядка.

Аналогично можно рассмотреть матрицу третьего порядка и соответствующий ей определитель.

Определителем третьего порядка , соответствующим данной квадратной матрице третьего порядка, называется число, обозначаемое и получаемое следующим образом:

.

Таким образом, эта формула даёт разложение определителя третьего порядка по элементам первой строки a 11 , a 12 , a 13 и сводит вычисление определителя третьего порядка к вычислению определителей второго порядка.

Примеры. Вычислить определитель третьего порядка.


Аналогично можно ввести понятия определителей четвёртого, пятого и т.д. порядков, понижая их порядок разложением по элементам 1-ой строки, при этом знаки "+" и "–" у слагаемых чередуются.

Итак, в отличие от матрицы, которая представляют собой таблицу чисел, определитель это число, которое определённым образом ставится в соответствие матрице.

Матрица обозначается заглавными латинскими буквами (А , В , С,. ..).

Определение 1 . Прямоугольная таблица вида ,

состоящая из m строк и n столбцов, называется матрицей .

Элемент матрицы, i – номер строки, j – номер столбца.

Виды матриц:

элементов, стоящих на главной диагонали:

trA=a 11 +a 22 +a 33 +…+a nn .

§2. Определители 2, 3 и n-го порядка

Пусть даны две квадратные матрицы:

Определение 1 . Определителем второго порядка матрицы А 1 называется число, обозначаемое ∆ и равное , где

Пример . Вычислить определитель 2-го порядка:

Определение 2 . Определителем 3-го порядка квадратной матрицы А 2 называется число вида:

Это один из способов вычисления определителя.

Пример. Вычислить

Определение 3 . Если определитель состоит из n-строк и n-столбцов, то он называется определителем n-го порядка.

Свойства определителей:

    Определитель не меняется при транспонировании (т.е. если в нем строки и столбцы поменять местами с сохранением порядка следования).

    Если в определителе поменять местами какие-либо две строки или два столбца, то определитель изменит только знак.

    Общий множитель какой-либо строки (столбца) можно выносить за знак определителя.

    Если все элементы какой-либо строки (столбца) определителя равны нулю, то определитель равен нулю.

    Определитель равен нулю, если элементы каких-либо двух строк равны или пропорциональны.

    Определитель не изменится, если к элементам какой-либо строки (столбца) прибавить соответствующие элементы другой строки (столбца), умноженные на одно и то же число.

Пример.

Определение 4. Определитель, полученный из данного путем вычеркивания столбца и строки, называется минором соответствующего элемента. М ij элемента a ij .

Определение 5. Алгебраическим дополнением элемента а ij , называется выражение

§3. Действия над матрицами

Линейные операции

1)При сложении матриц складываются их одноименные элементы.

    При вычитании матриц вычитаются их одноименные элементы.

    При умножении матрицы на число каждый элемент матрицы умножается на это число:

3.2.Умножение матриц.

Произведение матрицы А на матрицу В есть новая матрица , элементы которой равны сумме произведений элементовi-той строки матрицы А на соответствующие элементы j-го столбца матрицы В . Произведение матрицы А на матрицу В можно находить только в том случае, если число столбцов матрицы А равно числу строк матрицы В. В противном случае, произведение невозможно.

Замечание:

(не подчиняется свойству коммутативности)

§ 4. Обратная матрица

Обратная матрица существует только для квадратной матрицы, причем матрица должна быть невырожденной.

Определение 1. Матрица А называется невырожденной , если определитель этой матрицы не равен нулю

Определение 2. А -1 называется обратной матрицей для данной невырожденной квадратной матрицы А , если при умножении этой матрицы на данную как справа, так слева получается единичная матрица.

Алгоритм вычисления обратной матрицы

1 способ (с помощью алгебраических дополнений)

Пример 1:

Назначение сервиса . Матричный калькулятор предназначен для решения матричных выражений, например, таких как, 3A-CB 2 или A -1 +B T .

Инструкция . Для онлайн решения необходимо задать матричное выражение. На втором этапе необходимо будет уточнить размерность матриц.

Действия над матрицами

Допустимые операции: умножение (*), сложение (+), вычитание (-), обратная матрица A^(-1) , возведение в степень (A^2 , B^3), транспонирование матрицы (A^T).

Допустимые операции: умножение (*), сложение (+), вычитание (-), обратная матрица A^(-1) , возведение в степень (A^2 , B^3), транспонирование матрицы (A^T).
Для выполнения списка операций используйте разделитель точка с запятой (;). Например, для выполнения трех операций:
а) 3А+4В
б) АВ-ВА
в) (А-В) -1
необходимо будет записать так: 3*A+4*B;A*B-B*A;(A-B)^(-1)

Матрица - прямоугольная числовая таблица, имеющая m строк и n столбцов, поэтому схематически матрицу можно изображать в виде прямоугольника.
Нулевой матрицей (нуль-матрицей) называют матрицу, все элементы которой равны нулю и обозначают 0.
Единичной матрицей называется квадратная матрица вида


Две матрицы A и B равны , если они одинакового размера и их соответствующие элементы равны.
Вырожденной матрицей называется матрица, определитель которой равен нулю (Δ = 0).

Определим основные операции над матрицами .

Сложение матриц

Определение . Суммой двух матриц и одинакового размера называется матрица тех же размеров, элементы которой находятся по формуле . Обозначается C = A+B.

Пример 6 . .
Операция сложения матриц распространяется на случай любого числа слагаемых. Очевидно, что A+0=A .
Еще раз подчеркнем, что складывать можно только матрицы одинакового размера; для матриц разных размеров операция сложения не определена.

Вычитание матриц

Определение . Разностью B-A матриц B и A одинакового размера называется такая матрица C, что A+ C = B.

Умножение матриц

Определение . Произведением матрицы на число α называется матрица , получающаяся из A умножением всех ее элементов на α, .
Определение . Пусть даны две матрицы и , причем число столбцов A равно числу строк B. Произведением A на B называется матрица , элементы которой находятся по формуле .
Обозначается C = A·B.
Схематически операцию умножения матриц можно изобразить так:

а правило вычисления элемента в произведении:

Подчеркнем еще раз, что произведение A·B имеет смысл тогда и только тогда, когда число столбцов первого сомножителя равно числу строк второго, при этом в произведении получается матрица, число строк которой равно числу строк первого сомножителя, а число столбцов равно числу столбцов второго. Проверить результат умножения можно через специальный онлайн-калькулятор .

Пример 7 . Даны матрицы и . Найти матрицы C = A·B и D = B·A.
Решение. Прежде всего заметим, что произведение A·B существует, так как число столбцов A равно числу строк B.


Заметим, что в общем случае A·B≠B·A , т.е. произведение матриц антикоммутативно.
Найдем B·A (умножение возможно).

Пример 8 . Дана матрица . Найти 3A 2 – 2A.
Решение.

.
; .
.
Отметим следующий любопытный факт.
Как известно, произведение двух отличных от нуля чисел не равно нулю. Для матриц подобное обстоятельство может и не иметь места, то есть произведение ненулевых матриц может оказаться равным нуль-матрице.

В данной теме рассмотрим понятие матрицы, а также виды матриц. Так как в данной теме немало терминов, то я добавлю краткое содержание, чтобы ориентироваться в материале было проще.

Определение матрицы и её элемента. Обозначения.

Матрица - это таблица из $m$ строк и $n$ столбцов. Элементами матрицы могут быть объекты совершенно разнообразной природы: числа, переменные или, к примеру, иные матрицы. Например, матрица $\left(\begin{array} {cc} 5 & 3 \\ 0 & -87 \\ 8 & 0 \end{array} \right)$ содержит 3 строки и 2 столбца; элементами её являются целые числа. Матрица $\left(\begin{array} {cccc} a & a^9+2 & 9 & \sin x \\ -9 & 3t^2-4 & u-t & 8\end{array} \right)$ содержит 2 строки и 4 столбца.

Разные способы записи матриц: показать\скрыть

Матрица может быть записана не только в круглых, но и в квадратных или двойных прямых скобках. Т.е., указанные ниже записи означают одну и ту же матрицу:

$$ \left(\begin{array} {cc} 5 & 3 \\ 0 & -87 \\ 8 & 0 \end{array} \right);\;\; \left[ \begin{array} {cc} 5 & 3 \\ 0 & -87 \\ 8 & 0 \end{array} \right]; \;\; \left \Vert \begin{array} {cc} 5 & 3 \\ 0 & -87 \\ 8 & 0 \end{array} \right \Vert $$

Произведение $m\times n$ называют размером матрицы . Например, если матрица содержит 5 строк и 3 столбца, то говорят о матрице размера $5\times 3$. Матрица $\left(\begin{array}{cc} 5 & 3\\0 & -87\\8 & 0\end{array}\right)$ имеет размер $3 \times 2$.

Обычно матрицы обозначаются большими буквами латинского алфавита: $A$, $B$, $C$ и так далее. Например, $B=\left(\begin{array} {ccc} 5 & 3 \\ 0 & -87 \\ 8 & 0 \end{array} \right)$. Нумерация строк идёт сверху вниз; столбцов - слева направо. Например, первая строка матрицы $B$ содержит элементы 5 и 3, а второй столбец содержит элементы 3, -87, 0.

Элементы матриц обычно обозначаются маленькими буквами. Например, элементы матрицы $A$ обозначаются $a_{ij}$. Двойной индекс $ij$ содержит информацию о положении элемента в матрице. Число $i$ - это номер строки, а число $j$ - номер столбца, на пересечении которых находится элемент $a_{ij}$. Например, на пересечении второй строки и пятого столбца матрицы $A=\left(\begin{array} {cccccc} 51 & 37 & -9 & 0 & 9 & 97 \\ 1 & 2 & 3 & 41 & 59 & 6 \\ -17 & -15 & -13 & -11 & -8 & -5 \\ 52 & 31 & -4 & -1 & 17 & 90 \end{array} \right)$ расположен элемент $a_{25}=59$:

Точно так же на пересечении первой строки и первого столбца имеем элемент $a_{11}=51$; на пересечении третьей строки и второго столбца - элемент $a_{32}=-15$ и так далее. Замечу, что запись $a_{32}$ читается как "а три два", но не "а тридцать два".

Для сокращённого обозначения матрицы $A$, размер которой равен $m\times n$, используется запись $A_{m\times n}$. Можно записать и несколько более развёрнуто:

$$ A_{m\times n}=(a_{ij}) $$

где запись $(a_{ij})$ означает обозначение элементов матрицы $A$. В полностью развёрнутом виде матрицу $A_{m\times n}=(a_{ij})$ можно записать так:

$$ A_{m\times n}=\left(\begin{array}{cccc} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{m1} & a_{m2} & \ldots & a_{mn} \end{array} \right) $$

Введём еще один термин - равные матрицы .

Две матрицы одинакового размера $A_{m\times n}=(a_{ij})$ и $B_{m\times n}=(b_{ij})$ называются равными , если их соответствующие элементы равны, т.е. $a_{ij}=b_{ij}$ для всех $i=\overline{1,m}$ и $j=\overline{1,n}$.

Пояснение к записи $i=\overline{1,m}$: показать\скрыть

Запись "$i=\overline{1,m}$" означает, что параметр $i$ изменяется от 1 до m. Например, запись $i=\overline{1,5}$ говорит о том, что параметр $i$ принимает значения 1, 2, 3, 4, 5.

Итак, для равенства матриц требуется выполнение двух условий: совпадение размеров и равенство соответствующих элементов. Например, матрица $A=\left(\begin{array}{cc} 5 & 3\\0 & -87\\8 & 0\end{array}\right)$ не равна матрице $B=\left(\begin{array}{cc} 8 & -9\\0 & -87 \end{array}\right)$, поскольку матрица $A$ имеет размер $3\times 2$, а размер матрицы $B$ составляет $2\times 2$. Также матрица $A$ не равна матрице $C=\left(\begin{array}{cc} 5 & 3\\98 & -87\\8 & 0\end{array}\right)$, поскольку $a_{21}\neq c_{21}$ (т.е. $0\neq 98$). А вот для матрицы $F=\left(\begin{array}{cc} 5 & 3\\0 & -87\\8 & 0\end{array}\right)$ можно смело записать $A=F$ поскольку и размеры, и соответствующие элементы матриц $A$ и $F$ совпадают.

Пример №1

Определить размер матрицы $A=\left(\begin{array} {ccc} -1 & -2 & 1 \\ 5 & 9 & -8 \\ -6 & 8 & 23 \\ 11 & -12 & -5 \\ 4 & 0 & -10 \\ \end{array} \right)$. Указать, чему равны элементы $a_{12}$, $a_{33}$, $a_{43}$.

Данная матрица содержит 5 строк и 3 столбца, поэтому размер её $5\times 3$. Для этой матрицы можно использовать также обозначение $A_{5\times 3}$.

Элемент $a_{12}$ находится на пересечении первой строки и второго столбца, поэтому $a_{12}=-2$. Элемент $a_{33}$ находится на пересечении третьей строки и третьего столбца, поэтому $a_{33}=23$. Элемент $a_{43}$ находится на пересечении четвертой строки и третьего столбца, поэтому $a_{43}=-5$.

Ответ : $a_{12}=-2$, $a_{33}=23$, $a_{43}=-5$.

Виды матриц в зависимости от их размера. Главная и побочная диагонали. След матрицы.

Пусть задана некая матрица $A_{m\times n}$. Если $m=1$ (матрица состоит из одной строки), то заданную матрицу называют матрица-строка . Если же $n=1$ (матрица состоит из одного столбца), то такую матрицу называют матрица-столбец . Например, $\left(\begin{array} {ccccc} -1 & -2 & 0 & -9 & 8 \end{array} \right)$ - матрица-строка, а $\left(\begin{array} {c} -1 \\ 5 \\ 6 \end{array} \right)$ - матрица-столбец.

Если для матрицы $A_{m\times n}$ верно условие $m\neq n$ (т.е. количество строк не равно количеству столбцов), то часто говорят, что $A$ - прямоугольная матрица. Например, матрица $\left(\begin{array} {cccc} -1 & -2 & 0 & 9 \\ 5 & 9 & 5 & 1 \end{array} \right)$ имеет размер $2\times 4$, т.е. содержит 2 строки и 4 столбца. Так как количество строк не равно количеству столбцов, то эта матрица является прямоугольной.

Если для матрицы $A_{m\times n}$ верно условие $m=n$ (т.е. количество строк равно количеству столбцов), то говорят, что $A$ - квадратная матрица порядка $n$. Например, $\left(\begin{array} {cc} -1 & -2 \\ 5 & 9 \end{array} \right)$ - квадратная матрица второго порядка; $\left(\begin{array} {ccc} -1 & -2 & 9 \\ 5 & 9 & 8 \\ 1 & 0 & 4 \end{array} \right)$ - квадратная матрица третьего порядка. В общем виде квадратную матрицу $A_{n\times n}$ можно записать так:

$$ A_{n\times n}=\left(\begin{array}{cccc} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{n1} & a_{n2} & \ldots & a_{nn} \end{array} \right) $$

Говорят, что элементы $a_{11}$, $a_{22}$, $\ldots$, $a_{nn}$ находятся на главной диагонали матрицы $A_{n\times n}$. Эти элементы называются главными диагональными элементами (или просто диагональными элементами). Элементы $a_{1n}$, $a_{2 \; n-1}$, $\ldots$, $a_{n1}$ находятся на побочной (второстепенной) диагонали ; их называют побочными диагональными элементами . Например, для матрицы $C=\left(\begin{array}{cccc}2&-2&9&1\\5&9&8& 0\\1& 0 & 4 & -7 \\ -4 & -9 & 5 & 6\end{array}\right)$ имеем:

Элементы $c_{11}=2$, $c_{22}=9$, $c_{33}=4$, $c_{44}=6$ являются главными диагональными элементами; элементы $c_{14}=1$, $c_{23}=8$, $c_{32}=0$, $c_{41}=-4$ - побочные диагональные элементы.

Сумма главных диагональных элементов называется следом матрицы и обозначается $\Tr A$ (или $\Sp A$):

$$ \Tr A=a_{11}+a_{22}+\ldots+a_{nn} $$

Например, для матрицы $C=\left(\begin{array} {cccc} 2 & -2 & 9 & 1\\5 & 9 & 8 & 0\\1 & 0 & 4 & -7\\-4 & -9 & 5 & 6 \end{array}\right)$ имеем:

$$ \Tr C=2+9+4+6=21. $$

Понятие диагональных элементов используется также и для неквадратных матриц. Например, для матрицы $B=\left(\begin{array} {ccccc} 2 & -2 & 9 & 1 & 7 \\ 5 & -9 & 8 & 0 & -6 \\ 1 & 0 & 4 & -7 & -6 \end{array} \right)$ главными диагональными элементами будут $b_{11}=2$, $b_{22}=-9$, $b_{33}=4$.

Виды матриц в зависимости от значений их элементов.

Если все элементы матрицы $A_{m\times n}$ равны нулю, то такая матрица называется нулевой и обозначается обычно буквой $O$. Например, $\left(\begin{array} {cc} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} \right)$, $\left(\begin{array} {ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right)$ - нулевые матрицы.

Пусть матрица $A_{m\times n}$ имеет такой вид:

Тогда данную матрицу называют трапециевидной . Она может и не содержать нулевых строк, но уж если они есть, то располагаются в низу матрицы. В более общем виде трапециевидную матрицу можно записать так:

Повторюсь, наличие нулевых строк в конце не является обязательным. Т.е. формально можно выделить такие условия для трапециевидной матрицы:

  1. Все элементы, расположенные ниже главной диагонали, равны нулю.
  2. Все элементы от $a_{11}$ до $a_{rr}$, лежащие на главной диагонали, не равны нулю: $a_{11}\neq 0, \; a_{22}\neq 0, \ldots, a_{rr}\neq 0$.
  3. Либо все элементы последних $m-r$ строк равны нулю, либо $m=r$ (т.е. нулевых строк нету вообще).

Примеры трапециевидных матриц:

Перейдём к следующему определению. Матрицу $A_{m\times n}$ называют ступенчатой , если она удовлетворяет таким условиям:


Например, ступенчатыми матрицами будут:

Для сравнения, матрица $\left(\begin{array} {cccc} 2 & -2 & 0 & 1\\0 & 0 & 8 & 7\\0 & 0 & 4 & -7\\0 & 0 & 0 & 0 \end{array}\right)$ не является ступенчатой, поскольку у третьей строки нулевая часть такая же, как и у второй строки. Т.е., нарушается принцип "чем ниже строка - тем больше нулевая часть". Добавлю, что трапециевидная матрица есть частный случай ступенчатой матрицы.

Перейдём к следующему определению. Если все элементы квадратной матрицы, расположенные под главной диагональю, равны нулю, то такую матрицу называют верхней треугольной матрицей . Например, $\left(\begin{array} {cccc} 2 & -2 & 9 & 1 \\ 0 & 9 & 8 & 0 \\ 0 & 0 & 4 & -7 \\ 0 & 0 & 0 & 6 \end{array} \right)$ - верхняя треугольная матрица. Заметьте, что в определении верхней треугольной матрицы ничего не сказано про значения элементов, расположенных над главной диагональю или на главной диагонали. Они могут быть нулевыми или нет, - это несущественно. Например, $\left(\begin{array} {ccc} 0 & 0 & 9 \\ 0 & 0 & 0\\ 0 & 0 & 0 \end{array} \right)$ - тоже верхняя треугольная матрица.

Если все элементы квадратной матрицы, расположенные над главной диагональю, равны нулю, то такую матрицу называют нижней треугольной матрицей . Например, $\left(\begin{array} {cccc} 3 & 0 & 0 & 0 \\ -5 & 1 & 0 & 0 \\ 8 & 2 & 1 & 0 \\ 5 & 4 & 0 & 6 \end{array} \right)$ - нижняя треугольная матрица. Заметьте, что в определении нижней треугольной матрицы ничего не сказано про значения элементов, расположенных под или на главной диагонали. Они могут быть нулевыми или нет, - это неважно. Например, $\left(\begin{array} {ccc} -5 & 0 & 0 \\ 0 & 0 & 0\\ 0 & 0 & 9 \end{array} \right)$ и $\left(\begin{array} {ccc} 0 & 0 & 0 \\ 0 & 0 & 0\\ 0 & 0 & 0 \end{array} \right)$ - тоже нижние треугольные матрицы.

Квадратная матрица называется диагональной , если все элементы этой матрицы, не лежащие на главной диагонали, равны нулю. Пример: $\left(\begin{array} {cccc} 3 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 6 \end{array} \right)$. Элементы на главной диагонали могут быть любыми (равными нулю или нет), - это несущественно.

Диагональная матрица называется единичной , если все элементы этой матрицы, расположенные на главной диагонали, равны 1. Например, $\left(\begin{array} {cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$ - единичная матрица четвёртого порядка; $\left(\begin{array} {cc} 1 & 0 \\ 0 & 1 \end{array}\right)$ - единичная матрица второго порядка.