Серная кислота и реакции с ней. Химические свойства серы. Характеристика и температура кипения серы

Серная кислота (H₂­SO₄) – это одна из сильнейших двухосновных кислот.

Если говорить о физических свойствах, то серная кислота выглядит как густоватая прозрачная маслянистая жидкость без запаха. В зависимости от концентрации, серная кислота имеет множество различных свойств и сфер применений:

  • обработка металлов;
  • обработка руд;
  • производство минеральных удобрений;
  • химический синтез.

История открытия серной кислоты

Контактная серная кислота имеет концентрацию от 92 до 94 процентов:

2SO₂ + O₂ = 2SO₂;

H₂O + SO₃ = H₂­SO₄.

Физические и физико-химические свойства серной кислоты

H₂­SO₄ смешивается с водой и SO₃ во всех соотношениях.

В водных растворах Н₂­SO₄ образует гидраты типа Н₂­SO₄·nH₂O

Температура кипения серной кислоты зависит от степени концентрации раствора и достигает максимума при концентрации больше 98 процентов.

Едкое соединение олеум представляет собой раствор SO₃ в серной кислоте.

При повышении концентрации триоксида серы в олеуме температура кипения понижается.

Химические свойства серной кислоты


При нагревании концентрированная серная кислота является сильнейшим окислителем, который способен окислять многие металлы. Исключение составляют лишь некоторые металлы:

  • золото (Au);
  • платина (Pt);
  • иридий (Ir);
  • родий (Rh);
  • тантал (Та).

Окисляя металлы, концентрированная серная кислота может восстанавливаться до H₂S, S и SO₂.

Активный металл:

8Al + 15H₂­SO₄(конц.) → 4Al₂(SO₄)₃ + 12H₂O + 3H₂S

Металл средней активности:

2Cr + 4 H₂­SO₄(конц.)→ Cr₂(SO₄)₃ + 4 H₂O + S

Малоактивный металл:

2Bi + 6H₂­SO₄(конц.) → Bi₂(SO₄)₃ + 6H₂O + 3SO₂

С холодной концентрированной серной кислотой железо и не реагируют, поскольку покрываются оксидной пленкой. Этот процесс называется пассивация .

Реакция серной кислоты и H₂O

При смешении H₂­SO₄ с водой происходит экзотермический процесс: выделяется такое большое количество тепла, что раствор может даже закипеть. Проводя химические опыты, нужно всегда понемногу добавлять серную кислоту в воду, а не наоборот.

Серная кислота является сильным дегидрирующим веществом. Концентрированная серная кислота вытесняет воду из различных соединений. Ее часто используют в качестве осушителя.

Реакция серной кислоты и сахара

Жадность серной кислоты к воде можно продемонстрировать в классическом опыте - смешении концентрированной H₂­SO₄ и , который является органическим соединением (углеводом). Чтобы извлекать воду из вещества, серная кислота разрушает молекулы.

Для проведения опыта в сахар добавляют несколько капель воды и перемешивают. Затем осторожно вливают серную кислоту. Через короткий промежуток времени можно наблюдать бурную реакцию с образованием угля и выделением сернистого и .

Серная кислота и кубик сахара:

Помните, что работать с серной кислотой очень опасно. Серная кислота - едкое вещество, которое моментально оставляет сильные ожоги на коже.

вы найдете безопасные эксперименты с сахаром, которые можно проводить дома.

Реакция серной кислоты и цинка

Эта реакция достаточно популярна и является одним из самых распространенных лабораторных методов получения водорода. Если в разбавленную серную кислоту добавить гранулы цинка, металл будет растворяться с выделением газа:

Zn + H₂­SO₄ → Zn­SO₄ + H₂.

Разбавленная серная кислота реагирует с металлами, которые в ряду активности стоят левее водорода:

Ме + H₂­SO₄(разб.) → соль + H₂

Реакция серной кислоты с ионами бария

Качественной реакцией на и ее соли является реакция с ионами бария. Она широко распространена в количественном анализе, в частности гравиметрии:

H₂­SO₄ + Ba­Cl₂ → Ba­SO₄ + 2HCl

Zn­SO₄ + Ba­Cl₂ → Ba­SO₄ + Zn­Cl₂

Внимание! Не пытайтесь повторить эти опыты самостоятельно!

Автор Химическая энциклопедия г.р. Н.С.Зефиров

СЕРНАЯ КИСЛОТА H 2 SO 4 , молекулярная масса 98,082; бесцв. маслянистая жидкость без запаха. Очень сильная двухосновная кислота, при 18°С pK a 1 - 2,8, K 2 1,2 10 -2 , pK a 2 l,92; длины связей в молекуле S=O 0,143 нм, S-ОН 0,154 нм, угол HOSOH 104°, OSO 119°; кипит с различные, образуя азеотропную смесь (98,3% H 2 SO 4 и 1,7% Н 2 О с температура кипения 338,8 °С; см. также табл. 1). СЕРНАЯ КИСЛОТА к., отвечающая 100%-ному содержанию H 2 SO 4 , имеет состав (%): H 2 SO 4 99,5, 0,18, 0,14, Н 3 О + 0,09, H 2 S 2 O 7 0,04, HS 2 O 7 0,05. Смешивается с водой и SO 3 во всех соотношениях. В водных растворах СЕРНАЯ КИСЛОТА к. практически полностью диссоциирует на Н + , и . Образует гидраты H 2 SO 4 nH 2 O, где n = 1, 2, 3, 4 и 6,5.

Растворы SO 3 в СЕРНАЯ КИСЛОТА к. называют олеумом, они образуют два соединение H 2 SO 4 SO 3 и H 2 SO 4 2SO 3 . Олеум содержит также пи-росерную кислоту, получающуюся по реакции: Н 2 SO 4 + + SO 3 : H 2 S 2 O 7 .

Температура кипения водных растворов СЕРНАЯ КИСЛОТА к. повышается с ростом ее концентрации и достигает максимума при содержании 98,3% H 2 SO 4 (табл. 2). Температура кипения олеума с увеличением содержания SO 3 понижается. При увеличении концентрации водных растворов СЕРНАЯ КИСЛОТА к. общее давление пара над растворами понижается и при содержании 98,3% H 2 SO 4 достигает минимума. С увеличением концентрации SO 3 в олеуме общее давление пара над ним повышается. Давление пара над водными растворами СЕРНАЯ КИСЛОТА к. и олеума можно вычислить по уравению: lgp(Пa) = А - В/Т+ 2,126, величины коэффициент А и В зависят от концентрации СЕРНАЯ КИСЛОТА к. Пар над водными растворами СЕРНАЯ КИСЛОТА к. состоит из смеси паров воды, Н 2 SO 4 и SO 3 , при этом состав пара отличается от состава жидкости при всех концентрациях СЕРНАЯ КИСЛОТА к., кроме соответствующей азеотропной смеси.

С повышением температуры усиливается диссоциация H 2 SO 4 H 2 О + SO 3 - Q, уравение температурной зависимости константы равновесия lnК p = 14,74965 - 6,71464ln(298/T) - 8, 10161 10 4 T 2 -9643,04/T-9,4577 10 -3 Т+2,19062 x 10 -6 T 2 . При нормальном давлении степень диссоциации: 10 -5 (373 К), 2,5 (473 К), 27,1 (573 К), 69,1 (673 К). Плотность 100%-ной СЕРНАЯ КИСЛОТА к. можно определить по уравению: d= 1,8517 - - 1,1 10 -3 t + 2 10 -6 t 2 г/см 3 . С повышением концентрации растворов СЕРНАЯ КИСЛОТА к. их теплоемкость уменьшается и достигает минимума для 100%-ной СЕРНАЯ КИСЛОТА к., теплоемкость олеума с повышением содержания SO 3 увеличивается.

При повышении концентрации и понижении температуры теплопроводность l уменьшается: l = 0,518 + 0,0016t - (0,25 + + t/1293) С/100, где С-концентрация СЕРНАЯ КИСЛОТА к., в %. Макс. вязкость имеет олеум H 2 SO 4 SO 3 , с повышением температуры h снижается. Электрич. сопротивление СЕРНАЯ КИСЛОТА к. минимально при концентрации 30 и 92% H 2 SO 4 и максимально при концентрации 84 и 99,8% H 2 SO 4 . Для олеума миним. r при концентрации 10% SO 3 . С повышением температуры r СЕРНАЯ КИСЛОТА к. увеличивается. Диэлектрич. проницаемость 100%-ной СЕРНАЯ КИСЛОТА к. 101 (298,15 К), 122 (281,15 К); криоскопич. постоянная 6,12, эбулиоскопич. постоянная 5,33; коэффициент диффузии пара СЕРНАЯ КИСЛОТА к. в воздухе изменяется с изменением температуры; D = 1,67 10 -5 T 3/2 см 2 /с.

СЕРНАЯ КИСЛОТА к.-довольно сильный окислитель, особенно при нагревании; окисляет HI и частично НВг до свободный галогенов, углерод-до СО 2 , S-до SO 2 , окисляет многие металлы (Си, Hg и др.). При этом СЕРНАЯ КИСЛОТА к. восстанавливается до SO 2 , а наиболее сильными восстановителями-до S и H 2 S. Конц. H 2 SO 4 частично восстанавливается Н 2 , из-за чего не может применяться для его сушки. Разб. H 2 SO 4 взаимодействие со всеми металлами, находящимися в электрохимический ряду напряжений левее водорода, с выделением Н 2 . Окислит. свойства для разбавленый H 2 SO 4 нехарактерны. СЕРНАЯ КИСЛОТА к. дает два ряда солей: средние-сульфаты и кислые-гидросульфаты (см. Сульфаты неорганические), а также эфиры (см. Сульфаты органические). Известны пероксомоносерная (кислота Каро) H 2 SO 5 и пероксоди-серная H 2 S 2 O 8 кислоты (см. Сера).

Получение. Сырьем для получения СЕРНАЯ КИСЛОТА к. служат: S, сульфи-ды металлов, H 2 S, отходящие газы теплоэлектростанций, сульфаты Fe, Ca и др. Осн. стадии получения СЕРНАЯ КИСЛОТА к.: 1) обжиг сырья с получением SO 2 ; 2) окисление SO 2 до SO 3 (конверсия); 3) абсорбция SO 3 . В промышленности применяют два метода получения СЕРНАЯ КИСЛОТАк., отличающихся способом окисления SO 2 ,-контактный с использованием твердых катализаторов (контактов) и нитрозный-с оксидами азота. Для получения СЕРНАЯ КИСЛОТА к. контактным способом на современной заводах применяют ванадиевые катализаторы, вытеснившие Pt и оксиды Fe. Чистый V 2 O 5 обладает слабой каталитических активностью, резко возрастающей в присутствии солей щелочных металлов, причем наиболее влияние оказывают соли К. Промотирующая роль щелочных металлов обусловлена образованием низкоплавких пиросульфованадатов (3К 2 S 2 О 7 V 2 О 5 , 2К 2 S 2 O 7 V 2 O 5 и K 2 S 2 O 7 V 2 O 5 , разлагающихся соответственно при 315-330, 365-380 и 400-405 °С). Активный компонент в условиях катализа находится в расплавленном состоянии.

Схему окисления SO 2 в SO 3 можно представить следующей образом:

На первой стадии достигается равновесие, вторая стадия медленная и определяет скорость процесса.

Произ-во СЕРНАЯ КИСЛОТА к. из серы по методу двойного контактирования и двойной абсорбции (рис. 1) состоит из следующей стадий. Воздух после очистки от пыли подается газодувкой в сушильную башню, где он осушается 93-98%-ной СЕРНАЯ КИСЛОТА к. до содержания влаги 0,01% по объему. Осушенный воздух поступает в серную печь после предварит. подогрева в одном из теплообменников контактного узла. В печи сжигается сера, подаваемая форсунками: S + О 2 : SO 2 + + 297,028 кДж. Газ, содержащий 10-14% по объему SO 2 , охлаждается в котле и после разбавления воздухом до содержания SO 2 9-10% по объему при 420 °С поступает в контактный аппарат на первую стадию конверсии, которая протекает на трех слоях катализатора (SO 2 + V 2 O 2 : : SO 3 + 96,296 кДж), после чего газ охлаждается в теплообменниках. Затем газ, содержащий 8,5-9,5% SO 3 , при 200 °С поступает на первую стадию абсорбции в абсорбер, орошаемый олеумом и 98%-ной СЕРНАЯ КИСЛОТА к.: SO 3 + Н 2 О : Н 2 SO 4 + + 130,56 кДж. Далее газ проходит очистку от брызг СЕРНАЯ КИСЛОТА к., нагревается до 420 °С и поступает на вторую стадию конверсии, протекающую на двух слоях катализатора. Перед второй стадией абсорбции газ охлаждается в экономайзере и подается в абсорбер второй ступени, орошаемый 98%-ной СЕРНАЯ КИСЛОТА к., и затем после очистки от брызг выбрасывается в атмосферу.

Рис. 1. Схема производства серной кислоты из серы: 1-серная печь; 2-котел-утилизатор; 3 - экономайзер; 4-пусковая топка; 5, 6-теплообменники пусковой топки; 7-контактный аппарат; 8-теплообменники; 9-олеумный абсорбер; 10-сушильная башня; 11 и 12-соответственно первый и второй моногидратные абсорберы; 13-сборники кислоты.

Рис.2. Схема производства серной кислоты из колчедана: 1-тарельчатый питатель; 2-печь; 3-котел-утилизатор; 4-циклоны; 5-электрофильтры; 6-промывные башни; 7-мокрые электрофильтры; 8-отдувочная башня; 9-сушильная башня; 10-брызгоуловитель; 11-первый моногидратный абсорбер; 12-теплообмен-вики; 13 - контактный аппарат; 14-олеумный абсорбер; 15-второй моногидратный абсорбер; 16-холодильники; 17-сборники.

Рис. 3. Схема производства серной кислоты нитроз-ным методом: 1 - денитрац. башня; 2, 3-первая и вторая продукц. башни; 4-окислит. башня; 5, 6, 7-абсорбц. башни; 8 - электрофильтры.

Произ-во СЕРНАЯ КИСЛОТА к. из сульфидов металлов (рис. 2) существенно сложнее и состоит из следующей операций. Обжиг FeS 2 производят в печи кипящего слоя на воздушном дутье: 4FeS 2 + 11О 2 : 2Fe 2 O 3 + 8SO 2 + 13476 кДж. Обжиговый газ с содержанием SO 2 13-14%, имеющий температуру 900 °С, поступает в котел, где охлаждается до 450 °С. Очистку от пыли осуществляют в циклоне и электрофильтре. Далее газ проходит через две промывные башни, орошаемые 40%-ной и 10%-ной СЕРНАЯ КИСЛОТА к. При этом газ окончательно очищается от пыли, фтора и мышьяка. Для очистки газа от аэрозоля СЕРНАЯ КИСЛОТА к., образующегося в промывных башнях, предусмотрены две ступени мокрых электрофильтров. После осушки в сушильной башне, перед которой газ разбавляется до содержания 9% SO 2 , его газодувкой подают на первую стадию конверсии (3 слоя катализатора). В теплообменниках газ подогревается до 420 °С благодаря теплу газа, поступающего с первой стадии конверсии. SO 2 , окисленный на 92-95% в SO 3 , идет на первую стадию абсорбции в олеумный и моногидратный абсорберы, где освобождается от SO 3 . Далее газ с содержанием SO 2 ~ 0,5% поступает на вторую стадию конверсии, которая протекает на одном или двух слоях катализатора. Предварительно газ нагревается в др. группе теплообменников до 420 °С благодаря теплу газов, идущих со второй стадии катализа. После отделения SO 3 на второй стадии абсорбции газ выбрасывается в атмосферу.

Степень превращения SO 2 в SO 3 при контактном способе 99,7%, степень абсорбции SO 3 99,97%. Произ-во СЕРНАЯ КИСЛОТА к. осуществляют и в одну стадию катализа, при этом степень превращения SO 2 в SO 3 не превышает 98,5%. Перед выбросом в атмосферу газ очищают от оставшегося SO 2 (см. Газов очистка). Производительность современной установок 1500-3100 т/сут.

Сущность нитрозного метода (рис. 3) состоит в том, что обжиговый газ после охлаждения и очистки от пыли обрабатывают так называемой нитрозой-С. к., в которой раств. оксиды азота. SO 2 поглощается нитрозой, а затем окисляется: SO 2 + N 2 O 3 + Н 2 О : Н 2 SO 4 + NO. Образующийся NO плохо растворим в нитрозе и выделяется из нее, а затем частично окисляется кислородом в газовой фазе до NO 2 . Смесь NO и NO 2 вновь поглощается СЕРНАЯ КИСЛОТАк. и т.д. Оксиды азота не расходуются в нитрозном процессе и возвращаются в производств. цикл, вследствие неполного поглощения их СЕРНАЯ КИСЛОТА к. они частично уносятся отходящими газами. Достоинства нитрозного метода: простота аппаратурного оформления, более низкая себестоимость (на 10-15% ниже контактной), возможность 100%-ной переработки SO 2 .

Аппаратурное оформление башенного нитрозного процесса несложно: SO 2 перерабатывается в 7-8 футерованных башнях с керамич. насадкой, одна из башен (полая) является регулируемым окислит. объемом. Башни имеют сборники кислоты, холодильники, насосы, подающие кислоту в напорные баки над башнями. Перед двумя последними башнями устанавливается хвостовой вентилятор. Для очистки газа от аэрозоля СЕРНАЯ КИСЛОТА к. служит электрофильтр. Оксиды азота, необходимые для процесса, получают из HNO 3 . Для сокращения выброса оксидов азота в атмосферу и 100%-ной переработки SO 2 между продукционной и абсорбционной зонами устанавливается безнитрозный цикл переработки SO 2 в комбинации с водно-кислотным методом глубокого улавливания оксидов азота. Недостаток нитрозного метода-низкое качество продукции: концентрация СЕРНАЯ КИСЛОТА к. 75%, наличие оксидов азота, Fe и др. примесей.

Для уменьшения возможности кристаллизации СЕРНАЯ КИСЛОТА к. при перевозке и хранении установлены стандарты на товарные сорта СЕРНАЯ КИСЛОТА к., концентрация которых соответствует наиболее низким температурам кристаллизации. Содержание СЕРНАЯ КИСЛОТА к. в техн. сортах (%): башенная (нитрозная) 75, контактная 92,5-98,0, олеум 104,5, высокопроцентный олеум 114,6, аккумуляторная 92-94. СЕРНАЯ КИСЛОТА к. хранят в стальных резервуарах объемом до 5000 м 3 , их общая емкость на складе рассчитана на десятисуточньш выпуск продукции. Олеум и СЕРНАЯ КИСЛОТА к. перевозят в стальных железнодорожных цистернах. Конц. и аккумуляторную СЕРНАЯ КИСЛОТА к. перевозят в цистернах из кислотостойкой стали. Цистерны для перевозки олеума покрывают теплоизоляцией и перед заливкой олеум подогревают.

Определяют СЕРНАЯ КИСЛОТА к. колориметрически и фотометрически, в виде взвеси BaSO 4 - фототурбидиметрически, а также ку-лонометрич. методом.

Применение. СЕРНАЯ КИСЛОТА к. применяют в производстве минеральных удобрений, как электролит в свинцовых аккумуляторах, для получения различные минеральных кислот и солей, химический волокон, красителей, дымообразующих веществ и ВВ, в нефтяной, металлообрабатывающей, текстильной, кожевенной и др. отраслях промышленности. Ее используют в пром. органическое синтезе в реакциях дегидратации (получение диэтилового эфира, сложных эфиров), гидратации (этанол из этилена), сульфирования (синтетич. моющие средства и промежуточные продукты в производстве красителей), алкили-рования (получение изооктана, полиэтиленгликоля, капро-лактама) и др. Самый крупный потребитель СЕРНАЯ КИСЛОТАк.-производство минеральных удобрений. На 1 т Р 2 О 5 фосфорных удобрений расходуется 2,2-3,4 т СЕРНАЯ КИСЛОТА к., а на 1 т (NH 4) 2 SO 4 -0,75 т СЕРНАЯ КИСЛОТА к. Поэтому сернокислотные заводы стремятся строить в комплексе с заводами по производству минеральных удобрений. Мировое производство СЕРНАЯ КИСЛОТА к. в 1987 достигло 152 млн. т.

СЕРНАЯ КИСЛОТА к. и олеум - чрезвычайно агрессивные вещества, поражают дыхательные пути, кожу, слизистые оболочки, вызывают затруднение дыхания, кашель, нередко-ларингит, трахеит, бронхит и т. д. ПДК аэрозоля СЕРНАЯ КИСЛОТА к. в воздухе рабочей зоны 1,0 мг/м 3 , в атм. воздухе 0,3 мг/м 3 (макс. разовая) и 0,1 мг/м 3 (среднесуточная). Поражающая концентрация паров СЕРНАЯ КИСЛОТА к. 0,008 мг/л (экспозиция 60 мин), смертельная 0,18 мг/л (60 мин). Класс опасности 2. Аэрозоль СЕРНАЯ КИСЛОТА к. может образовываться в атмосфере в результате выбросов химический и металлургич. производств, содержащих оксиды S, и выпадать в виде кислотных дождей.

Литература: Справочник сернокислотчика, под ред. К. М. Малина, 2 изд., М., 1971; Амелин А. Г., Технология серной кислоты, 2 изд., М., 1983; Васильев Б. Т., Отвагина М. И., Технология серной кислоты, М., 1985. Ю.В. Филатов.

Химическая энциклопедия. Том 4 >>

Свойства серной кислоты

Безводная серная кислота (моногидрат) представляет собой тяжелую маслянистую жидкость, которая смешивается с водой во всех соотношениях с выделением большого количества тепла. Плотность при 0 °С равна 1,85 г/см 3 . Она кипит при 296 °С и замерзает при - 10 °С. Серной кислотой называют не только моногидрат, но и водные растворы его (), а также растворы трехокиси серы в моногидрате (), называемые олеумом. Олеум на воздухе "дымит" вследствие десорбции из него. Чистая серная кислота бесцветна, техническая окрашена примесями в темный цвет.

Физические свойства серной кислоты, такие, как плотность, температура кристаллизации, температура кипения, зависят от ее состава. На рис. 1 представлена диаграмма кристаллизации системы. Максимумы в ней отвечают составу соединений или, наличие минимумов объясняется тем, что температура кристаллизации смесей двух веществ ниже температуры кристаллизации каждого из них.

Рис. 1

Безводная 100 %-ная серная кислота имеет сравнительно высокую температуру кристаллизации 10,7 °С. Чтобы уменьшить возможность замерзания товарного продукта при перевозке и хранении, концентрацию технической серной кислоты выбирают такой, чтобы она имела достаточно низкую температуру кристаллизации. Промышленность выпускает три вида товарной серной кислоты.

Серная кислота весьма активна. Она растворяет окислы металлов и большинство чистых металлов;вытесняет при повышенной температуре все другие кислоты из солей. Особенно жадно серная кислота соединяется с водой благодаря способности давать гидраты. Она отнимает воду от других кислот, от кристаллогидратов солей и даже кислородных производных углеводородов, которые содержат не воду таковую, а водород и кислород в сочетании Н:О = 2. дерево и другие растительные и животные ткани, содержащие целлюлозу, крахмал и сахар, разрушаются в концентрированной серной кислоте; вода связывается с кислотой и от ткани остается лишь мелкодисперсный углерод. В разбавленной кислоте целлюлоза и крахмал распадаются с образованием сахаров. При попадании на кожу человека концентрированная серная кислота вызывает ожоги.

Высокая активность серной кислоты в сочетании со сравнительно небольшой стоимостью производства предопределили громадные масштабы и чрезвычайное разнообразие ее применения (рис. 2). Трудно найти такую отрасль, в которой не потреблялась в тех или иных количествах серная кислота или произведенные из нее продукты.


Рис. 2

Крупнейшим потребителем серной кислоты является производство минеральных удобрений: суперфосфата, сульфата аммония и др. многие кислоты (например, фосфорная, уксусная, соляная) и соли производятся в значительной части при помощи серной кислоты. Серная кислота широко применяется в производстве цветных и редких металлов. В металлообрабатывающей промышленности серную кислоту или ее соли применяют для травления стальных изделий перед их окраской, лужением, никелированием, хромированием и т.п. значительные количества серной кислоты затрачиваются на очистку нефтепродуктов. Получение ряда красителей (для тканей), лаков и красок (для зданий и машин), лекарственных веществ и некоторых пластических масс также связано с применением серной кислоты. При помощи серной кислоты производятся этиловый и другие спирты, некоторые эфиры, синтетические моющие средства, ряд ядохимикатов для борьбы с вредителями сельского хозяйства и сорными травами. Разбавленные растворы серн6ой кислоты и ее солей применяют в производстве искусственного шелка, в текстильной промышленности для обработки волокна или тканей перед их крашением, а также в других отраслях легкой промышленности. В пищевой промышленности серная кислота применяется при получении крахмала, патоки и ряда других продуктов. Транспорт использует свинцовые сернокислотные аккумуляторы. Серную кислоту используют для осушки газов и при концентрировании кислот. Наконец, серную кислоту применяют в процессах нитрования и при производстве большей части взрывчатых веществ.

Физические и физико-химические свойства

Олеум

Растворы SO 3 в cерной кислоте называются , они образуют два соединения H 2 SO 4 ·SO 3 и H 2 SO 4 ·2SO 3 . Олеум содержит также пиросерную кислоту, получающуюся по реакции:

Н 2 SO 4 + SO 3 → H 2 S 2 O 7 .

Температура кипения водных растворов cерной кислоты повышается с ростом ее концентрации и достигает максимума при содержании 98,3 % H 2 SO 4 .

Свойства водных растворов серной кислоты и олеума
Содержание % по массе Плотность при 20 °C, г/см³ Температура кристаллизации, °C Температура кипения, °C
H 2 SO 4 SO 3 (свободный)
10 - 1,0661 −5,5 102,0
20 - 1,1394 −19,0 104,4
40 - 1,3028 −65,2 113,9
60 - 1,4983 −25,8 141,8
80 - 1,7272 −3,0 210,2
98 - 1,8365 0,1 332,4
100 - 1,8305 10,4 296,2
104,5 20 1,8968 −11,0 166,6
109 40 1,9611 33,3 100,6
113,5 60 2,0012 7,1 69,8
118,0 80 1,9947 16,9 55,0
122,5 100 1,9203 16,8 44,7

Температура кипения олеума с увеличением содержания SO 3 понижается. При увеличении концентрации водных растворов cерной кислоты общее давление пара над растворами понижается и при содержании 98,3 % Н 2 SO 4 достигает минимума. С увеличением концентрации SO 3 , в олеуме общее давление пара над ним повышается. Давление пара над водными растворами серной кислоты и олеума можно вычислить по уравнению:

Lgp (Па) = A - B/T + 2,126,

величины коэффициентов А и В зависят от концентрации серной кислоты. Пар над водными растворами серной кислоты состоит из смеси паров воды, Н 2 SO 4 и SO 3 , при этом состав пара отличается от состава жидкости при всех концентрациях cерной кислоты, кроме соответствующей .

С повышением температуры усиливается диссоциация Н 2 SO 4 ↔ H 2 O + SO 3 - Q , уравнение температурной зависимости константы равновесия lnK p = 14,74965 − 6,71464ln(298/T ) - 8,10161·10 4 T ² - 9643,04/T - 9,4577·10 -3 T + 2,19062·10 -6 T ². При нормальном давлении степень диссоциации: 10 -5 (373 К), 2,5 (473 К), 27,1 (573 К), 69,1 (673 К). Плотность 100%-ной cерной кислоты можно определить по уравнению: d = 1,8517 − 1,1·10 -3 t + 2·10 -6 t ² г/см³. С повышением концентрации растворов серной кислоты их теплоемкость уменьшается и достигает минимума для 100%-ной серной кислоты, теплоемкость олеума с повышением содержания SO³ увеличивается.

При повышении концентрации и понижении температуры теплопроводность λ уменьшается: λ = 0,518 + 0,0016t - (0,25 + t /1293)·С /100, где С -концентрация серной кислоты, в %. Максимальнаую вязкость имеет олеум Н 2 SO 4 ·SO 3 , с повышением температуры η снижается. Электрическое сопротивление серной кислоты минимально при концентрации 30 и 92 % H2SO4 и максимально при концентрации 84 и 99,8 % H 2 SO 4 . Для олеума минимальное ρ при концентрации 10 % SO 3 . С повышением температуры ρ серной кислоты увеличивается. Диэлектрическая проницаемость 100%-ной серной кислоты 101 (298,15 К), 122 (281,15 К); 6,12, 5,33; коэффициент диффузии пара серной кислоты в воздухе изменяется в зависимости от температуры; D = 1,67·10 -5 T 3/2 см²/с.

Химические свойства

Серная кислота - довольно сильный окислитель, особенно при нагревании; окисляет HI и частично НВr до свободных , до СО 2 , - до SO 2 , окисляет многие металлы ( , и др.). При этом серная кислота восстанавливается до SO 2 , а наиболее сильными восстановителями - до S и H 2 S. Концентрированная H 2 SO 4 частично восстанавливается Н 2 . Из-за чего не может применяться для его сушки. Разбавленная H 2 SO 4 взаимодействует со всеми металлами, находящимися в электрохимическом ряду напряжений левее водорода, с выделением Н 2 . Окислительные свойства для разбавленной H 2 SO 4 нехарактерны. Серная кислота дает два ряда солей: средние - сульфаты и кислые - гидросульфаты, а также эфиры. Известны пероксомоносерная (или ) Н 2 SО 5 ; и пероксодисерная H 2 S 2 O 8 кислоты.

Применение

Серную кислоту применяют:

  • В производстве минеральных удобрений;
  • Как электролит в свинцовых аккумуляторах;
  • Для получения различных минеральных кислот и солей,
  • В производстве химических волокон, красителей, дымообразующих веществ и взрывчатых веществ,
  • В нефтяной, металлообрабатывающей, текстильной, кожевенной и др. отраслях промышленности.
  • В пищевой промышленности используется в качестве ( E513 ).
  • В промышленном органическом синтезе в реакциях:
    • дегидратации (получение , сложных эфиров);
    • гидратации (
Общие Систематическое
наименование серная кислота Хим. формула H 2 SO 4 Физические свойства Состояние жидкость Молярная масса 98,082 г/моль Плотность 1,8356 г/см³ Термические свойства Т. плав. −10,38 °C Т. кип. 279,6 °C Т. воспл. не воспламеняется °C Удельная теплота плавления 10,73 Дж/кг Химические свойства pK a −3 Растворимость в воде смешивается Оптические свойства Показатель преломления 1,397 Структура Дипольный момент 2,72 Классификация Рег. номер CAS 7664-93-9 PubChem Рег. номер EINECS 616-954-1 Рег. номер EC 231-639-5 RTECS WS5600000 Безопасность ЛД 50 510 мг/кг Токсичность Приводятся данные для стандартных условий (25 °C, 100 кПа) , если не указано иного.

Олеум, дымящий на воздухе

Олеум представляет собой вязкую маслянистую бесцветную жидкость или легкоплавкие кристаллы, которые, однако, могут приобретать самые различные оттенки вследствие наличия примесей. На воздухе «дымит», реагирует с водой с выделением огромного количества тепла. Концентрация серного ангидрида может варьироваться в очень широких пределах: от единиц до десятков процентов. Олеум обладает ещё большим водоотнимающим и окислительным действием. Олеум содержит также пиросерные кислоты, получающиеся по реакциям:

H 2 S O 4 + S O 3 → H 2 S 2 O 7 ; {\displaystyle {\mathsf {H_{2}SO_{4}+SO_{3}\rightarrow H_{2}S_{2}O_{7}}};}

H 2 S O 4 + 2 S O 3 → H 2 S 3 O 10 . {\displaystyle {\mathsf {H_{2}SO_{4}+2SO_{3}\rightarrow H_{2}S_{3}O_{10}}}.}

Физические свойства

Температура кипения водных растворов серной кислоты повышается с ростом её концентрации и достигает максимума при содержании 98,3 % H 2 SO 4 . При пользовании нижеприведенной таблицы следует также ознакомиться с таблицами ГОСТ 2184-77 (действующий) и ГОСТ 2184-2013 в части массовой доли сернистого ангидрида в олеуме в процентах.

Свойства водных растворов серной кислоты и олеума
Содержание % по массе Плотность при 20 ℃, г/см³ Температура плавления , ℃ Температура кипения , ℃
H 2 SO 4 SO 3 (свободный)
98 - 1,8365 0,1 332,4
100 - 1,8305 10,4 296,2
104,5 20 1,8968 −11,0 166,6
109 40 1,9611 33,3 100,6
113,5 60 2,0012 7,1 69,8
118,0 80 1,9947 16,9 55,0
122,5 100 1,9203 16,8 44,7

С повышением температуры усиливается диссоциация:

H 2 S O 4 ⟷ H 2 O + S O 3 − Q . {\displaystyle {\mathsf {H_{2}SO_{4}\longleftrightarrow H_{2}O+SO_{3}-{\it {Q}}}}.}

Уравнение температурной зависимости константы равновесия :

Ln ⁡ K p = 14,749 65 − 6,714 64 ln ⁡ 298 T − 8,101 61 ⋅ 10 4 T 2 − 9643 , 04 T − 9,457 7 ⋅ 10 − 3 T + 2,190 62 ⋅ 10 − 6 T 2 . {\displaystyle \ln {\it {K_{p}}}=14{,}74965-6{,}71464\ln {298 \over {\it {T}}}-8{,}10161\cdot 10^{4}{\it {{T^{2}}-{{\rm {9643{,}04}} \over {\it {T}}}-{\rm {9{,}4577\cdot 10^{-3}{\it {{T}+{\rm {2{,}19062\cdot 10^{-6}{\it {{T^{2}}.}}}}}}}}}}}

При нормальном давлении степень диссоциации: 10⁻⁵ (373 К), 2,5 (473 К), 27,1 (573 К), 69,1 (673 К).

Плотность 100%-ной серной кислоты можно определить по уравнению:

D = 1,851 7 − 1 , 1 ⋅ 10 − 3 t + 2 ⋅ 10 − 6 t 2 . {\displaystyle {\it {{d}={\rm {1{,}8517-1{,}1\cdot 10^{-3}{\it {{t}+{\rm {2\cdot 10^{-6}{\it {{t^{2}}.}}}}}}}}}}}

С повышением концентрации растворов серной кислоты их теплоёмкость уменьшается и достигает минимума для 100%-ной серной кислоты, теплоёмкость олеума с повышением содержания SO₃ увеличивается.

При повышении концентрации и понижении температуры теплопроводность λ уменьшается:

λ = 0,518 + 0,001 6 t − (0 , 25 + t / 1293) ⋅ C / 100 , {\displaystyle {\rm {\lambda =0{,}518+0{,}0016{\it {{t}-{\rm {(0{,}25+{\it {{t}/{\rm {{1293})\cdot {\it {{C}/{\rm {100,}}}}}}}}}}}}}}}

где С - концентрация серной кислоты, в %.

Максимальную вязкость имеет олеум H₂SO₄·SO₃, с повышением температуры η снижается. Электрическое сопротивление серной кислоты минимально при концентрации 30 и 92 % H 2 SO 4 и максимально при концентрации 84 и 99,8 % H₂SO₄. Для олеума минимальное ρ при концентрации 10 % SO₃. С повышением температуры ρ серной кислоты увеличивается. Диэлектрическая проницаемость 100%-ной серной кислоты 101 (298,15 К), 122 (281,15 К); криоскопическая постоянная 6,12, эбулиоскопическая постоянная 5,33; коэффициент диффузии пара серной кислоты в воздухе изменяется в зависимости от температуры; D = 1,67⋅10 −5 T 3/2 см²/с.