Влияние прогресса на здоровье человека. Влияние научно-технического прогресса на развитие медицинского знания издравоохранения. Человек - хозяин природы

В поздней стадии отмечается недостаточность волевой активности, отсутствие интереса и безучастность, скупость на слова и бедность мыслей. В зависимости от структуры личности, богатства волевой сферы и способности до травмы продуктивно по-своему строить жизнь появляется выраженная в различной степени способность компенсировать возникший дефект. У многих обращала на себя внимание большая небрежность в одежде, уменьшение потребности в чистоте и некоторое "безразличие" в образе жизни.

Кляйст в своей теории относительно построения функций головного-мозга исходил из предпосылки, что и в мышлении имеется определенная "моторная" часть, которая противостоит рецептивному пассивно воспринимающему и только "познающему". Он считал, что репродуктивное мышление как противоположность продуктивному мышлению можно связывать с различными участками мозга. Рецептивная, связанная с органами чувств сфера мышления относилась к затылочной доле и к зрительным центрам коры головного мозга. Лобной доле головного мозга Кляйст приписывал собственную деятельность, "действенного" мышления, он видел в ней своего рода главный координирующий центральный орган, который в одинаковой степени тонизирующе влияет на поток мыслей и при этом развивает способности, к преодолению возникающих сопротивлений и трудностей.

Вследствие описанных выше повреждений орбитального мозга происходит обычно глубокое изменение личности, которое часто бывает трудно отличить от психопатических особенностей. При амбулаторных обследованиях последствия повреждения могут оставаться совершенно скрытыми, тем более что такие больные отличаются живыми реакциями. Они в противоположность большинству больных с повреждениями мозга производят впечатление находчивых, менее устающих, подвижных и способных перестраиваться. Часто они не высказывают никаких жалоб, считают себя субъективно здоровыми. Трудности, возникающие в совместной жизни с другими, они объясняют не своими недостатками, а только недоразумением и недостатками других людей. Обращает на себя внимание часто склонность к употреблению обидных и враждебных выражений, наглый тон, некоторая безапелляционность и склонность в разговоре быстро переключаться с одной темы на другую. Отсутствует восприятие собственного дефекта. В психологическом эксперименте признаки умственного распада отсутствуют. При некотором умении говорить и при соответствующем образовании воспроизводятся совершенно разумно сложные связи (ситуации). По просьбе врача прошлое воспроизводится без ошибок. И только когда речь заходит об описании собственных отрицательных свойств больного, совершенно без всякого смущения во время каждого обследования с одинаковой убежденностью даются разные объяснения.

Психическое изменение такого рода обычными психологическими методами установить нельзя, нередко только клиницисту-психиатру удается установить, что данный больной обращает на себя внимание некоторой несдержанностью и необдуманностью и при этом не очень точно изображает свою жизнь. При этом от родных врач узнает часто удивительные вещи. Поведение во время обследования резко отличается от поведения дома. Неопытный врач иногда сомневается, чему верить больше: рассказам родных или сообщениям самого больного. Очень ловко приводимые аргументы, почему больной дома при некоторых обстоятельствах ведет себя иначе, чем во время обследования, убеждают только немногих и часто вызывают различные мнения при судебно-психиатрической экспертизе.

Совместные повреждения глаз и орбитального мозга весьма часты. Ланденберг указывал на русскую литературу, в которой уже давно обсуждался характер таких синдромов.

Повреждение нередко захватывает обонятельные луковицы и отдельные ветви тройничного нерва. Однако такую картину вызывают не только непосредственные ранения лица, включая переднее основание черепа; другие повреждения вследствие силового воздействия могут вызывать аналогичные побочные картины с одновременным нарушением обоняния. Бай подчеркивал комбинацию нарушения обоняния с характерными нарушениями при скрытых повреждениях головного мозга. Изменения личности, как правило, не выражены в сильной степени.

Повреждение мозга, как и в приведенном выше случае, часто долго не замечается и обнаруживается иногда только в результате экспертизы по настоянию прокурора. В других случаях диагноз ставится в связи с появляющимися впервые припадками эпилепсии .

Раненый К. В., 50 лет, у которого повреждены оба глаза, получал 30% пенсию инвалида войны до 1936 г. Ранен был из пистолета в 1917 г. Жена обратила внимание на то, что ее муж после возвращения с войны совершенно изменился, он стал жестоким, "как будто он пил кровь". Она предполагала, что его так изменили тяжелые переживания на войне. Он не мог больше заниматься своей слесарной мастерской. Жена заметила, что он постоянно ссорился со своими коллегами по профессии, а к ученикам и подмастерьям относился сурово и несправедливо даже при малейшей ошибке. Иногда Б. вдруг увольнял хорошего подмастерья, потому что тот выполнял какую-то работу не так, как хотел он. Если ему не нравился обед дома, он выливал его на пол и по нескольку дней обедал в ресторане. С 1934 г. у Б. начались головные боли. Их объясняли нарушением зрения, которое якобы являлось выражением давнишних изменений поврежденных глаз. И лишь после того, как не помогли соответствующие очки и произошел эпилептический припадок, сделали рентгеновские снимки черепа (первые снимки со времени ранения в 1917 г.). Оказалось, что имело место не сквозное ранение, как предполагалось: пуля еще находилась в центре базальной лобной доли мозга; на своем пути она пробила левую базальную лобную долю мозга и, очевидно, повредила правую. Проверка обоняния, проведенная в этой связи, выявила тотальную аносмию .

Согласно Велту и Спатцу, полюс лобной и височной долей мозга, а также базальная лобная доля мозга представляют собой наиболее частую локализацию компрессионного повреждения. При воздействии силы со стороны затылочной части головы почти регулярно возникает более или менее значительное повреждение на противоположной стороне. Первый этап терапии, как правило, исчерпывается часто только лечением ранения. Возникающие в дальнейшем нарушения, которые в таких случаях проявляются неврологически менее отчетливо, чем психически, часто игнорируются или же расцениваются как признаки личностного своеобразия больного. Грунтхал в 1936 г. обращал внимание на часто нераспознаваемые последствия контузии лобной доли головного мозга. На основании вскрытия он показал, что тяжелые повреждения лобной доли головного мозга неправильно истолковывались как проявления психопатии, симуляции, рентного невроза или истерии. Примером может служить следующий случай.

К. В., родившийся в 1895 г., по профессии пекарь, происходил из очень трудолюбивой и скромной семьи. Среди ближайших родственников не было случаев психоза, или странностей в поведении. К. стал обращать на себя внимание после ранения в мае 1916 г. (ему тогда было 20 лет). Его прозвали "негодяем К.", и под этим прозвищем он был известен во всей округе. Он получил слепое затылочное ранение. Последовала начинающаяся корковая слепота. Рана на затылке гноилась, необходимо было делать дополнительные операции для удаления гноя и омертвевших участков кости. Когда позднее снова вернулась ограниченная способность видеть, К. вел себя при осмотрах весьма демонстративно и странно, вследствие чего врачи усомнились, что у него такой большой процент потери зрения. Повторные проверки у окулистов, казалось, подтверждали факт симуляции. Только когда стали появляться припадки, было, наконец, установлено наличие повреждения мозга. Пенсию К. все больше повышали, но в дотации на уход за ним было отказано. Для того чтобы подчеркнуть свое заболевание, К. сделал себе черную повязку, которую носил вокруг головы и которая должна была "защищать" его затылок. Незадолго до ранения он женился. От этого брака родилось 4 детей, которые умерли от истощения и туберкулеза. У К. были многочисленные связи с другими женщинами; иногда он жил с цыганкой на окраине города, часто спал в поле или в садовом домике и совершенно не заботился о своей семье. Из года в год он носил одну и ту же грязную рваную одежду. Он злоупотреблял алкоголем "для успокоения" и просил прописывать ему спиртовые настойки литрами. Постепенно К. стал известен во всех соответствующих институтах и клиниках. Он вел себя все хуже, истерически симулируя хромоту, глухоту, а иногда демонстрировал также совершенную слепоту. Однако это ему не мешало в городах, где он находился, рассматривать витрины магазинов, записывать цены и покупать преимущественна алкогольные напитки. В 1946 г. его обследовали в клинике во Фрейбурге. Электроэнцефалограмма показала наличие в правой височной доле очаговых явлений. Позднее участились сообщения о беспризорности, бродяжничестве и нищенстве К. Он умер в 1956 г. от бронхиальной пневмонии и белой горячки в качестве осложнения. На секции в головном мозгу было обнаружено обширное поражение обеих затылочных долей мозга, а также дефект величиной с куриное яйцо в правой базальной лобной доле мозга. Так как эта полость не была связана с полостями, содержащими спинномозговую жидкость, дефект не выявлялся при пневмоэнцефалографии .

Таким образом, истерический характер, установочное поведение и другие расстройства психического происхождения могут настолько маскировать картину повреждения мозга, что систематические неврологические обследования и попытки выявить локализацию очага прекращаются, так как кажутся бесполезными. С другой стороны, как показывает случай с К. В., тяжелые истерические картины вызывают особое подозрение на органическое повреждение лобной доли головного мозга. То, что установили специалисты относительно повреждений головного мозга, было уже давно известно при атрофиях головного мозга, опухолях и некоторых сосудистых заболеваниях подобной локализации.

Страница 2 - 2 из 3

Уровни пластичности

В начале нынешнего столетия исследователи мозга отказались от традиционных представлений о структурной стабильности мозга взрослого человека и невозможности образования в нём новых нейронов. Стало ясно, что пластичность взрослого мозга в ограниченной степени использует и процессы нейроногенеза.

Говоря о пластичности мозга, чаще всего подразумевают его способность изменяться под влиянием обучения или повреждения. Механизмы, ответственные за пластичность, различны, и наиболее совершенное её проявление при повреждении мозга - регенерация. Мозг представляет собой чрезвычайно сложную сеть нейронов, которые контактируют друг с другом посредством специальных образований - синапсов. Поэтому мы можем выделить два уровня пластичности: макро- и микроуровень. Макроуровень связан с изменением сетевой структуры мозга, обеспечивающей сообщение между полушариями и между различными областями в пределах каждого полушария. На микроуровне происходят молекулярные изменения в самих нейронах и в синапсах. На том и другом уровне пластичность мозга может проявляться как быстро, так и медленно. В данной статье речь пойдёт в основном о пластичности на макроуровне и о перспективах исследований регенерации мозга.

Существуют три простых сценария пластичности мозга. При первом происходит повреждение самого мозга: например, инсульт моторной коры, в результате которого мышцы туловища и конечностей лишаются контроля со стороны коры и оказываются парализованными. Второй сценарий противоположен первому: мозг цел, но повреждён орган или отдел нервной системы на периферии: сенсорный орган - ухо или глаз, спинной мозг, ампутирована конечность. А поскольку при этом в соответствующие отделы мозга перестаёт поступать информация, эти отделы становятся „безработными“, они функционально не задействованы. В том и другом сценарии мозг реорганизуется, пытаясь восполнить функцию повреждённых областей с помощью неповреждённых либо вовлечь „безработные“ области в обслуживание других функций. Что касается третьего сценария, то он отличен от первых двух и связан с психическими расстройствами, вызванными различными факторами.

Немного анатомии


На рис. 1 представлена упрощённая схема расположения на наружной коре левого полушария полей, описанных и пронумерованных в порядке их изучения немецким анатомом Корбинианом Бродманом.

Каждое поле Бродмана характеризуется особым составом нейронов, их расположением (нейроны коры образуют слои) и связями между ними. К примеру, поля сенсорной коры, в которых происходит первичная переработка информации от сенсорных органов, резко отличаются по своей архитектуре от первичной моторной коры, ответственной за формирование команд для произвольных движений мышц. В первичной моторной коре преобладают нейроны, по форме напоминающие пирамиды, а сенсорная кора представлена преимущественно нейронами, форма тел которых напоминает зерна, или гранулы, почему их и называют гранулярными.

Обычно мозг подразделяют на передний и задний (рис. 1 ). Области коры, прилегающие в заднем мозге к первичным сенсорным полям, называют ассоциативными зонами. Они перерабатывают информацию, поступающую от первичных сенсорных полей. Чем сильнее удалена от них ассоциативная зона, тем больше она способна интегрировать информацию от разных областей мозга. Наивысшая интегративная способность в заднем мозге свойственна ассоциативной зоне в теменной доле (на рис. 1 не окрашена).

В переднем мозге к моторной коре прилегает премоторная, где находятся дополнительные центры регуляции движения. На лобном полюсе расположена другая обширная ассоциативная зона - префронтальная кора. У приматов это наиболее развитая часть мозга, ответственная за самые сложные психические процессы. Именно в ассоциативных зонах лобной, теменной и височной долей у взрослых обезьян выявлено включение новых гранулярных нейронов с непродолжительным временем жизни - до двух недель. Данное явление объясняют участием этих зон в процессах обучения и памяти.

В пределах каждого полушария близлежащие и отдалённые области взаимодействуют между собой, но сенсорные области в пределах полушария не сообщаются друг с другом напрямую. Между собой связаны гомотопические, то есть симметричные, области разных полушарий. Полушария связаны также с нижележащими, эволюционно более древними подкорковыми областями мозга.

Резервы мозга

Впечатляющие свидетельства пластичности мозга нам доставляет неврология, особенно в последние годы, с появлением визуальных методов исследования мозга: компьютерной, магнитно-резонансной и позитронно-эмиссионной томографии, магнитоэнцефалографии. Полученные с их помощью изображения мозга позволили убедиться, что в некоторых случаях человек способен работать и учиться, быть социально и биологически полноценным, даже утратив весьма значительную часть мозга.

Пожалуй, наиболее парадоксальный пример пластичности мозга - случай гидроцефалии у математика, приведшей к утрате почти 95% коры и не повлиявшей на его высокие интеллектуальные способности. Журнал „Science“ опубликовал по этому поводу статью с ироничным названием „Действительно ли нам нужен мозг?“


Однако чаще значительное повреждение мозга ведёт к глубокой пожизненной инвалидности - его способность восстанавливать утраченные функции не беспредельна. Распространённые причины поражения мозга у взрослых - нарушения мозгового кровообращения (в наиболее тяжёлом
проявлении - инсульт), реже - травмы и опухоли мозга, инфекции и интоксикации. У детей нередки случаи нарушения развития мозга, связанные как с генетическими факторами, так и с патологией внутриутробного развития.

Среди факторов, определяющих восстановительные способности мозга, прежде всего следует выделить возраст пациента . В отличие от взрослых, у детей после удалений одного из полушарий другое полушарие компенсирует функции удалённого, в том числе и языковые. (Хорошо известно, что у взрослых людей утрата функций одного из полушарий сопровождается нарушениями речи.) Не у всех детей компенсация происходит одинаково быстро и полно, однако треть детей в возрасте 1 года с парезом рук и ног к 7 годам избавляются от нарушений двигательной активности. До 90% детей с неврологическими нарушениями в неонатальном периоде впоследствии развиваются нормально. Следовательно, незрелый мозг лучше справляется с повреждениями.

Второй фактор - длительность воздействия повреждающего агента. Медленно растущая опухоль деформирует ближайшие к ней отделы мозга, но может достигать внушительных размеров, не нарушая функций мозга: в нём успевают включиться компенсаторные механизмы. Однако острое нарушение такого же масштаба чаще всего бывает несовместимо с жизнью.

Третий фактор - локализация повреждения мозга. Небольшое по размеру, повреждение может затронуть область плотного скопления нервных волокон, идущих к различным отделам организма, и стать причиной тяжкого недуга. К примеру, через небольшие участки мозга, именуемые внутренними капсулами (их две, по одной в каждом полушарии), от мотонейронов коры мозга проходят волокна так называемого пирамидного тракта (рис. 2 ), идущего в спинной мозг и передающего команды для всех мышц туловища и конечностей. Так вот, кровоизлияние в области внутренней капсулы может привести к параличу мышц всей половины тела.

Четвёртый фактор - обширность поражения. В целом чем больше очаг поражения, тем больше выпадений функций мозга. А поскольку основу структурной организации мозга составляет сеть из нейронов, выпадение одного участка сети может затронуть работу других, удалённых участков. Вот почему нарушения речи нередко отмечаются при поражении областей мозга, расположенных далеко от специализированных областей речи, например центра Брока (поля 44–45 на рис. 1 ).

Наконец, помимо этих четырёх факторов, важны индивидуальные вариации в анатомических и функциональных связях мозга.

Как реорганизуется кора

Мы уже говорили о том, что функциональная специализация разных областей коры мозга определяется их архитектурой. Эта сложившаяся в эволюции специализация служит одним из барьеров для проявления пластичности мозга. Например, при повреждении первичной моторной коры у взрослого человека её функции не могут взять на себя сенсорные области, расположенные с ней по соседству, но прилежащая к ней премоторная зона того же полушария - может.

У правшей при нарушении в левом полушарии центра Брока, связанного с речью, активируются не только прилежащие к нему области, но и гомотопическая центру Брока область в правом полушарии. Однако такой сдвиг функций из одного полушария в другое не проходит бесследно: перегрузка участка коры, помогающего повреждённому участку, приводит к ухудшению выполнения его собственных задач. В описанном случае передача речевых функций правому полушарию сопровождается ослаблением у пациента пространственно-зрительного внимания - например, такой человек может частично игнорировать (не воспринимать) левую часть пространства.

Примечательно, что межполушарная передача функций в одних случаях возможна, а в других - нет. По-видимому, это означает, что гомотопические зоны в обоих полушариях загружены неодинаково. Возможно, поэтому при лечении инсульта методом транскраниальной микроэлектростимуляции (подробнее о ней мы расскажем далее) чаще наблюдается и успешнее протекает улучшение речи, чем восстановление двигательной активности руки.

Компенсаторное восстановление функции, как правило, происходит не за счёт какого-либо одного механизма. Практически каждая функция мозга реализуется с участием различных его областей, как корковых, так и подкорковых. Например, в регуляции двигательной активности помимо первичной моторной коры принимают участие ещё несколько дополнительных моторных корковых центров, которые имеют собственные связи с ближними и отдалёнными областями мозга и собственные пути, идущие через ствол головного мозга в спинной мозг. При повреждении первичной моторной коры активация этих центров улучшает двигательные функции.

Кроме того, организация самого пирамидного тракта - наиболее длинного проводящего пути, который состоит из многих миллионов аксонов („отводящих“ отростков) мотонейронов коры и следует к нейронам передних рогов спинного мозга (рис. 2 ), - предоставляет и другую возможность. В продолговатом мозге пирамидный тракт расщепляется на два пучка: толстый и тонкий. Толстые пучки перекрещиваются друг с другом, и в результате толстый пучок правого полушария в спинном мозге следует слева, а толстый пучок левого полушария - соответственно справа. Мотонейроны коры левого полушария иннервируют мышцы правой половины тела, и наоборот. Тонкие же пучки не перекрещиваются, ведут от правого полушария к правой стороне, от левого - к левой.

У взрослого человека активность мотонейронов коры, аксоны которых проходят по тонким пучкам, практически не выявляется. Однако при поражении, например, правого полушария, когда нарушается двигательная активность мышц шеи и туловища левой стороны, в левом полушарии активируются именно эти мотонейроны, с аксонами в тонком пучке. В результате активность мышц частично восстанавливается. Можно предположить, что этот механизм также задействован при лечении инсультов в острой стадии транскраниальной микроэлектростимуляцией.

Замечательное проявление пластичности мозга - реорганизация повреждённой коры даже по прошествии многих лет с момента возникновения повреждения. Американский исследователь Эдвард Тауб (ныне работающий в университете Алабамы) и его коллеги из Германии Вольфганг Митнер и Томас Элберт предложили простую схему реабилитации двигательной активности у пациентов, перенёсших инсульт. Давность перенесённого поражения мозга среди их пациентов варьировала от полугода до 17 лет. Суть двухнедельной терапии заключалась в разработке движений парализованной руки с помощью различных упражнений, причём здоровая рука была неподвижной (фиксировалась). Особенность этой терапии - интенсивность нагрузки: пациенты упражнялись по шесть часов ежедневно! Когда же мозг пациентов, у которых восстановилась двигательная активность руки, обследовали с помощью функциональной магнитно-резонансной томографии, то оказалось, что в выполнение движений этой рукой вовлекаются множество областей обоих полушарий. (В норме - при непоражённом мозге, - если человек двигает правой рукой, у него активируется преимущественно левое полушарие, а правое полушарие ответственно за движение левой руки.)

Восстановление активности парализованной руки через 17 лет после инсульта - бесспорно, волнующее достижение и яркий пример реорганизации коры. Однако реализовано это достижение высокой ценой - соучастием большого числа областей коры и притом обоих полушарий.

Принцип работы мозга таков, что в каждый момент та или иная область коры может участвовать только в одной функции. Вовлечение сразу многих областей коры в управление движениями руки ограничивает возможность параллельного (одновременного) выполнения мозгом разных задач. Представим себе ребёнка на двухколёсном велосипеде: он восседает на седле, крутит ногами педали, прослеживает свой маршрут, правой рукой фиксирует руль и её указательным пальцем нажимает на звонок, а левой рукой держит печенье, откусывая его. Выполнение такой простой программы быстрого переключения с одного действия на другое непосильно не только для поражённого, но и для реорганизованного мозга. Не умаляя важности предложенного метода реабилитации инсультных больных, хотелось бы заметить, что она не может быть совершенной. Идеальным вариантом представляется восстановление функции не за счёт реорганизации поражённого мозга, а за счёт его регенерации.

Отступление от правил

Обратимся теперь ко второму сценарию: мозг цел, но повреждены периферические органы, а конкретнее - слух или зрение. Именно в такой ситуации оказываются люди, рождённые слепыми или глухими. Давно замечено, что слепые быстрее дискриминируют слуховую информацию и воспринимают речь, чем зрячие. Когда слепых от рождения (и утративших зрение в раннем детстве) исследовали методом позитронно-эмисионной томографии мозга в то время, как они читали тексты, набранные брайлевским шрифтом, оказалось, что при чтении пальцами у них активируется не только соматосенсорная кора, ответственная за тактильную чувствительность, но и зрительная кора. Почему это происходит? Ведь в зрительную кору у слепых не поступает информация от зрительных рецепторов! Аналогичные результаты были получены при изучении мозга глухих: они воспринимали используемый ими для общения знаковый язык (жестикуляцию) в том числе и слуховой корой.

Рис. 3. Операция подсадки зрительного тракта к медиальному коленчатому телу таламуса. Слева показан нормальный ход нервных путей от глаз и ушей, справа - их расположение после операции. (Нервные пути, несущие слуховую информацию, отсекали от медиальных коленчатых тел и на их места подсаживали окончания зрительных нервов, отделённые от латеральных коленчатых тел таламуса. Было уничтожено также нижнее двухолмие в среднем мозге, где переключается часть нервных путей от уха в слуховую кору (не показано на схеме):
1 - зрительный тракт,
2 - слуховой тракт,
3 - латеральные коленчатые тела таламуса,
4 - медиальные коленчатые тела таламуса,
5 - таламокортикальные пути к зрительной коре,
6 - таламокортикальные пути к слуховой коре.


Как уже отмечалось, сенсорные зоны не связаны в коре напрямую друг с другом, а взаимодействуют лишь с ассоциативными областями. Можно предположить, что переадресация соматосенсорной информации у слепых в зрительную кору и зрительной информации у глухих - в слуховую происходит с участием подкорковых структур. Такая переадресация представляется экономичной. При передаче информации от сенсорного органа в сенсорную область коры сигнал несколько раз переключается с одного нейрона на другой в подкорковых образованиях мозга. Одно из таких переключений происходит в таламусе (зрительном бугре) промежуточного мозга. Пункты же переключения нервных путей от разных сенсорных органов близко соседствуют (рис. 3 , слева).

При повреждении какого-либо сенсорного органа (или идущего от него нервного пути) его пункт переключения оккупируют нервные пути другого сенсорного органа. Поэтому сенсорные области коры, оказавшиеся отрезанными от обычных источников информации, вовлекаются в работу за счёт переадресации им иной информации. Но что происходит тогда с самими нейронами сенсорной коры, обрабатывающими чужую для них информацию?

Исследователи из Массачусетсского технологического института в США Джитендра Шарма, Алессандра Ангелуччи и Мриганка Сур брали хорьков в возрасте одного дня и делали зверькам хирургическую операцию: подсаживали оба зрительных нерва к таламокортикальным путям, ведущим в слуховую сенсорную кору (рис. 3). Целью эксперимента было выяснить, преобразуется ли слуховая кора структурно и функционально при передаче ей зрительной информации. (Напомним ещё раз, что для каждого типа коры характерна особая архитектура нейронов.) И в самом деле, это произошло: слуховая кора морфологически и функционально стала похожа на зрительную!

Иначе поступили исследователи Дайана Канн и Ли Крубитцер из Калифорнийского университета. Опоссумам на четвёртый день после рождения удалили оба глаза и через 8–12 месяцев у повзрослевших животных изучали первичные сенсорные области коры и прилегающую к ним ассоциативную зону. Как и ожидалось, у всех ослеплённых животных реорганизовалась зрительная кора: она сильно уменьшилась в размере. Зато, к удивлению исследователей, непосредственно к зрительной коре прилегала структурно новая область X. Как зрительная кора, так и область X содержали нейроны, воспринимавшие слуховую, соматосенсорную или и ту и другую информацию. В зрительной коре оставалось ничтожное число участков, не воспринимавших ни ту, ни другую сенсорную модальность - то есть сохранивших, вероятно, своё первоначальное назначение: восприятие зрительной информации.

Неожиданным оказалось то, что реорганизация коры затронула не только зрительную кору, но и соматосенсорную, и слуховую. У одного из животных соматосенсорная кора содержала нейроны, реагировавшие или на слуховую, или на соматосенсорную, или на обе модальности, а нейроны слуховой коры реагировали либо на слуховые сигналы, либо на слуховые и соматосенсорные. При нормальном развитии мозга такое смешение сенсорных модальностей отмечается только в ассоциативных областях более высокого порядка, но не в первичных сенсорных областях.

Развитие мозга определяется двумя факторами: внутренним - генетической программой и внешним - информацией, поступающей извне. Вплоть до последнего времени оценка влияния внешнего фактора была трудноразрешимой экспериментальной задачей. Исследования, о которых мы только что рассказали, позволили установить, насколько важен характер поступающей в мозг информации для структурно-функционального становления коры. Они углубили наши представления о пластичности мозга.

Почему мозг регенерирует плохо

Цель регенерационной биологии и медицины - при повреждении органа блокировать заживление рубцеванием и выявить возможности перепрограммирования повреждённого органа на восстановление структуры и функции. Эта задача предполагает восстановление в повреждённом органе состояния, характерного для эмбриогенеза, и присутствие в нём так называемых стволовых клеток, способных размножаться и дифференцироваться в различные типы клеток.

В тканях взрослого организма клетки часто обладают весьма ограниченной способностью к делению и жёстко придерживаются „специализации“: клетки эпителия не могут превращаться в клетки мышечного волокна и наоборот. Однако накопившиеся к настоящему времени данные позволяют с уверенностью утверждать, что практически во всех органах млекопитающих клетки обновляются. Но скорость обновления различна. Регенерация клеток крови и эпителия кишечника, рост волос и ногтей идут в постоянном темпе на протяжении всей жизни человека. Замечательной регенерационной способностью обладают печень, кожа или кости, причём регенерация требует участия большого числа регуляторных молекул различного происхождения. Иначе говоря, гомеостаз (равновесие) этих органов находится под системным надзором, так что их способность к регенерации пробуждается каждый раз, когда какое-либо повреждение нарушает равновесие.

Обновляются, хоть и медленно, мышечные клетки сердца: нетрудно подсчитать, что за время человеческой жизни клеточный состав сердца хотя бы раз обновляется полностью. Более того, обнаружена линия мышей, у которых практически полностью регенерирует сердце, поражённое инфарктом. Каковы же перспективы регенерационной терапии мозга?

Нейроны обновляются и в мозгу взрослого человека. В обонятельных луковицах мозга и зубчатой извилине гиппокампа, расположенного на внутренней поверхности височной доли мозга, идёт непрерывное обновление нейронов. Из мозга взрослого человека выделены стволовые клетки, и в лабораторных условиях показано, что они могут дифференцироваться в клетки других органов. Как уже упоминалось, в ассоциативных областях лобной, височной и теменной долей у взрослых обезьян образуются новые гранулярные нейроны с небольшим (около двух недель) временем жизни. У приматов также выявлен нейроногенез в обширной области, охватывающей внутреннюю и нижнюю поверхности височной доли мозга. Но эти процессы имеют ограниченный характер - иначе они вошли бы в противоречие с эволюционно сформировавшимися механизмами мозга.

Трудно представить, как человек и его младшие братья существовали бы в природе при быстром клеточном обновлении мозга. Невозможно было бы сохранять в памяти накопленный опыт, информацию об окружающем мире, необходимые навыки. Более того, оказались бы невозможными механизмы, отвечающие за комбинаторное манипулирование мысленными представлениями об объектах и процессах прошлого, настоящего или будущего - всё то, что лежит в основе сознания, мышления, памяти, языка и др.

Исследователи сходятся в том, что ограниченность регенерации взрослого мозга нельзя объяснить каким-либо одним фактором и потому нельзя снять каким-то единичным воздействием. Сегодня известно несколько десятков разных молекул, блокирующих (или индуцирующих) регенерацию длинных отростков нейронов - аксонов. Хотя уже достигнуты некоторые успехи в стимуляции роста повреждённых аксонов, до решения проблемы регенерации самих нейронов ещё далеко. Однако в наши дни, когда сложность мозга перестала отпугивать исследователей, эта проблема всё больше привлекает внимание. Но мы не должны забывать про то, о чём говорилось в предыдущем абзаце. Восстановление повреждённого мозга не будет означать полного восстановления прежней личности: гибель нейронов - это невосполнимая утрата прошлого опыта и памяти.

Что такое МЭС

Сложность механизмов регенерации мозга дала толчок поискам таких системных воздействий, которые вызывали бы движение молекул в самих нейронах и в их окружении, переводя мозг в новое состояние. Синергетика - наука о коллективных взаимодействиях - утверждает, что новое состояние в системе можно создать перемешиванием её элементов. Поскольку большинство молекул в живых организмах несёт заряд, подобное возмущение в мозгу можно было бы вызвать с помощью внешних слабых импульсных токов, приближающихся по своим характеристикам к биотокам самого мозга. Эту идею мы и попытались осуществить на практике.

Решающим фактором для нас стала медленноволновая (0,5–6 герц) биоактивность мозга маленьких детей. Поскольку на каждой стадии развития характеристики мозга самосогласованны, мы выдвинули допущение, что именно эта активность поддерживает способность детского мозга к восстановлению функций. Не сможет ли медленноволновая микро-электростимуляция слабыми токами (МЭС) индуцировать подобные механизмы у взрослого человека?

Разница в электрическом сопротивлении клеточных элементов и межклеточной жидкости нервной ткани громадна - у клеток оно в 10 3–10 4 раз выше. Поэтому при МЭС молекулярные сдвиги скорее произойдут в межклеточной жидкости и на поверхности клеток. Сценарий изменений может быть следующим: наиболее сильно начнут колебаться малые молекулы в межклеточной жидкости, низкомолекулярные регуляторные факторы, слабо связанные с клеточными рецепторами, оторвутся от них, изменятся потоки ионов из клеток и в клетку и т. д. Следовательно, МЭС может вызвать немедленную пертурбацию межклеточной среды в очаге поражения, изменить патологический гомеостаз и индуцировать переход к новым функциональным отношениям в ткани мозга. В результате клиническая картина заболевания быстро улучшится, уменьшится нейродефицит. Заметим, что процедура МЭС безвредна, безболезненна и непродолжительна: пациенту просто накладывают на определённые области головы пару электродов, подсоединённых к источнику тока.

Чтобы проверить, насколько справедливы наши предположения, мы в сотрудничестве со специалистами из нескольких клиник и больниц Санкт-Петербурга отобрали пациентов со следующими поражениями центральной нервной системы: острая стадия инсульта, невралгия тройничного нерва, опийный абстинентный синдром и детский церебральный паралич. Эти заболевания различаются по своему происхождению и механизмам развития, однако в каждом случае МЭС вызывала быстрые либо немедленные терапевтические эффекты (быстрый и немедленный - не одно и то же: немедленный эффект наступает сразу после после воздействия или же в очень скором времени).

Столь впечатляющие результаты дают основание полагать, что МЭС изменяет функционирование сетевой структуры мозга за счёт разных механизмов. Что касается быстрых и нарастающих от процедуры к процедуре эффектов МЭС у пациентов в острой стадии инсульта, то они, помимо механизмов, рассмотренных выше, могут быть связаны с восстановлением нейронов, подавленных интоксикацией, с предотвращением апоптоза - запрограммированной гибели нейронов в зоне поражения, а также с активированием регенерации. Последнее предположение подкрепляется тем, что МЭС ускоряет восстановление функции руки после того, как в ней хирургическим путём воссоединяют концы повреждённых периферических нервов, а также тем, что у пациентов в нашем исследовании наблюдались и отсроченные терапевтические эффекты.

При опийном абстинентном синдроме реализуется третий из рассматриваемых нами сценариев пластичности мозга. Это психическое расстройство, связанное с многократным приёмом наркотика. На начальных этапах нарушения ещё не сопряжены с заметными структурными изменениями мозга, как при детском церебральном параличе, но в значительной степени обусловлены процессами, происходящими на микроуровне. Быстрота и множественность эффектов МЭС при этом синдроме и при других психических расстройствах подтверждает наше предположение о том, что МЭС воздействует сразу на множество разных молекул.

Лечение с помощью МЭС получали в общей сложности более 300 пациентов, причём главным критерием для оценки действия МЭС служили терапевтические эффекты. В будущем нам представляется необходимым не столько выяснение механизма действия МЭС, сколько достижение максимальной пластичности мозга при каждом заболевании. Так или иначе, свести объяснение действия МЭС к каким-то отдельным молекулам либо клеточным сигнальным системам было бы, по-видимому, некорректно.

Важное достоинство микроэлектростимуляции слабыми токами - в том, что она, в отличие от популярных ныне методов заместительной клеточной и генной терапии, запускает эндогенные, собственные механизмы пластичности мозга. Главная проблема заместительной терапии даже не в том, чтобы накопить необходимую массу клеток для трансплантации и ввести их в поражённый орган, а в том, чтобы орган принял эти клетки, чтобы они смогли в нём жить и работать. До 97% клеток, трансплантированных в мозг, погибает! Поэтому дальнейшее изучение МЭС в индуцировании процессов регенерации мозга представляется перспективным.

Заключение

Мы рассмотрели лишь некоторые примеры пластичности мозга, связанные с восстановлением повреждений. Другие её проявления имеют отношение к развитию мозга, точнее, к механизмам, ответственным за память, обучение и другие процессы. Возможно, здесь нас ждут новые захватывающие открытия. (Вероятный предвестник их - неонейроногенез в ассоциативных зонах лобной, теменной и височной долей взрослых обезьян.)

Однако у пластичности мозга есть и отрицательные проявления. Её минус-эффекты определяют многие болезни мозга (например, болезни роста и старения, психические расстройства). Обзоры многочисленных данных по визуальным исследованиям мозга сходятся в том, что при шизофрении часто уменьшается кора фронтальной области. Но нередки также изменения коры и в других областях мозга. Следовательно, уменьшается число нейронов и контактов между нейронами поражённой области, а также число её связей с другими отделами мозга. Изменяется ли при этом характер переработки поступающей в них информации и содержание информации „на выходе“? Нарушения восприятия, мышления, поведения и языка у больных шизофренией позволяют утвердительно ответить на этот вопрос.

Мы видим, что механизмы, отвечающие за пластичность мозга, играют важнейшую роль в его функционировании: в компенсации повреждений и в развитии болезней, в процессах обучения и формирования памяти и др. Не будет большим преувеличением отнести пластичность к фундаментальным особенностям мозга.

Доктор биологических наук Е. П. Харченко ,
М. Н. Клименко

Химия и жизнь, 2004, N6

Основой восстановления и компенсации утраченных функций является пластичность – способность нервных элементов к перестройке функциональных свойств. Основные проявления этого свойства – посттетаническая потенциация, образование временных связей. Эти феномены обеспечивают более активное вовлечение в регуляцию нару­шенной функции неповрежденных нейронов, локализующихся в других отделах (помимо поврежденного центра). Нали­чие таких «рассеянных» нейронов особенно характерно для коры большого . В этом случае резко возрастает также интенсивность функционирования нейронов, сохранившихся в поврежденном центре, например в результате и дегенерации значительной части нейронов двига­тельного центра. Особо важную роль в компенсации любой нарушенной функции ( , двигательной активности и др.) играет возможность регенерации поврежденных нервных волокон и восстановление нарушенных межнейронных связей и связей с эффекторами.

А. Механизмы активации сохранившихся нейронов поврежден­ ного центра и вовлечения в более активную деятельность рассеян­ных нейронов, способных выполнять нарушенную функцию.

1. Посттетаническая потенциация (феномен облегчения) – это улучшение проведения в синапсах после короткого раздражения аффе­рентных путей. Кратковременная активация увеличивает амплитуду постсинаптических потенциалов. Облегчение наблюдается и во время раздражения (вначале) – в этом случае феномен называют тетанической потенциацией. Длительность посттетанической потенциации за­висит от свойств синапса и характера раздражения – после одиночных стимулов она выражена слабо, после раздражающей серии потенциа­ция (облегчение) может продолжаться от нескольких минут до не­скольких часов. По-видимому, главной причиной возникновения феномена облегчения является накопление ионов Са 2+ в пресинаптических окончаниях, поскольку ионы Са 2+ , которые входят в нервное окончание во время ПД, накапливаются там, так как ионная помпа не успевает выводить их из нервного окончания. Соответственно увели­чивается высвобождение медиатора при возникновении каждого им­пульса в нервном окончании, возрастает ВПСП. Кроме того, при час­том использовании синапсов ускоряется синтез медиатора, а при ред­ком их использовании, напротив, синтез медиаторов уменьшается – это важнейшее свойство ЦНС: необходимо активно работать! Поэтому фо­новая активность нейронов способствует возникновению в нервных центрах.

Значение феномена облегчения при компенсации нарушенных функций заключается в том, что он создает предпосылки для улучшения процессов переработки информации на сохранив­шихся нейронах нервных центров, которые начинают работать более активно. Повторные возникновения явлений облегчения в нервном центре могут вызвать переход центра из обычного со­стояния в доминантное.

2. Доминанта – господствующий очаг возбуждения в ЦНС, подчиняющий себе функции других нервных центров. Доминантное состояние сохранившихся нейронов центра и рассеянных нейронов, участвующих в выполнении той или иной функции, обеспечивает более активную и стойкую деятельность указанных нервных элементов. Поэтому посттетаническая потенциация выступает в роли первого этапа – более активного вовлечения сохранившихся и рассеянных нейронов в регуляцию нару­шенной функции с помощью формирования доминантного очага. В связи с этим для восстановления двигательных функций необ­ходимо больше движений, в том числе и пассивных.

3. Образование временных связей как важнейшего элемента также способствует восстановлению нарушенных функций. В первую очередь это относится к интеллектуальной деятельности, причем возможности коры большого мозга огромны. Известно,
что условнорефлекторные связи можно выработать фактически на любой раздражитель (любое изменение внешней или внутренней среды организма).

Б. Регенерация нервных волокон как фактор, способствующий восстановлению нарушенной функции.

1. Хорошо известны клинические наблюдения за больными, у которых после кровоизлияний в вещество мозга повреждались центры регуляции мышечного тонуса и акта ходьбы. Тем не менее со временем парализованная конечность у больных постепенно начинала вовлекаться в двигательную активность и нормализовался тонус ее мышц. Нарушенная двигательная функция частично, а иногда и полностью восстанавливается за счет большей ак­тивности сохранившихся нейронов и вовлечения в эту функцию других нейронов ЦНС, чему способствуют регулярные пассивные ц активные движения.

Основные симптомы нарушения функций в большей и ли меньшей степени присутствуют при поражении каждого из трех его отделов, что свидетельствует о функциональном пере­крытии между отдельными отделами .

Мозжечка не имеют прямого выхода на спинальные мотонейроны, а действуют на них через корково-стволовые мо­торные центры. Этим, вероятно, объясняется высокая степень пластичности головного мозга, способного осуществлять компен­сацию нарушенных функций мозжечка.

Известны случаи врожденного отсутствия мозжечка или мед­ленного разрушения его опухолью у человека без симптомов на­рушения движения.

2. Развитие и регенерация отростков нейрона. После рожде­ния у ребенка, как и у взрослого человека, деления нейронов и нейробластов практически не происходит, хотя отдельные случаи митоза возможны. В связи с этим усложнение функций в процессе онтогенеза или при функциональных нагрузках осуществляется в результате развития нервных отростков – увели­чения их числа и степени ветвления. Так, у взрослого человека по сравнению с новорожденным число точек ветвления дендритов в 13 раз больше, а общая длина дендритов нейронов коры – в 34 раза. Нарастает число коллатералей и терминальных разветвлений аксо­на. Конечной целью развития нервных волокон является образова­ние новых синаптических контактов, обеспечивающих передачу сигнала другой клетке.

При развитии, а также при регенерации поврежденного отрост­ка нейрона образуется конус роста волокна – утолщение со множе­ством длинных и тонких отростков толщиной 0,1-0,2 мкм и длиной до 50 мкм, отходящих в разные стороны. Конус роста является зо­ной интенсивного экзо- и эндоцитоза. Мембранный материал, не­обходимый для регенерации, образуется в теле нейрона и перено­сится быстрым транспортом в виде пузырьков к конусу роста и по­средством экзоцитоза встраивается в клеточную мембрану, удлиняя ее. Обнаружено, что для передвижения конуса роста необходимы актиновые филаменты, разрушение которых (например, цитохолазином В) прекращает рост.

Для стабилизации структуры удлиняющегося волокна важное значение имеют микротрубочки, разрушение которых (например, Колхицином) приводит к укорачиванию растущего волокна. Белки, необходимые для образования микротрубочек и микрофиламентов (тубулин, актин и др.), доставляются посредством медленного аксонного транспорта.

Выделены два фактора передвижения конуса роста. Фактор адгезивности клеток представляет собой гликопротеид, который находится на плазматической мембране отростков нейрона и обеспечивает сцепление между развивающимися отростками, группируя их в пучки. Другой белок получил название фактор роста нервов (ФРН). Он выделяется в межклеточную жидкость клеткой-мишенью для растущего и оказывает хемотаксическое влияние, направляя движение конуса роста в сторону клетки-мишени.

При регенерации поврежденных волокон в периферической нервной системе важную роль в направлении роста играют леммоциты (шванновские) клетки дистального (от зоны травмы) участка волокна, образующие после распада осевого цилиндра трубковидный тяж, в который должно попасть в случае успеш­ной регенерации одно из ответвлений конуса роста. Как только конус роста достигает клетки-мишени, он трансформируется в пресинаптическое окончание, при этом процессы экзо- и эндо-цитоза обеспечивают выделение и последующее поглощение ме­диатора, с помощью которого осуществляется передача сигнала посредством сформированного синапса.

При повреждении одних аксонов другие – сохранившиеся нервные волокна с такой же функцией – вследствие разрастания (дихотомического деления) могут реиннервировать нейроны, связь с которыми была нарушена.

Когда повреждение головного мозга, особенно его коры, про­исходит в раннем возрасте, последствия бывают обычно менее серьезными, чем после аналогичных нарушений у взрос­лых. Это касается как двигательных систем, так и речи. После удаления участков коры у новорожденных обезьян развитие жи­вотных в течение первого года жизни почти не отличается от нормы.

Известно, что в процессе созревания исчезают многие связи, присутствующие в незрелом мозге. К ним, например, относятся «избыточные» связи в составе мозолистого тела, значительная часть которых позднее утрачивается.

На ранних стадиях онтогенеза зрительная кора, например, грызунов, содержит нейроны, дающие проекции в , затем они исчезают. Можно предполагать, что повреждение, подавляя процессы регрессии, позволяет волок­нам, которые в норме обречены на отмирание, функционально замещать дегенерировавшие. Этим объясняется более высокая пластичность молодого мозга, его повышенная по сравнению со зрелым мозгом способность к реорганизации «нейронных схем». Через несколько дней после денервации мышц развивается значительная спонтанная активность индивидуальных мышечных волокон, проявляющаяся в виде фибрилляций. Мышечная мем­брана становится сверхвозбудимой; область ее чувствительности к ацетилхолину постепенно расширяется от концевой пластинки на всю поверхность волокна. Аналогичные процессы характерны и для ЦНС. По-видимому, сверхчувствительность денервированных структур представляет собой общий принцип.

До недавнего времени ученые не могли увидеть мозг и измерить его составляющие. Природа мозга, аккуратно упакованного в черепную коробку, была скрыта. Ученые, не имевшие возможности наблюдать за тем, как функционирует мозг, на протяжении многих столетий пытались создать модели и теории, объясняющие его огромный потенциал.

Старая концепция

Мозг сравнивали с комодом со множеством отделений, с картотекой с папками, которые можно отрывать и закрывать, а также с суперкомпьютером, непрерывно выполняющим операции в своих электрических схемах. Все эти аналогии связаны с неорганическими, механическими объектами. Они неживые - и не растут и не меняются.

Большинство ученых считали таким объектом и мозг, за исключением детства, рассматривавшегося как единственный период в жизни человека, когда мозг способен развиваться и адаптироваться. Ребенок впитывает сигналы, поступающие из внутренней и внешней среды; при этом его мозг, хорошо это или плохо, адаптируется к ней.

В случае, о котором рассказывает Антонио Баттро в своей книге Half a Brain Is Enough: The Story of Nico («Половины мозга достаточно: история Нико»), врачи удалили правую долю коры головного мозга мальчика, чтобы вылечить его от эпилепсии. Несмотря на то что Нико потерял важную часть мозговой ткани, он развивался практически без нарушений.

У него сформировались не только функции, связанные с левым полушарием мозга, но и музыкальные и математические способности, за которые обычно отвечает правое полушарие мозга. По мнению Баттро, единственное объяснение того, как мозг мальчика смог компенсировать недостающие функции после удаления половины мозговой ткани, состоит в том, что мозг продолжает развиваться и во взрослой жизни.

Раньше принято было считать, что столь глубокая компенсация нарушений или травм мозга возможна (хотя и бывает крайне редко) лишь тогда, когда ребенок еще растет, а когда он достигает возраста половой зрелости, мозг становится неизменным и никакое внешнее воздействие не может на это повлиять. Больше никакого развития, никакой адаптации. Если на этом этапе мозг получает повреждение, последнее практически неустранимо.

Вот пример из области психологии: если ребенка воспитывают равнодушные взрослые, не понимающие его потребностей, у него формируется мозг, генерирующий модель поведения, отражающую чувство безысходности.

Согласно старой концепции развития мозга, единственный шанс на спасение такого ребенка - заботливое вмешательство в процесс формирования его мозга на раннем этапе. Без этого эмоциональная судьба ребенка предрешена. Другие физические и эмоциональные травмы также могут оставить свой след на молодом мозге.

В соответствии с метафорой «мозг как аппаратное обеспечение» считалось, что мозгу суждено разрушаться. В результате преодоления тех ударов, которые выпадают на долю мозга в повседневной жизни, его составные части постепенно выходят из строя. Или же может произойти серьезная катастрофа, когда крупные компоненты мозга отключаются из-за аварии, инфекции или удара. Согласно этой точке зрения, клетки центральной нервной системы подобны фрагментам антикварного фарфорового сервиза; если вы разобьете один предмет, вам не останется ничего другого, как смести осколки и довольствоваться тем, что осталось.

Никто не верил в то, что клетки головного мозга способны восстанавливаться или формировать между собой новые связи. Этот неутешительный неврологический «факт» имел серьезные последствия для людей, которые получили травмы или перенесли болезни, затронувшие головной мозг.

Еще около пятнадцати лет назад в реабилитационных центрах стандартной практикой было активное лечение пациентов на протяжении первых нескольких недель или месяцев после получения травмы, но как только отек головного мозга спадал, а процесс улучшений прекращался, считалось, что больше ничего сделать нельзя. После этого реабилитация сводилась к поиску вариантов компенсировать возникшие нарушения.

    Если вы повредили зрительную кору (зона головного мозга, связанная со зрением), у вас наступала корковая слепота, и точка.

    Если у вас перестала функционировать левая рука, вы должны были смириться с мыслью, что она навсегда останется бездействующей. Специалисты по реабилитации научат вас, как передвигаться, ничего не видя, или как занести покупки в дом при помощи только правой руки.

    А если у вас было трудное детство, предполагалось, что это оставит неизгладимый отпечаток на вашей способности устанавливать и поддерживать связи с другими людьми.

Новая концепция

К счастью, данную концепцию относительно развития мозга можно отправить в архив истории медицины вместе с другими устаревшими идеями, такими как кровопускание или черная желчь (жидкость, которая, как считал Гиппократ, вызывает рак и другие заболевания). Клетки мозга действительно нуждаются в защите, поэтому я не советую подвергать мозг физическому воздействию.

Тем не менее мозг - это совсем не тот неизменный хрупкий объект, каким мы его считали раньше. Существуют определенные правила изменения мозга , которые можно использовать для решения проблем, восстановления нейронных путей C.A.R.E . и укрепления отношений с другими людьми.

В настоящее время взаимодействие полушарий го­ловного мозга понимается как взаимодополняющее, взаимокомпенсирующее в реализации различных фун­кций центральной нервной системы.

Несмотря на то, что каждое полушарие выполняет ряд специфичных для него функций, нужно иметь в виду, что любая функция мозга, выполняемая левым полушарием, может быть выполнена и правым полу­шарием. Речь идет только о том, насколько успешно, быстро, надежно, полно выполняется эта функция.


По-видимому, следует говорить о доминировании по­лушария в выполнении той или иной задачи, но не о полном распределении между ними функций.

Такое представление наиболее точно отражает зна­чение полушарий головного мозга в компенсаторных процессах.

Рассечение комиссур головного мозга у человека по клиническим показаниям, у животных в экспери­ментальных целях показало, что при этом нарушает­ся целостная, интегративная деятельность мозга, зат­рудняются процессы образования временной связи, а также выполнение функций, которые считаются спе­цифичными только для данного полушария.

После рассечения комиссур мозга, например зри­тельных, вначале нарушается опознание предметов, если они адресуются только в левое полушарие. В этом случае человек не узнает предмет, но стоит дать этот предмет ему в руку, как опознание происходит. Ком­пенсация функции при этом осуществляется за счет подсказки из другого анализатора.

Если изображение предмета адресуется только в правое полушарие, то больной узнает предмет, но не может назвать его. Однако он может выполнить дей­ствия, которые обычно выполняются с помощью дан­ного предмета. После разобщения полушарий голов­ного мозга компенсаторные процессы затрудняются.

Исследования мозга с удаленным 17 полем зритель­ной коры в одном полушарии показали, что в симмет­ричной, сохраненной области этого поля другого полу­шария увеличивалась фоновая активность нейронов, процент фоновоактивных нейронов возрастал. Одновре­менно росла синхронизация нейрональной активнос­ти, что проявлялось ростом амплитуды положитель­ной и отрицательной фаз вызванных потенциалов на применение одиночных световых стимулов* Важнолх»,


что удаление 17 поля коры одного полушария приво­дило к увеличению количества нейронов, реагирую­щих на гетеросенсорные раздражения, т.е. увеличива­лось количество полисенсорных нейронов.

Повышение фоновой активности нейронов в сохра­нившейся симметричной зоне зрительной коры, рост синхронизации их активности можно отнести к внут­рисистемной компенсации. Увеличение же числа по­лисенсорных, полимодальных нейронов связано с межсистемной компенсацией, так как в этом случае создаются условия для новых взаимоотношений меж­ду разными анализаторными структурами.

Принципиально та же картина наблюдается и при повреждении других проекционных зон коры одного полушария.

Несколько иначе происходят перестройки компен­саторного плана в ассоциативной теменной коре при однополушарном удалении зрительной проекционной зоны. Ассоциативная кора имеет существенное зна­чение в процессах организации межсистемной ком­пенсации.

После повреждения зрительной коры амплитуда вызванной и частота импульсной активности возрас­тали.

В том случае, когда кондиционирующим стимулом служили раздражения, наносимые на теменную ассо­циативную кору полушария, в котором была повреж­дена проекционная кора, а активность отводилась из симметричного пункта теменной коры противополож­ного полушария, оказалось, что повреждение проек­ционной коры приводило к увеличению по амплитуде вызванных потенциалов как на кондиционирующий, так и на тестовый транскаллозальный стимулы.

Следовательно, повреждение проекционных зон коры повышает функциональную активность в ассо-



циативной теменной зоне мозга, содержащей большое число полисенсорных нейронов. Такая реакция ассо­циативной коры расценивается как межсистемная регуляция компенсаторных процессов при дисфунк­ции проекционных областей мозга и может быть ис­пользована в клинических целях.

О межсистемности процессов, имеющих здесь мес­то, свидетельствуют также следующие данные. Сома­тическая электрокожная стимуляция вызывает в сен-сомоторной коре и зоне S-1 противоположного полу­шария вызванный ответ. Этот ответ незначительно мо­дулируется по амплитуде и ЛП при предварительной световой стимуляции.

В том случае, когда кондиционирующим стимулом служит транскаллозальная активация, затем подается световой стимул и только после этого соматическая электрокожная активация, вызванный ответ на сома­тический стимул резко возрастает по амплитуде, ла­тентные периоды его возникновения укорачиваются.

Следовательно, межполушарное взаимодействие, усиленное предварительной стимуляцией через транс-каллозальную систему, облегчает межсистемное, в дан­ном случае зрительно-сенсомоторное взаимодействие.

Проведение тех же экспериментов после разруше­ния межполушарных связей между симметричными пунктами сенсомоторной коры полушарий показало отсутствие облегчающего взаимодействия полушарий головного мозга. Оказалось также, что разобщение полушарий приводило к ослаблению активности сен­сомоторной коры на зрительные стимулы. Это пря­мое доказательство того, что межполушарное взаимо­действие способствует межсистемной компенсации на­рушенных функций.

Таким образом, односторонняя дисфункция коры полушарий головного мозга сопровождается повыше-


нием функциональной активности симметричного поврежденной зоне участка. Нужно отметить, что при повреждениях проекционных участков коры повышен­ная функциональная активность наблюдается и в ас­социативных областях мозга, что выражается увели­чением числа полисенсорных нейронов, повышением средней частоты их разрядов, снижением порогов ак­тивации этих зон.

14.9. Компенсаторные процессы в спинном мозгу

В тех случаях, когда к спинному мозгу, его мото­нейронам ограничивается приток информации по ре-тикул оспин ал ьному пути от ретикулярного ядра мос­та или гигантоклеточного ядра продолговатого мозга, тела мотонеёронов, суммарная длина их дендритов увеличиваются. Ориентация дендритного дерева при ограничении притока информации по ретикулоспи-нальному пути изменяется в сторону увеличения кон­тактов с медиальным ретикулоспинальным путем и передней комиссурой. Параллельно уменьшается чис­ло дендритов, ориентированных к латеральному ре-тикулоспинальному пути, имеющему преимуществен­ные связи с гигантоклеточным ядром продолговатого мозга.

Следовательно, происходит компенсаторная пере­стройка функциональных нисходящих связей за счет увеличения дендритного дерева, воспринимающего информацию от сохранившейся ретикулоспинальной системы.

При ампутации одной конечности у собак проис­ходит увеличение тел и ядер нейронов задних и перед­них рогов спинного мозга, отмечается гипертрофия отростков, мотонейроны становятся многоядерными и многоядрышковыми, т.е. расширяются ядерно-про­топлазменные отношения. Последнее свидетельству-


ет о гипертрофии функций нейронов, что сопровож­дается увеличением диаметра капилляров, подходя­щих к нейронам передних и задних рогов спинного мозга противоположной половины, относительно ам­путированной конечности. Вокруг нейронов этой по­ловины спинного мозга отмечается увеличение коли­чества глиальных элементов.

Анализ восстановления движений у эксперимен­тальных животных после перерезки различных отде­лов спинного мозга позволил заключить, что в основе появления двигательных координированных актов лежит образование временных связей, закрепляемых при тренировке и обучении.

Компенсация нарушенных функций при пораже­нии спинного мозга реализуется благодаря полисен­сорной функции мозга, которая обеспечивает взаимо­заменяемость одного анализатора другим, например, глубокой чувствительности зрением и т.д. Некоторые функции спинного мозга в регуляции работы внут­ренних органов хорошо компенсируются вегетатив­ной нервной системой. Так, даже при грубых нару­шениях спинного мозга восстанавливается регуляция деятельности органов брюшной полости, тазовых ор­ганов (межсистемная компенсация).

Таким образом, после возникновения патологии спинного мозга и снятия спинального шока наступа­ет фаза экзальтации нейронов, а это сопровождается повышением мышечного тонуса, усилением глубоких рефлексов, восстановлением спинальной автоматии, гиперэстезией на разные виды чувствительности. Поз­же наступает перестройка координаторных взаимоот­ношений между симметричными структурами сегмен­тов спинного мозга. При этом усиливаются синергич-ные реакции, повышается активность симметричных мышц, наблюдается извращение антагонистических


взаимоотношений. В дальнейшем подключаются ме­ханизмы, связанные с обучением, т.е. используются межсистемные механизмы компенсации.

14.10. Компенсаторные процессы,

обеспечивающие сохранение временной связи

После повреждения различных структур ЦНС воз­никают нарушения поведения, которые постепенно восстанавливаются. Это восстановление может быть не полным, но достаточно эффективным и при посто­янной тренировке достигает такого высокого уровня, что без специальных провокационных методов откло­нения не выявляются.

Видимо, в основе компенсаторных процессов выс­шей нервной деятельности лежит описанный М.Н. Ли­вановым феномен, который заключается в том, что при обучении повышается сходство состояний мно­жества структур головного мозга.

Так, при образовании пищедобывательного услов­ного рефлекса у обезьян изменяется активность: пре-и постцентральной, слуховой, зрительной, ассоциа­тивной теменной, нижневисочной коры, зубчатой фасции, мозжечка, хвостатого ядра, скорлупы, блед­ного шара, подушки, ретикулярной формации.

В этих структурах в динамике выработки пищево­го условного рефлекса можно зарегистрировать посте­пенное формирование специфического вызванного потенциала с наличием в нем поздней позитивной волны. При упроченном рефлексе эта позитивная вол­на регистрируется только в структурах, непосредствен­но заинтересованных в реализации рефлекса. Однако в тех случаях, когда возникали затруднения в функ­ционировании зоны восприятия сигнала или зоны его реализации, поздняя позитивная волна вновь возни-


кала во множествах отведений. Следовательно, ком­пенсация обеспечивалась всей системой, которая была задействована при обучении.

Таким образом, следы памяти фиксируются не толь­ко в структурах, заинтересованных в восприятии и реализации ответной реакции на сигнал, но и в дру­гих структурах, участвующих в формировании вре­менной связи. В случае патологии эти структуры спо­собны замещать друг друга и обеспечивать нормаль­ную реализацию условного рефлекса.

Однако в компенсации нарушений функций вре­менной связи лежат и другие механизмы. Так, извес­тно, что один и тот же нейрон коры может участво­вать в реализации условного рефлекса при разных видах подкрепления, т.е. полифункциональность ней­рона позволяет компенсировать дисфункции, возни­кающие при использовании других путей нервной системы.

Наконец, компенсация нарушений условнорефлек-торных процессов может обеспечиваться установле­нием новых межцентральных отношений между кор­ковыми структурами, корой и подкорковыми образо­ваниями. Новые межцентральные отношения возни­кают и в случае повреждения различных образова­ний лимбической системы. Так, одновременное, од­нополушарное повреждение дорсальных и вентраль­ных областей гиппокампа, ядер медиальной области перегородки, базолатеральной части миндалины, ядер задней и латеральной частей гипоталамуса вызывает только кратковременное, до двух недель, специфи­ческое, для отдельной из названных структур, нару­шение условнорефлекторной деятельности.

В тех случаях, когда на стороне повреждения лим­бической структуры одновременно функционально выключалась кора больших полушарий головного


мозга, нарушения условнорефлекторной деятельнос­ти сохранялись длительно. Следовательно, наиболее оптимально компенсаторные механизмы условнореф-лекторных процессов реализуются с участием коры головного мозга.

Наиболее успешно проявляется компенсация на­рушений высшей нервной деятельности за счет меж-полушарных связей при повреждении отдельных об­ластей коры мозга после выработки условного реф­лекса.

Экспериментальная проверка такого рода компен­сации может быть продемонстрирована следующими опытами. У кошки вырабатывается оборонительный условный рефлекс удара лапой по мишени. Условным сигналом служит световое раздражение, безусловным подкреплением - электрокожное раздражение. Удар лапой по мишени прекращает болевое раздражение или предупреждает его. После упрочения такого реф­лекса удаляется сенсомоторная кора одного полуша­рия, или точно так же удаляется в одном полушарии, но только зрительная кора.

Повреждение сенсомоторной коры, как правило, приводит к незавершенности двигательной реакции на сигнал, неточности реакции, появлению некоордини­рованных движений в ответ на сигнальный стимул.

Повреждение зрительной коры приводит к тому, что кошка на сигнал реагирует, но промахивается при попытке ударить по мишени. Такие нарушения после повреждения сенсомоторной или зрительной коры регистрируются не более двух недель. Спустя этот срок условнорефлекторная деятельность животных прак­тически полностью восстанавливается.

Для того чтобы убедиться в том, что эта компенса­ция обусловлена межполушарными механизмами, после восстановления условнорефлекторной деятель-


ности у животных рассекают мозолистое тело, разоб­щая тем самым корковые межполушарные связи.

Рассечение мозолистого тела восстанавливает дис­функции условнорефлекторного поведения - именно того характера, которые возникают на начальных эта­пах после удаления коры в одном из полушарий.

Такие эксперименты показывают прямую зависи­мость компенсации дефицита корковой функции от межполушарных связей. Эти связи формируют новую систему между интактным полушарием и рассеянны­ми элементами коры, полисенсорными нейронами поврежденного полушария, что позволяет компенси­ровать нарушенную функцию.

Помимо отмеченного пути компенсации через меж­полушарные корковые связи, мозг имеет и другие возможности компенсации условнорефлекторного по­ведения. Так, если затруднено выполнение движе­ния одной конечностью, нужная реакция может быть выполнена другой.

Следовательно, компенсаторные механизмы услов­норефлекторной деятельности позволяют организовать поведенческую реакцию различными путями. Особен­но легко это осуществляется, когда страдает выход­ная структура коры, которая первоначально была обу­чена этой функции.

Такой путь компенсации обеспечивается прежде всего перестройками активности в симметричном от­носительно повреждения пункте коры другого полу­шария. В норме стимуляция коры вызывает в сим­метричном участке локальную активацию нейронов. Вокруг этой зоны формируется тормозное окружение, как правило, в два раза большей площади. После по­вреждения участка коры в симметричном ему пункте увеличивается число фоновоактивных нейронов, чис­ло полисенсорных нейронов, растет средняя частота


разрядов нейронов. Такая реакция коры свидетель­ствует о том, что у нее появляются большие возмож­ности участвовать в процессах компенсации.

Значительную роль в компенсации процессов выс­шей нервной деятельности играют структуры ассо­циативной системы мозга.

К таким системам следует отнести ассоциативные ретикулярные образования ствола мозга, ассоциатив­ные ядра таламуса, ассоциативные поля области коры мозга и ассоциативные структуры проекционных зон коры мозга. У человека ассоциативные области мозга являются доминирующими по размерам.

В исследованиях на животных было показано, что разрушение задней доли гипофиза или всего гипофи­за нарушало условнорефлекторную деятельность. Это нарушение устранялось введением вытяжек из гипо­физа или вазопрессина, интермедина, АКТГ. Систе­матическое введение вазопрессина полностью восста­навливало условнорефлекторную деятельность. У ин-тактных животных вазопрессин ускорял образова­ние временной связи. У животных с депрессией нео-стриатума, вызывающей нарушения выработки и вос­произведение ранее закрепленных выработанных ус­ловных рефлексов, введение вазопрессина также восстанавливает нормальную условнорефлекторную деятельность.

Оказалось также, что вазопрессин оптимизирует ус-ловнорефлекторное, сексуальное поведение. Например, условнорефлекторная побежка крысы самца к самке по лабиринту при введении вазопрессина вырабатыва­лась намного быстрее, чем в обычных условиях.

Вазопрессин вызывает разные эффекты в зависи­мости от способа введения. Подкожная инъекция нор­мализует водно-солевой обмен, не сказываясь на ус-ловнорефлекторной деятельности. Введение этого же


препарата непосредственно в желудочки мозга устра­няет нарушения обучения и памяти и не влияет на процессы водно-солевого обмена.

Точно так же окситоцин при подкожном его введе­нии оказывает тормозное влияние на условнорефлек­торную деятельность, а введение его в желудочки мозга улучшает долгосрочную память, облегчает об­разование рефлексов.

Вазопрессин ухудшает кратковременную память и улучшает долгосрочную. Введение этого вещества пе­ред началом обучения затрудняет запоминание, или вообще делает обучение невозможным. Инъекция этого же препарата после обучения облегчает воспроизве­дение следов памяти.

В настоящее время существует представление, что вазопрессин участвует в регуляции процессов запо­минания и воспроизведения, а окситоцин в процес­сах забывания. Применение вазопрессина, как уже говорилось, улучшает процессы памяти и условно-рефлекторной деятельности, но и активная условно-рефлекторная деятельность увеличивает концентра­цию вазопрессина в крови в мозгу.

Следовательно, чем более активно мозг вовлекает­ся в условнорефлекторный процесс, тем больше в нем вазопрессина и тем успешнее процессы сохранения новых временных связей. Особенно это важно при деструктивных процессах в ЦНС, так как в это время возможно формирование новых временных связей, компенсирующих развивающуюся патологию.

Введение вазопрессина снижает зависимость жи­вотных от наркотиков, инъекция антител к вазопрес-сину увеличивает потребление наркотиков.

У человека интраназальное введение вазопрессина улучшает внимание, память, умственную работоспособ­ность, различные виды интеллектуальной деятельности.


14.11. Гемодинамические механизмы

компенсации нарушенных функций структур

нервной системы

Через мозг проходит одна пятая часть крови, выб­расываемой сердцем, мозг потребляет одну пятую часть кислорода, попадаемого в организм в покое. В связи с этим любые изменения мозгового кровообра­щения сказываются на функционировании мозга.

Сенсорная активация мозга изменяет характер кро­вотока отдельных его структур, двигательная актив­ность, помимо неспецифической реакции сосудов моз­га, вызывает перестройки кровотока в моторных об­ластях мозга. В динамике умственной деятельности: в период врабатываемости, период оптимальной рабо­тоспособности, при утомлении, монотонии, при теку­щей коррекции утомления, в условиях посттрудовой реабилитации - кровоснабжение мозга существенно меняется, оптимизируя кровоток в наиболее нагру­женных структурах головного мозга.

Корреляция сосудистого тока крови в мозгу при различных нагрузках на его структуры осуществля­ется на уровне пиальных сосудов. Именно пиальные сосуды образуют сеть коллатерального кровообраще­ния, обеспечивая надежность притока крови к отдель­ным структурам мозга.

Пиальные артериолы, являясь «краниками» сосу­дистого русла, обеспечивают нужный объем кровото­ка к данному образованию мозга. Регуляция пиаль­ных артериол в значительной мере осуществляется по биообратной связи от структуры, которая обеспе­чивается кровью бассейна данного пиального сосуда.

Эти изменения в пиальном кровотоке не зависят от величины системного артериального давления, т.е. они связаны только с повышением функциональной активности соответствующей области мозга. Унила-


теральная подача зрительного или слухового сигнала увеличивает сосудистый кровоток в полушарии, кон-тралатеральном относительно стимуляции.

Анализ компенсаторных процессов сосудистого кровотока в ассоциативных и проекционных зонах коры наиболее удобно исследовать при изменении функционирования их симметричных областей моз­га. Известно, что при деструкции или ишемии одной из симметричных областей мозга другая принимает участие в компенсации дефицита, возникающего в результате возникшей патологии.

Эксперименты на животных, у которых под нар­козом функционально выключали теменную или со-матосенсорную зону коры левого полушария и одно­временно контролировали сосудистое русло пиальной системы над симметричными областями мозга, пока­зали следующее.

В симметричных областях реакция на функцио­нальное выключение активности одного полушария (гемодинамические изменения) протекает в две фазы. В первую фазу, которая длится до 15 минут, крово­ток снижается. Затем наступает вторая фаза, в тече­ние которой кровоток восстанавливается и постепен­но усиливается сравнительно с нормой. Причем уси­ление кровотока происходит не только в симметрич­ной выключению соматосенсорной коре, но и в те­менной коре противоположного полушария.

Принципиально такая же картина усиления крово­тока наблюдается и в исследованиях на бодрствующих животных. Отличием является только то, что при фун­кциональном выключении области коры одного полу­шария изменения гемодинамики в первую фазу - сни­жения кровотока - длились меньше и продолжались не более 10 минут, затем начиналось восстановление кровотока и его усиление сравнительно с нормой.


Гемодинамика соматосенсорной коры, симметрич­ного пункта относительно выключенного, по сравне­нию с гемодинамикой теменной коры, изменялась более динамично, восстановление сосудистого русла происходило более быстро и гиперактивность его про­должалась более короткое время. Инертность измене­ний гемодинамики в ассоциативных областях, дли­тельное сохранение изменений в них свидетельству­ют, что именно эти области играют решающую роль в обеспечении компенсации нарушенных функций в структурах центральной нервной системы.

14.12. Биообратная связь в компенсации нарушений функций нервной системы

Активация естественных резервов организма с по­мощью биологической обратной связи является рас­пространенным механизмом компенсации нарушений функций центральной нервной системы.

Биоуправление с обратной связью представляет собой форму обучения, позволяющую реализовывать непроизвольные функции на основе наблюдения за результатами своей деятельности.

Пример использования биообратной связи приво­дит Н. Миллер (1977). Он рассказывает о спортсмене-баскетболисте, который перестраивает свои движения в соответствии с удачей или неудачей попадания мяча в кольцо. Обратной связью является результат, на­блюдаемый визуально. При удачном результате авто­матически запоминаются поза, мышечное напряже­ние, сила толчка и проч., которые в последующем используются при повторном броске неосознанно.

Биообратная связь часто используется в психоло­гии для регулирования определенного психического состояния на основе регистрации и предъявления ис­пытуемым уровня выраженности альфа-ритма в ак­тивности коры мозга.


В клинике биообратная связь используется для управления активностью мозга, мышц, температуры, частоты сердечных сокращений, частоты и глубины дыхания, уровня кровяного давления, для лечения бронхиальной астмы, гипертонической болезни, бес­сонницы, заикания, состояния беспокойства после мозгового инсульта, эпилепсии и др.

Компенсация с помощью биообратной связи явля­ется обучением человека новому виду деятельности, который произвольно не контролируется.

Принципиальная схема выработки компенсации на основе биообратной связи на примере эпилепсии вы­глядит следующим образом.

Как известно, эпилепсия сопровождается специфи­ческим характером электроэнцефалограммы с особы­ми признаками в виде высокоамплитудного негатив­ного колебания, сразу после которого возникает низ­коамплитудная медленная волна - «пик-волна».

Больной располагается в удобном кресле для реги­страции ЭЭГ. Ему накладываются электроды, и ак­тивность, отводимая от определенных областей моз­га, демонстрируется больному на мониторе. Объясня­ется, что для данной болезни характерна активность в виде «пик-волны» в ЭЭГ, что большая часть таких колебаний остается за пределами видимости на экра­не, но она регистрируется с помощью ЭВМ и о ее на­личии свидетельствует появление на экране монито­ра зеленой полосы: чем больше выражена пик-волно­вая активность, тем шире зеленая полоса. Задачей больного является нахождение такого состояния, при котором зеленая полоса имеет минимальную широту, т.е. количество пик-волновой активности минимизи­руется или она не возникает вовсе.

В результате обучения у больных, ранее не имев­ших ауры, она появлялась, т.е. вырабатывалась спо-


собность чувствовать предвестники приступа, наблю­далось более медленное наступление пароксизмаль-ного приступа, фаза потери сознания при наступле­нии приступа укорачивалась, часто не развивалась по-слеприступная амнезия. У некоторых больных боль­шие судорожные припадки заменялись малыми, ло­кальными, абортивными. В ряде случаев отмечалось прекращение или урежение частоты появления судо­рожных припадков сроком от двух недель до года.

В результате обучения больной при появлении ауры пользовался приемами предотвращения приступов, как это он делал во время обучения, уменьшая коли­чество пароксизмальных пик-волновых разрядов.

В ЭЭГ после обучения подавления пик-волновой активности с помощью биообратной связи встречае­мость пароксизмальной активности уменьшалась.

Таким образом, в динамике лечения при помощи биообратной связи формировалось новое функциональ­ное состояние мозга, препятствующее развитию паро­ксизмальной активности. Это функциональное состо­яние фиксируется в долговременной памяти.

Достаточно успешно биообратная связь может быть использована для компенсации нарушений двигатель­ных функций, дискинезий разной этиологии.

Дискинезии могут характеризоваться избыточнос­тью или недостаточностью.

Избыточные дискинезии вызывают внимание ок­ружающих, что травмирует психику больного, вызы­вает отрицательные эмоциональные реакции и при­водит к усилению дискинезий - положительная био­обратная связь, приводящая в данном случае к ухуд­шению состояния больного.

Лечение дискинезий лекарственными препарата­ми делает больного фармакозависимым. Хирургичес-


кое лечение стереотаксическим способом имеет небла­гоприятные отдаленные последствия.

Из дискинезий в форме гиперкинезов наиболее ус­пешно применение биообратной связи для целей ком­пенсации при паркинсонизме и писчем спазме.

Паркинсонизм возникает в результате нарушения функций паллидо-нигро-ретикулярных структур, что приводит к нарушению механизмов саморегуляции и обратной связи между подкорковыми и корковыми структурами экстрапирамидной системы. В то же вре­мя паркинсоническая симптоматика подвержена су­точному ритму и на нее влияет эмоциональное состо­яние больного, следовательно, она зависит от функ­ционального состояния мозга, т.е. может быть управ­ляема.

Писчий спазм появляется у лиц определенной про­фессии и приводит к нарушению профессиональной деятельности, а это, в свою очередь, к эмоциональ­ным отрицательным реакциям. Последнее не может не сказаться на усилении заболевания.

7 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 42 | | | | | | | | |