Воздействие на организм неионизирующего излучения. Электромагнитные излучения - лекции по дисциплине безопасность жизнедеятельности

К ионизирующим (радиоактивным) излучениям относят рентгеновские и γ-излучения, являющиеся электромагнитными колебаниями с очень малой длиной волны, а также α- и β-излучения, позитронное и нейтронное излучения, представляющие собой поток частиц с зарядом или без него. Рентгеновское и γ-излучение вместе называют фотонным излучением.

Основное свойство радиоактивных излучений — ионизирующее действие. При прохождении их в тканях нейтральные атомы или молекулы приобретают положительный или отрицательный заряд и превращаются в ионы. Альфа-излучение, представляющее собой положительно заряженные ядра гелия, обладает высокой ионизирующей способностью (до нескольких десятков тысяч пар ионов на 0,01 м своего пути), но незначительным пробегом: в воздухе 0,02...0,11 м, в биологических тканях (2..,6)10-6 м. Бета-излучение и позитронное излучение — это соответственно потоки электронов и позитронов со значительно меньшей ионизирующей способностью, которая при одинаковой энергии в 1000 раз меньше, чем у β-частиц. Очень большой проникающей способностью обладает нейтронное излучение. Проходя через ткани, нейтроны — частицы, не имеющие заряда, вызывают в них образование радиоактивных веществ (наведенную активность). Рентгеновские лучи, возникающие при β-излучении или в рентгеновских трубках, ускорителях электронов и т. п., а также γ-излучение, испускаемое радионуклидами — ядрами радиоактивных элементов, обладают самой низкой способностью ионизировать среду, но самой высокой проникающей способностью. Их пробег в воздухе составляет несколько сот метров, а в материалах, применяемых для защиты от ионизирующих излучений (свинец, бетон),—десятки сантиметров.

Облучение может быть внешним, когда источник радиации находится вне организма, и внутренним, возникающим при попадании радиоактивных веществ внутрь через дыхательные пути, желудочно-кишечный тракт или при всасывании через поврежденную кожу. Поступая в легкие или пищеварительный тракт, радиоактивные вещества распределяются по организму с током крови. При этом одни вещества распределяются в организме равномерно, а другие накапливаются только в определенных (критических) органах и тканях: радиоактивный йод — в щитовидной железе, радиоактивный радий и стронций — в костях и т. п. Внутреннее облучение может возникнуть при употреблении в пищу продуктов растениеводства и животноводства, полученных с зараженных сельскохозяйственных угодий.

Длительность нахождения радиоактивных веществ в организме зависит от скорости выделения и периода полураспада — времени, за которое радиоактивность снижается вдвое. Удаление таких веществ из организма происходит главным образом через желудочно-кишечный тракт, почки и легкие, частично через кожу, слизистую оболочку рта, с потом и молоком.

Ионизирующие излучения могут вызывать местные и общие поражения. Местные поражения кожи бывают в виде ожогов, дерматитов и других форм. Иногда возникают доброкачественные новообразования, возможно также развитие кожного рака. Длительное действие радиации на хрусталик служит причиной катаракты.

Общие поражения протекают в форме острой и хронической лучевой болезни. Острые формы характеризуются специфическими поражениями кроветворных органов, желудочно-кишечного тракта и нервной системы на фоне общетоксических симптомов (слабость, тошнота, ослабление памяти и т. п.). В ранней стадии хронической формы наблюдаются нарастающая физическая и нервно-психическая слабость, пониженный уровень эритроцитов в крови, повышенная кровоточивость. Вдыхание радиоактивной пыли вызывает пневмосклероз, иногда рак бронхов и легких. Ионизирующие излучения угнетают репродуктивную функцию организма, влияя на здоровье последующих поколений.

На производстве могут выполняться работы с закрытыми источниками излучений и открытыми радиоактивными веществами.

Закрытые источники герметичные; чаще всего это стальные ампулы, содержащие радиоактивное вещество. Как правило, в них используются γ- и реже β-излучатели. К закрытым источникам относятся и рентгеновские аппараты, ускорители. Установки с такими источниками применяют для контроля качества сварных швов, определения износа деталей, обеззараживания кож и шерсти, обработки семян с целью уничтожения насекомых-вредителей, в медицине и ветеринарии. Работа на этих установках чревата опасностью только внешнего облучения.

Работы с радиоактивными веществами в открытом виде встречаются при диагностике и лечении в медицине и ветеринарии, при нанесении радиоактивных веществ в составе светящихся красок на циферблаты, в заводских лабораториях и т. п. Для работ этой категории опасно как внешнее, так и внутреннее облучение, поскольку радиоактивные вещества могут поступать в воздух рабочей зоны в виде паров, газов и аэрозолей.

Для учета неодинаковой опасности разных видов ионизирующих излучений введено понятие эквивалентная доза. Ее измеряют в зивертах и определяют по формуле

где k — коэффициент качества, учитывающий биологическую эффективность различных видов излучения по сравнению с рентгеновским: k = 20 для α-излучения, k— 10 для потока протонов и нейтронов; k- 1 для фотонного и β-излучения; D — поглощенная доза, характеризующая поглощение энергии любого ионизирующего излучения единицей массы вещества, Зв.

Эффективная доза позволяет оценить последствия облучения отдельных органов и тканей человека с учетом их радиочувствительности.

Нормами радиационной безопасности НРБ-96, утвержденными Постановлением № 7 Государственного комитета санитарно-эпидемиологического надзора РФ 19.04.96г., установлены следующие категории облучаемых лиц:

персонал — люди, работающие с техногенными источниками облучения (группа А) или находящиеся по условиям работы в сфере их воздействия (группа Б);

все население, включая персонал, вне сферы и условий их производственной деятельности (табл.21.2).

21.2. Основные дозовые пределы облучения, мЗв

Нормируемая величина

Обслуживающий персонал
(группа А)

Население

Эффективная доза

20 в год в среднем за любые 5 лет, но не более 50 за 1 год

1 в год в среднем за любые 5 лет, но не более 5 за 1 год

Эквивалентная доза за год:

в хрусталике

на кожных покровах

на кистях и стопах

Годовая доза облучения населения от естественного радиационного фона в среднем составляет (0,1...0,12)10-2 Зв, при флюорографии 0,37*10-2 Зв, при рентгенографии зубов 3 o 10-2 Зв.

В основные дозовые пределы облучаемых людей не входят дозы от природных и медицинских источников ионизирующего излучения и доза, полученная вследствие радиационных аварий. На эти виды облучения установлены специальные ограничения.

Защиту от внешнего облучения проводят в трех направлениях: 1) экранированием источника; 2) увеличением расстояния от него до работающих; 3) сокращением времени пребывания людей в зоне облучения. В качестве экранов применяют хорошо поглощающие ионизирующие излучения материалы, такие, как свинец, бетон. Толщину защитного слоя рассчитывают в зависимости от вида и мощности излучения. Следует учитывать, что мощность излучения снижается пропорционально квадрату расстояния от источника. Эту зависимость используют при внедрении дистанционного управления процессами. Время пребывания работающих в зоне воздействия радиации ограничивают из условия соблюдения предельных доз облучения, указанных в таблице 21.2.

При работах с открытыми источниками излучений максимально изолируют помещение, где находятся радиоактивные вещества. Стены должны быть достаточной толщины. Поверхности ограждающих конструкций и оборудования покрывают материалами, легко подвергающимися очистке (пластиком, масляной краской и т. п.). Работу с загрязняющими воздух рабочей зоны радиоактивными веществами проводят только в закрытых вытяжных шкафах (боксах) с фильтрацией удаляемого воздуха. При этом достаточное внимание следует уделять эффективности работы общеобменной и местной вентиляции, а также применять средства индивидуальной защиты (респираторы, изолирующие пневмокостюмы с подачей в них чистого воздуха, очки, комбинезоны, фартуки, резиновые перчатки и обувь), которые подбирают в зависимости от свойств используемых радиоактивных веществ, их активности и вида работ. К важным профилактическим мероприятиям относят дозиметрический контроль и медицинское обследование работающих. Для индивидуального дозиметрического контроля применяют приборы ИФКУ-1, ТЛД, КИД-6 и другие, для контроля степени радиоактивной загрязненности тела и спецодежды —СЗБ2-1еМ, СЗБ2-2еМ, БЗДА2-01 и др. Плотность потоков α-, β-, γ- и нейтронного излучения измеряют приборами РУП-1, УИМ2-1еМ, а объемную активность радиоактивных газов и аэрозолей в воздухе — приборами РВ-4, РГБ-3-01.

Ионизирующие излучения (ИИ) - излучения, взаимодействие которых со средой приводит к образованию ионов (электрически заряженных частиц) разных знаков из элекгрически нейтральных атомов и молекул.

ИИ делят на корпускулярные и электромагнитные.

К корпускулярным ИИ относятся альфа- (а) излучение - поток ядер атомов гелия; бета- (Р) излучение - поток электронов, иногда позитронов («положительных электронов»); нейтронное (п) излучение - поток нейтронов, возникающий в результате ряда ядерных реакций.

Электромагнитными ИИ являются рентгеновское (v) излучение - электромагнитные колебания с частотой 310 17 - 3 10 21 Гц, возникающие при резком торможении электронов в веществе; гамма-излучение - электромагнитные колебания с частотой 3-10 22 Гц и более, возникающие при изменении энергетического состояния атомного ядра, при ядерных превращениях или аннигиляции («уничтожении») частиц.

Характеристики ионизирующих излучений рассмотрены в учебнике .

Биологическое действие ИИ на организм человека характеризуется следующими особенностями. Наши органы чувств не приспособлены к восприятию ИИ, поэтому человек не может обнаружить их наличие и действие на организм. Различные органы и ткани человека имеют неодинаковую чувствительность к действию облучения. Имеется латентный (скрытый) период проявления действия ИИ, характеризующийся тем, что видимое развитие лучевого заболевания проявляется нс сразу, а спустя некоторое время (от нескольких минут до десятков лет в зависимости от дозы облучения, радиочувствительности органа и наблюдаемой функции). Действие даже от малых доз облучения может накапливаться. Суммирование (кумуляция) доз происходит скрытно. Последствия облучения могут проявиться непосредственно у самого облученного (соматические эффекты) или у его потомства (генетические эффекты).

К соматическим эффектам относятся локальные лучевые повреждения (лучевой ожог, катаракта глаз, повреждение половых клеток и др.); острая лучевая болезнь (при однократном облучении большой дозой за короткий промежуток времени, например при аварии); хроническая лучевая болезнь (при облучении организма в течение продолжительного времени); лейкозы (опухолевые заболевания кроветворной системы); опухоли органов и клеток; сокращение продолжительности жизни.

Генетические эффекты - врожденные уродства- возникают в результате мутаций (наследственных изменений) и других нарушений в половых клеточных структурах, ведающих наследственностью.

В отличие от соматических генетические эффекты действия радиации обнаружить трудно, так как они действуют на малое число клеток и имеют длительный скрытый период, измеряемый десятками лет после облучения. Тают опасность существует даже при очень слабом облучении, которое хотя и не разрушает клетки, но способно вызвать мутации хромосом и изменить наследственные свойства. Большинство подобных мутаций проявляется только в том случае, когда зародыш получает от обоих родителей хромосомы, поврежденные одинаковым образом. Мутации могут быть вызваны космическими лучами, а также естественным радиационным фоном Земли, на долю которого, по оценкам специалистов, приходится 1% мутаций человека. Ежеминутно в каждом килограмме тканей любого живого организма естественной радиацией повреждается примерно миллион клеток. Подавляющее их большинство самозалсчивастся примерно за десять минут, эволюция «научила» этому наши клетки, потому что радиация сопровождает жизнь на Земле с момента ее зарождения.

Проявление генетических эффектов мало зависит от мощности дозы, а определяется суммарной накопленной дозой, независимо от того, получена она за 1 сутки или 50 лет. Полагают, что генетические эффекты не имеют дозового порога. Генетические эффекты определяются только эффективной коллективной дозой (чсл.-Зв), а выявление эффекта у отдельного индивидуума практически не предсказуемо.

В отличие от генетических эффектов, которые вызываются малыми дозами радиации, соматические эффекты всегда начинаются с определенной пороговой дозы, при меньших дозах повреждения организма нс происходит. Другое отличие соматических повреждений от генетических заключается в том, что организм способен со временем преодолевать последствия облучения, тогда как клеточные повреждения необратимы.

Облучение источниками ИИ может быть внешним и внутренним. Внешнее облучение производится источниками, находящимися вне организма, внутреннее - источниками, попавшими в организм через органы дыхания, желудочно- кишечный тракт и кожу или се повреждения.

К основным правовым нормативам в области радиационной безопасности относятся нормы радиационной безопасности ПРБ- 99/2009 и Санитарные правила и нормативы СанПиН 2.6.1.2523-09.

Нормы радиационной безопасности устанавливают три категории облучаемых лиц: категория А - профессиональные работники, работающие непосредственно с источниками ИИ; категория Б - лица, которые нс работают непосредственно с источниками ИИ, но по условиям проживания или размещения рабочих мест могут подвергаться промышленному облучению; третья категория - остальное население.

Основные пределы доз (ПД), установленные в соответствии с ПРБ-99/2009 для персонала категории А и для населения, приведены в табл. 12.

Дозы облучения, как и все остальные допустимые производные уровни персонала группы Б, не должны превышать 1/4 значений для персонала группы А

Обеспечение радиационной безопасности определяется следующими основными принципами:

  • ? принципом нормирования - непрсвышсние допустимых пределов индивидуальных доз облучения граждан от всех источников ионизирующего излучения;
  • ? принципом обоснования - запрещение всех видов деятельности по использованию источников ионизирующего излучения, при которых полученная для человека и общества польза нс превышает риск возможного вреда, причиненного дополнительным к естественному радиационному фону облучения,
  • ? принципом оптимизации - поддержание на возможно низком и достижимом уровне с учетом экономических и социальных факторов индивидуальных доз облучения и числа облучаемых лиц при использовании любого источника ионизирующего излучения.

Основные пределы доз

Таблица 12

В целях социально-экономической оценки воздействия ионизирующего излучения на людей для расчета вероятностей потерь и обоснования расходов на радиационную защиту при реализации принципа оптимизации НРБ-99/2009 вводят, что облучение в коллективной эффективной дозе в 1 чел.-Зв приводит к потенциальному ущербу, равному потере 1 чел.-года жизни населения. Величина денежного эквивалента потери 1чсл.-года жизни населения устанавливается методическими указаниями федерального органа Роспотребнадзора в размере не менее 1 годового душевого национального дохода.

Эквивалентную дозу излучения можно снизить различными способами.

  • 1. Уменьшить активность источника ИИ («защита количеством»).
  • 2. Использовать в качестве источника излучения нуклид (изотоп) с меньшей энергией («защита мягкостью излучения»).
  • 3. Уменьшить время облучения («защита временем»);
  • 4. Увеличить расстояние от источника излучения («защита расстоянием»).

Если защита количеством, мягкостью излучения, временем или расстоянием невозможна, то используют экраны («защита экранированием»). Экранирование- основное защитное средство, позволяющее снизить ИИ на рабочем месте до любого уровня.

Защита от внутреннего облучения состоит в предотвращении или ограничении (требуемом санитарными нормами) попадания радиоактивного вещества внутрь организма. Наиболее важные защитные меры здесь: поддержание необходимой чистоты воздуха в помещениях путем эффективной вентиляции их; подавление и улавливание радиоактивной пыли, чтобы исключить накопление радиоактивных веществ на различных плоскостях; соблюдение правил личной гигиены.

К числу основных профилактических мероприятий относятся правильный выбор планировки помещений, оборудования, отделки помещений, технологических режимов, рациональная организация рабочих мест, соблюдение мер личной гигиены работающими, рациональные системы вентиляции, защиты от внешнего и внутреннего облучения, сбора и удаления радиоактивных отходов.

К средствам индивидуальной защиты от ИИ относятся:

  • 1) изолирующие пластиковые пнсвмокостюмы с принудительной подачей воздуха в них;
  • 2) специальная одежда хлопчатобумажная (халаты, комбинезоны, полукомбинезоны) и пленочная (халаты, костюмы, фартуки, брюки, нарукавники);
  • 3) респираторы и шланговые противогазы для защиты органов дыхания;
  • 4) специальная обувь (сапоги резиновые, пленочные туфли, парусиновые чехлы на обувь);
  • 5) резиновые перчатки и рукавицы из просвинцованной резины с гибкими нарукавниками для защиты рук;
  • 6) пневмошлемы и шапочки (хлопчатобумажные, из просвинцованной резины) для защиты головы;
  • 7) щитки из оргстекла для защиты лица;
  • 8) очки для защиты глаз: из обычного стекла при альфа- и мягком бета-излучении, из силикатного и органического стекла (плексигласа) - при бета-излучении высокой энергии, из свинцового стекла - при гамма-излучении, из стекла с боросиликатом кадмия или с фтористыми соединениями - при излучении нейтронов.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ РФ

Воздействие на организм неионизирующего излучения

Курск, 2010


Введение

2. Влияние на нервную систему

5. Влияние на половую функцию

7. Комбинированное действие ЭМП и других факторов

8. Заболевания, вызываемые воздействием неионизирующих излучений

9. Основные источники ЭМП

10. Биологическое действие неионизирующего излучения

11. Микроволны и радиочастотное излучение

12. Инженерно-технические мероприятия по защите населения от ЭМП

13. Лечебно-профилактические мероприятия

Заключение

Список использованной литературы


Введение

Известно, что излучения могут вредить здоровью человека и что характер наблюдаемых последствий зависит от типа излучения и от дозы. Влияние излучений на здоровье зависит от длины волны. Последствия, которые чаще всего имеют в виду, говоря об эффектах облучения (радиационное поражение и различные формы рака), вызываются только более короткими волнами. Эти типы излучений известны как ионизирующая радиация. В отличие от этого более длинные волны - от ближнего ультрафиолета (УФ) до радиоволн и далее - называют неионизирующим излучением, его влияние на здоровье совершенно иное. В современном мире нас окружает огромное количество источников электромагнитных полей и излучений. В гигиенической практике к неионизирующим излучениям относят также электрические и магнитные поля. Излучение будет неионизирующим в том случае, если оно не способно разрывать химические связи молекул, то есть не способно образовывать положительно и отрицательно заряженные ионы.

Итак, к неионизирующим излучениям относятся: электромагнитные излучения (ЭМИ) диапазона радиочастот, постоянные и переменные магнитные поля (ПМП и ПеМП), электромагнитные поля промышленной частоты (ЭМППЧ), электростатические поля (ЭСП), лазерное излучение (ЛИ).

Нередко действию неионизирующего излучения сопутствуют другие производственные факторы, способствующие развитию заболевания (шум, высокая температура, химические вещества, эмоционально-психическое напряжение, световые вспышки, напряжение зрения). Так как основным носителем неионизирующего излучения является ЭМИ, большая часть реферата посвящена именно этому виду излучения.


1. Последствия действия излучения для здоровья человека

В подавляющем большинстве случаев облучение происходит полями относительно низких уровней, ниже перечисленные последствия относятся к таким случаям.

Многочисленные исследования в области биологического действия ЭМП позволят определить наиболее чувствительные системы организма человека: нервная, иммунная, эндокринная и половая. Эти системы организма являются критическими. Реакции этих систем должны обязательно учитываться при оценке риска воздействия ЭМП на население.

Биологический эффект ЭМП в условиях длительного многолетнего воздействия накапливается, в результате возможно развитие отдаленных последствий, включая дегенеративные процессы центральной нервной системы, рак крови (лейкозы), опухоли мозга, гормональные заболевания. Особо опасны ЭМП могут быть для детей, беременных, людей с заболеваниями центральной нервной, гормональной, сердечнососудистой системы, аллергиков, людей с ослабленным иммунитетом.

2. Влияние на нервную систему

Большое число исследований, выполненных в России, и сделанные монографические обобщения, дают основание отнести нервную систему к одной из наиболее чувствительных систем в организме человека к воздействию ЭМП. На уровне нервной клетки, структурных образований по передачи нервных импульсов (синапсе), на уровне изолированных нервных структур возникают существенные отклонения при воздействии ЭМП малой интенсивности. Изменяется высшая нервная деятельность, память у людей, имеющих контакт с ЭМП. Эти лица могут иметь склонность к развитию стрессорных реакций. Определенные структуры головного мозга имеют повышенную чувствительность к ЭМП. Особую высокую чувствительность к ЭМП проявляет нервная система эмбриона.

3. Влияние на иммунную систему

В настоящее время накоплено достаточно данных, указывающих на отрицательное влияние ЭМП на иммунологическую реактивность организма. Результаты исследований ученых России дают основание считать, что при воздействии ЭМП нарушаются процессы иммуногенеза, чаще в сторону их угнетения. Установлено также, что у животных, облученных ЭМП, изменяется характер инфекционного процесса - течение инфекционного процесса отягощается. Влияние ЭМП высоких интенсивностей на иммунную систему организма проявляется в угнетающем эффекте на Т-систему клеточного иммунитета. ЭМП могут способствовать неспецифическому угнетению иммуногенеза, усилению образования антител к тканям плода и стимуляции аутоиммунной реакции в организме беременной самки.

4. Влияние на эндокринную систему и нейрогуморальную реакцию

В работах ученых России еще в 60-е годы в трактовке механизма функциональных нарушений при воздействии ЭМП ведущее место отводилось изменениям в гипофиз-надпочечниковой системе. Исследования показали, что при действии ЭМП, как правило, происходила стимуляция гипофизарно-адреналиновой системы, что сопровождалось увеличением содержания адреналина в крови, активацией процессов свертывания крови. Было признано, что одной из систем, рано и закономерно вовлекающей в ответную реакцию организма на воздействие различных факторов внешней среды, является система гипоталамус-гипофиз-кора надпочечников. Результаты исследований подтвердили это положение.


5. Влияние на половую функцию

Нарушения половой функции обычно связаны с изменением ее регуляции со стороны нервной и нейроэндокринной систем. Многократное облучение ЭМП вызывает понижение активности гипофиза

Любой фактор окружающей среды, воздействующий на женский организм во время беременности и оказывающий влияние на эмбриональное развитие, считается тератогенным. Многие ученые относят ЭМП к этой группе факторов. Принято считать, что ЭМП могут, например, вызывать уродства, воздействуя в различные стадии беременности. Хотя периоды максимальной чувствительности к ЭМП имеются. Наиболее уязвимыми периодами являются обычно ранние стадии развития зародыша, соответствующие периодам имплантации и раннего органогенеза.

Было высказано мнение о возможности специфического действия ЭМП на половую функцию женщин, на эмбрион. Отмечена более высокая чувствительность к воздействию ЭМП яичников нежели семенников.

Установлено, что чувствительность эмбриона к ЭМП значительно выше, чем чувствительность материнского организма, а внутриутробное повреждение плода ЭМП может произойти на любом этапе его развития. Результаты проведенных эпидемиологических исследований позволят сделать вывод, что наличие контакта женщин с электромагнитным излучением может привести к преждевременным родам, повлиять на развитие плода и, наконец, увеличить риск развития врожденных уродств.

6. Другие медико-биологические эффекты

С начала 60-х годов в СССР были проведены широкие исследования по изучению здоровья людей, имеющих контакт с ЭМП на производстве. Результаты клинических исследований показали, что длительный контакт с ЭМП в СВЧ диапазоне может привести к развитию заболеваний, клиническую картину которого определяют, прежде всего, изменения функционального состояния нервной и сердечно-сосудистой систем. Было предложено выделить самостоятельное заболевание - радиоволновая болезнь. Это заболевание, по мнению авторов, может иметь три синдрома по мере усиления тяжести заболевания:

астенический синдром;

астено-вегетативный синдром;

гипоталамический синдром.

Наиболее ранними клиническими проявлениями последствий воздействия ЭМ-излучения на человека являются функциональные нарушения со стороны нервной системы, проявляющиеся прежде всего в виде вегетативных дисфункций неврастенического и астенического синдрома. Лица, длительное время находившиеся в зоне ЭМ-излучения, предъявляют жалобы на слабость, раздражительность, быструю утомляемость, ослабление памяти, нарушение сна. Нередко к этим симптомам присоединяются расстройства вегетативных функций. Нарушения со стороны сердечно-сосудистой системы проявляются, как правило, нейроциркуляторной дистонией: лабильность пульса и артериального давления, наклонность к гипотонии, боли в области сердца и др. Отмечаются также фазовые изменения состава периферической крови (лабильность показателей) с последующим развитием умеренной лейкопении, нейропении, эритроцитопении. Изменения костного мозга носят характер реактивного компенсаторного напряжения регенерации. Обычно эти изменения возникают у лиц по роду своей работы постоянно находившихся под действием ЭМ-излучения с достаточно большой интенсивностью. Работающие с МП и ЭМП, а также население, живущее в зоне действия ЭМП, жалуются на раздражительность, нетерпеливость. Через 1-3 года у некоторых появляется чувство внутренней напряженности, суетливость. Нарушаются внимание и память. Возникают жалобы на малую эффективность сна и на утомляемость.

Учитывая важную роль коры больших полушарий и гипоталамуса в осуществлении психических функций человека, можно ожидать, что длительное повторное воздействие предельно допустимых ЭМ-излучения (особенно в дециметровом диапазоне волн) может повести к психическим расстройствам.

6. Комбинированное действие ЭМП и других факторов

Имеющиеся результаты свидетельствуют о возможной модификации биоэффектов ЭМП как тепловой, так и нетепловой интенсивности под влиянием ряда факторов как физической, так и химической природы. Условия комбинированного действия ЭМП и других факторов позволили выявить значительное влияние ЭМП сверхмалых интенсивностей на реакцию организма, а при некоторых сочетаниях может развиться ярко выраженная патологическая реакция.

7. Заболевания, вызываемые воздействием неионизирующих излучений

Острое воздействие встречается в исключительно редких случаях грубого нарушения техники безопасности улиц, обслуживающих мощные генераторы или лазерные установки. Интенсивное ЭМИ вызывает раньше всего тепловой эффект. Больные жалуются на недомогание, боль в конечностях, мышечную слабость, повышение температуры тела, головную боль, покраснение лица, потливость, жажду, нарушение сердечной деятельности. Могут наблюдаться диэнцефальные расстройства в виде приступов тахикардии, дрожи, приступообразной головной боли, рвоты.

При остром воздействии лазерного излучения степень поражения глаз и кожи (критических органов) зависит от интенсивности и спектра излучения. Лазерный луч может вызвать помутнение роговой оболочки, ожог радужки, хрусталика с последующим развитием катаракты. Ожог сетчатки ведет к образованию рубца, что сопровождается снижением остроты зрения. Перечисленные поражения глаз лазерным излучением не имеют специфических черт.

Поражения кожи лазерным пучком зависят от параметров излучения и носят самый разнообразный характер; от функциональных сдвигов в активности внутрикожных ферментов или легкой эритемы в месте облучения до ожогов, напоминающих электрокоагуляционные ожоги при поражении электротоком, или разрыва кожных покровов.

В условиях современного производства профессиональные заболевания, вызываемые воздействием неионизирующих излучений, относятся к хроническим.

Ведущее место в клинической картине заболевания занимают функциональные изменения центральной нервный системы, особенно ее вегетативных отделов, и сердечно-сосудистой системы. Выделяют три основных синдрома: астенический, астеновегетативный (или синдром нейроциркуляторной дистонии гипертонического типа) и гипоталамический.

Больные жалуются на головную боль, повышенную утомляемость, общую слабость, раздражительность, вспыльчивость, снижение работоспособности, нарушение сна, боль в области сердца. Характерны артериальная гипотензия и брадикардия. В более выраженных случаях присоединяются вегетативные нарушения, связанные с повышенной возбудимостью симпатического отдела вегетативной нервной системы и проявляющиеся сосудистой неустойчивостью с гипертензивными ангиоспастическими реакциями (неустойчивость артериального давления, лабильность пульса, бради- и тахикардия, общий и локальный гипергидроэ). Возможно формирование различных фобий, ипохондрических реакций. В отдельных случаях развивается гипоталамический (диэнцефальный) синдром, характеризующийся так называемыми симпатико-адреналовыми кризами.

Клинически обнаруживается повышение сухожильных и периостальных рефлексов, тремор пальцев, положительный симптом Ромберга, угнетение или усиление дермографизма, дистальная гипестезия, акроцианоз, снижение кожной температуры. При действии ПМП может развиться полиневрит, при воздействии электромагнитных полей СВЧ - катаракта.

Изменения в периферической крови неспецифичны. Отмечается наклонность к цитопении, иногда умеренный лейкоцитоз, лимфоцитоз, уменьшенная СОЭ. Может наблюдаться повышение содержания гемоглобина, эритроцитоз, ретикулоцитоз, лейкоцитоз (ЭППЧ и ЭСП); снижение гемоглобина (при лазерном излучении).

Диагностика поражений от хронического воздействия неионизирующего излучения затруднена. Она должна базироваться на подробном изучении условий труда, анализе динамики процесса, всестороннем обследовании больного.

Изменения кожи, вызванные хроническим воздействием неионизирующего излучения:

Актинический (фотохимический) кератоз

Актинический ретикулоид

Кожа ромбическая на затылке (шее)

Пойкилодермия Сиватта

Старческая атрофия (вялость) кожи

Актиническая [фотохимическая] гранулема

8. Основные источники ЭМП

Бытовые электроприборы

Все бытовые приборы, работающие с использованием электрического тока, являются источниками электромагнитных полей.

Наиболее мощными следует признать СВЧ-печи, аэрогрили, холодильники с системой “без инея”, кухонные вытяжки, электроплиты, телевизоры. Реально создаваемое ЭМП в зависимости от конкретной модели и режима работы может сильно различаться среди оборудования одного типа Все ниже приведенные данные относятся к магнитному полю промышленной частоты 50 Гц.

Значения магнитного поля тесно связаны с мощностью прибора - чем она выше, тем выше магнитное поле при его работе. Значения электрического поля промышленной частоты практически всех электробытовых приборов не превышают нескольких десятков В/м на расстоянии 0,5 м, что значительно меньше ПДУ 500 В/м.

В таблице 1 представлены данные о расстоянии, на котором фиксируется магнитное поле промышленной частоты (50 Гц) величиной 0,2 мкТл при работе ряда бытовых приборов.

Таблица 1. Распространение магнитного поля промышленной частоты от бытовых электрических приборов (выше уровня 0,2 мкТл)

Источник Расстояние, на котором фиксируется величина больше 0,2 мкТл
Холодильник, оснащенный системой "No frost" (во время работы компрессора) 1,2 м от дверцы; 1,4 м от задней стенки
Холодильник обычный (во время работы компрессора) 0,1 м от мотора
Утюг (режим нагрева) 0,25 м от ручки
Телевизор 14" 1,1 м от экрана; 1,2 м от боковой стенки.
Электрорадиатор 0,3 м
Торшер с двумя лампами по 75 Вт 0,03 м (от провода)

Электродуховка

Аэрогриль

0,4 м от передней стенки

1,4 м от боковой стенки


Рис. 1. Биологическое действие неионизирующего излучения

Неионизирующее излучение может усиливать тепловое движение молекул в живой ткани. Это приводит к повышению температуры ткани и может вызывать вредные последствия, такие, как ожоги и катаракты, а также аномалии развития утробного плода. Не исключена также возможность разрушения сложных биологических структур, например, клеточных мембран. Для нормального функционирования таких структур необходимо упорядоченное расположение молекул. Таким образом, возможны последствия более глубокие, чем простое повышение температуры, хотя экспериментальных свидетельств этого пока недостаточно.

Большая часть опытных данных по неионизирующим излучениям относится к радиочастотному диапазону. Эти данные показывают, что дозы выше 100 милливатт (мВт) на 1 см2 вызывают прямое тепловое повреждение, а также развитие катаракты в глазу. При дозах от 10 до 100 мВт/см2 наблюдались изменения, обусловленные термическим стрессом, включая врожденные аномалии у потомков. При 1-10 мВт/см2 отмечались изменения в иммунной системе и гематоэнцефалическом барьере. В диапазоне от 100 мкВт/см2 до 1 мВт/см2 не было достоверно установлено почти никаких последствий.

По-видимому, при воздействии неионизирующего излучения существенное значение имеют лишь ближайшие последствия, такие, как перегрев тканей (хотя имеются новые, пока неполные, данные о том, что рабочие, подвергающиеся действию микроволн, и люди, живущие очень близко к высоковольтным линиям электропередачи, могут быть больше подвержены заболеванию раком).

9. Микроволны и радиочастотное излучение

Отсутствию видимых последствий при низких уровнях микроволнового облучения нужно противопоставить тот факт, что рост использования микроволн составляет, по меньшей мере, 15% в год. Помимо применения в микроволновых печах они используются в радарах и, как средство передачи сигналов, в телевидении и в телефонной и телеграфной связи. В бывшем Советском Союзе для населения был принят предел в 1 мкВт/см2.

Промышленные рабочие, участвующие в процессах нагрева, сушки и изготовления слоистого пластика, могут подвергаться некоторому риску, так же, как и специалисты, работающие в радиовещательных, радарных и релейных башнях, или некоторые военнослужащие. Рабочие подавали иски на компенсацию с обвинением в том, что микроволны способствовали нетрудоспособности, и, по меньшей мере, в одном случае было принято решение в пользу рабочего.

С увеличением числа источников микроволнового излучения возрастает тревога в отношении его воздействия на население.

Приобретая бытовую технику проверяйте в Гигиеническом заключении (сертификате) отметку о соответствии изделия требованиям "Межгосударственных санитарных норм допустимых уровней физических факторов при применении товаров народного потребления в бытовых условиях", МСанПиН 001-96;

Используйте технику с меньшей потребляемой мощностью: магнитные поля промышленной частоты будут меньше при прочих равных условиях;

к потенциально неблагоприятным источникам магнитного поля промышленной частоты в квартире относятся холодильники с системой “без инея”, некоторые типы “теплых полов”, нагреватели, телевизоры, некоторые системы сигнализации, различного рода зарядные устройства, выпрямители и преобразователи тока – спальное место должно быть на расстоянии не менее 2-х метров от этих предметов если они работают во время Вашего ночного отдыха.

Средства и методы защиты от ЭМП подразделяются на три группы: организационные, инженерно-технические и лечебно-профилактические.

Организационные мероприятия предусматривают предотвращение попадания людей в зоны с высокой напряженностью ЭМП, создание санитарно-защитных зон вокруг антенных сооружений различного назначения.

Общие принципы, положенные в основу инженерно-технической защиты, сводятся к следующему: электрогерметизация элементов схем, блоков, узлов установки в целом с целью снижения или устранения электромагнитного излучения; защита рабочего места от облучения или удаление его на безопасное расстояние от источника излучения. Для экранирования рабочего места используют различные типы экранов: отражающие и поглощающие.

В качестве средств индивидуальной защиты рекомендуются специальная одежда, выполненная из металлизированной ткани, и защитные очки.

Лечебно-профилактические мероприятия должны быть направлены прежде всего на раннее выявление нарушений в состоянии здоровья работающих. Для этой цели предусмотрены предварительные и периодические медицинские осмотры лиц, работающих в условиях воздействия СВЧ, - 1 раз в 12 месяцев, УВЧ и ВЧ-диапазона - 1 раз в 24 месяца.

10. Инженерно-технические мероприятия по защите населения от ЭМП

Инженерно-технические защитные мероприятия строятся на использовании явления экранирования электромагнитных полей непосредственно в местах пребывания человека либо на мероприятиях по ограничению эмиссионных параметров источника поля. Последнее, как правило, применяется на стадии разработки изделия, служащего источником ЭМП.

Одним из основных способов защиты от электромагнитных полей является их экранирования в местах пребывания человека. Обычно подразумевается два типа экранирования: экранирование источников ЭМП от людей и экранирование людей от источников ЭМП. Защитные свойства экранов основаны на эффекте ослабления напряженности и искажения электрического поля в пространстве вблизи заземленного металлического предмета.

От электрического поля промышленной частоты, создаваемого системами передачи электроэнергии, осуществляется путем установления санитарно-защитных зон для линий электропередачи и снижением напряженности поля в жилых зданиях и в местах возможного продолжительного пребывания людей путем применения защитных экранов. Защита от магнитного поля промышленной частоты практически возможна только на стадии разработки изделия или проектирования объекта, как правило снижение уровня поля достигается за счет векторной компенсации поскольку иные способы экранирования магнитного поля промышленной частоты чрезвычайно сложны и дороги.

Основные требования к обеспечению безопасности населения от электрического поля промышленной частоты, создаваемого системами передачи и распределения электроэнергии, изложены в Санитарных нормах и правилах "Защита населения от воздействия электрического поля, создаваемого воздушными линиями электропередачи переменного тока промышленной частоты"№ 2971-84. Подробно о требованиях к защите смотри в разделе "Источники ЭМП. ЛЭП"

При экранировании ЭМП в радиочастотных диапазонах используются разнообразные радиоотражающие и радиопоглощающие материалы.

К радиоотражающим материалам относятся различные металлы. Чаще всего используются железо, сталь, медь, латунь, алюминий. Эти материалы используются в виде листов, сетки, либо в виде решеток и металлических трубок. Экранирующие свойства листового металла выше, чем сетки, сетка же удобнее в конструктивном отношении, особенно при экранировании смотровых и вентиляционных отверстий, окон, дверей и т.д. Защитные свойства сетки зависят от величины ячейки и толщины проволоки: чем меньше величина ячеек, чем толще проволока, тем выше ее защитные свойства. Отрицательным свойством отражающих материалов является то, что они в некоторых случаях создают отраженные радиоволны, которые могут усилить облучение человека.

Более удобными материалами для экранировки являются радиопоглощающие материалы. Листы поглощающих материалов могут быть одно- или многослойными. Многослойные - обеспечивают поглощение радиоволн в более широком диапазоне. Для улучшения экранирующего действия у многих типов радиопоглощающих материалов с одной стороны впрессована металлическая сетка или латунная фольга. При создании экранов эта сторона обращена в сторону, противоположную источнику излучения.

Несмотря на то, что поглощающие материалы во многих отношениях более надежны, чем отражающие, применение их ограничивается высокой стоимостью и узостью спектра поглощения.

В некоторых случаях стены покрывают специальными красками. В качестве токопроводящих пигментов в этих красках применяют коллоидное серебро, медь, графит, алюминий, порошкообразное золото. Обычная масляная краска обладает довольно большой отражающей способностью (до 30%), гораздо лучше в этом отношении известковое покрытие.

Радиоизлучения могут проникать в помещения, где находятся люди через оконные и дверные проемы. Для экранирования смотровых окон, окон помещений, застекления потолочных фонарей, перегородок применяется металлизированное стекло, обладающее экранирующими свойствами. Такое свойство стеклу придает тонкая прозрачная пленка либо окислов металлов, чаще всего олова, либо металлов - медь, никель, серебро и их сочетания. Пленка обладает достаточной оптической прозрачность и химической стойкостью. Будучи нанесенной на одну сторону поверхности стекла она ослабляет интенсивность излучения в диапазоне 0,8 – 150 см на 30 дБ (в 1000 раз). При нанесении пленки на обе поверхности стекла ослабление достигает 40 дБ (в 10000 раз).

Для защиты населения от воздействия электромагнитных излучений в строительных конструкциях в качестве защитных экранов могут применяться металлическая сетка, металлический лист или любое другое проводящее покрытие, в том числе и специально разработанные строительные материалы. В ряде случаев достаточно использования заземленной металлической сетки, помещаемой под облицовочный или штукатурный слой..

В качестве экранов могут применяться также различные пленки и ткани с металлизированным покрытием.

Радиоэкранирующими свойствами обладают практически все строительные материалы. В качестве дополнительного организационно-технического мероприятия по защите населения при планировании строительства необходимо использовать свойство "радиотени" возникающего из-за рельефа местности и огибания радиоволнами местных предметов.

В последние годы в качестве радиоэкранирующих материалов получили металлизированные ткани на основе синтетических волокон. Их получают методом химической металлизации (из растворов) тканей различной структуры и плотности. Существующие методы получения позволяет регулировать количество наносимого металла в диапазоне от сотых долей до единиц мкм и изменять поверхностное удельное сопротивление тканей от десятков до долей Ом. Экранирующие текстильные материалы обладают малой толщиной, легкостью, гибкостью; они могут дублироваться другими материалами (тканями, кожей, пленками), хорошо совмещаются со смолами и латексами.

11. Лечебно-профилактические мероприятия

Санитарно-профилактическое обеспечение включают следующие мероприятия:

организация и проведение контроля выполнения гигиенических нормативов, режимов работы персонала, обслуживающего источники ЭМП;

выявление профессиональных заболеваний, обусловленных неблагоприятными факторами среды;

разработка мер по улучшению условий труда и быта персонала, по повышению устойчивости организма работающих к воздействиям неблагоприятных факторов среды.

Текущий гигиенический контроль проводится в зависимости от параметров и режима работы излучающей установки, но как правило не реже 1 раза в год. При этом определяются характеристики ЭМП в производственных помещениях, в помещениях жилых и общественных зданий и на открытой территории. Измерения интенсивности ЭМП также проводятся при внесении в условия и режимы работы источников ЭМП изменений, влияющих на уровни излучения (замена генераторных и излучающих элементов, изменение технологического процесса, изменение экранировки и средств защиты, увеличение мощности, изменение расположения излучающих элементов и т.д.).

В целях предупреждения, ранней диагностики и лечения нарушений в состоянии здоровья работники, связанные с воздействием ЭМП, должны проходить предварительные при поступлении на работу и периодические медицинские осмотры в порядке, установленном соответствующим приказом Министерства здравоохранения.

Все лица с начальными проявлениями клинических нарушений, обусловленных воздействием ЭМП (астенический астено-вегетативный, гипоталамический синдром), а также с общими заболеваниями, течение которых может усугубляться под влиянием неблагоприятных факторов производственной среды (органические заболевания центральной нервной системы, гипертоническая болезнь, болезни эндокринной системы, болезни крови и др.), должны браться под наблюдение с проведением соответствующих гигиенических и терапевтических мероприятий, направленных на оздоровление условий труда и восстановление состояния здоровья работающих.


Заключение

В настоящее время ведется активное изучение механизмов биологического действия физических факторов неионизирующего излучения: акустических волн и электромагнитных излучений на биологические системы разного уровня организации; ферментов, клеткок, переживающих срезов мозга лабораторных животных, поведенческих реакций животных и развитие реакций в цепях: первичные мишени - клетка - популяции клеток – ткани.

Развиваются исследования по оценке экологических последствий воздействия на природные и аграрные ценозы техногенных стрессоров - СВЧ- и УФ-В-радиации, основными задачами которых являются:

изучение последствий истощения озонного слоя на компоненты агроценозов нечерноземной зоны России;

изучение механизмов действия УФ-В-радиации на растения;

исследование раздельного и комбинированного действия электромагнитного излучения различных диапазонов (СВЧ, гамма, УФ, ИК) на сельскохозяйственных животных и модельные объекты с целью разработки методов гигиенического и экологического нормирования электромагнитного загрязнения окружающей среды;

разработка экологически чистых технологий, основанных на применении физических факторов, для различных отраслей АПП (растениеводство, животноводство, пищевая и перерабатывающая промышленность с целью интенсификации сельскохозяйственного производства.

При интерпретации результатов исследований биологического действия неионизирующих излучений (электромагнитных и ультразвуковых) центральными и до сих пор мало изученными вопросами остаются вопросы о молекулярном механизме, первичной мишени и порогах действия излучений. Одно из важнейших следствий состоит в том, что сравнительно небольшие изменения локальной температуры в нервной ткани (от десятых долей до нескольких градусов) способны приводить к заметному изменению скорости синаптической передачи вплоть до полного выключения синапса. Такие изменения температуры могут быть вызваны излучениями терапевтической интенсивности. Из этих предпосылок следует гипотеза о существовании общего механизма действия неионизирующих излучений - механизма, в основе которого лежит небольшой локальный разогрев участков нервной ткани.

Таким образом, столь сложный и малоизученный аспект, как неионизирующие излучения и их влияние на экологию еще предстоит изучать в дальнейшем.


Список использованной литературы:

1. http://www.botanist.ru/

2. Активное выявление злокачественных новообразований кожи Денисов Л.Е., Курдина М.И., Потекаев Н.С., Володин В.Д.

3. Нестабильность ДНК и отдаленные последствия воздействия излучений.





Зависит будущее нации. На пострадавших территориях Украины, где плотность радиоактивного загрязнения по 137Cs составила от 5 до 40 Ku/км2, возникли условия длительного воздействия малых доз ионизирующего излучения, влияние которого на организм беременной и плода до Чернобыльской катастрофы фактически не изучалось. С первых дней аварии велось тщательное наблюдение за состоянием здоровья...

Или плотность потока мощности - S, Вт/м2. За рубежом ППЭ обычно измеряется для частот выше 1 ГГц. ППЭ характеризует величину энергии, теряемой системой за единицу времени вследствие излучения электромагнитных волн. 2. Природные источники ЭМП Природные источники ЭМП делятся на 2 группы. Первая - поле Земли: постоянное магнитное поле. Процессы в магнитосфере вызывают колебания геомагнитного...

Биофизики был предложен комплекс организационно-технических, санитарно-гигиенических и эргономических требований /36/, которые являются существенным дополнением к методическим рекомендациям /19/. В соответствии с ГОСТ 12.1.06-76 Электромагнитные поля радиочастот.Допустимые уровни и требования к контролю для СВЧ-излучения нормативная величина энергетической нагрузки: ЭНПДУ=2Втч/м2 (200мкВтч/см2 ...

Эндокринная и половая. Эти системы организма являются критическими. Реакции этих систем должны обязательно учитываться при оценке риска воздействия ЭМП на население. Влияние электромагнитного поля на нервную систему. Большое число исследований и сделанные монографические обобщения позволяют отнести нервную систему к одной из наиболее чувствительных к воздействию электромагнитных полей систем...


Ионизирующее излучение– это явление, связанное с радиоактивностью.
Радиоактивность– самопроизвольное превращение ядер атомов одних элементов в другие, сопровождающееся испусканием ионизирующих излучений.
Степень, глубина и форма лучевых поражений, развивающихся среди биологических объектов при воздействии на них ионизирующего излучения, в первую очередь зависят от величины поглощенной энергии излучения. Для характеристики этого показателя используется понятие поглощенной дозы, т. е. энергии излучения, поглощенной единицей массы облучаемого вещества.
Ионизирующее излучение– уникальное явление окружающей среды, последствия от воздействия которого на организм на первый взгляд совершенно не эквивалентны величине поглощенной энергии.
Важнейшие биологические реакции организма человека на действие ионизирующей радиации условно разделены на две группы:
1) острые поражения;
2) отдаленные последствия, которые в свою очередь подразделяются на соматические и генетические эффекты.
При дозах облучения более 100 бэр развивается острая лучевая болезнь, тяжесть течения которой зависит от дозы облучения.
К отдаленным последствиям соматического характера относятся разнообразные биологические эффекты, среди которых наиболее существенными являются лейкемия, злокачественные новообразования, и сокращение продолжительности жизни.
Регламентация облучения и принципы радиационной безопасности. С 1 января 2000 г. облучение людей в РФ регламентируют нормы радиационной безопасности (НРБ–96), гигиенические нормативы (ГН) 2.6.1.054–96. Основные дозовые пределы облучения и допустимые уровни устанавливают для следующих категорий облучаемых лиц:
1) персонала – лиц, работающих с техногенными источниками (группа А) или находящихся по условиям работы в сфере из воздействия (группа В);
2) населения, включая лиц из персонала, вне сферы и условий их производственной деятельности.
Для указанных категорий облучаемых предусматриваются три класса нормативов:
1) основные дозовые пределы (предельно допустимая доза – для категории А, предел дозы – для категории Б);
2) допустимые уровни;
3) контрольные уровни, устанавливаемые администрацией учреждения по согласованию с Госсанэпиднадзором на уровне ниже допустимого.
Основные принципы обеспечения радиационной безопасности:
1) уменьшение мощности источников до минимальных величин;
2) сокращение времени работы с источниками;
3) увеличение расстояния от источников до работающих;
4) экранирование источников излучения материалами, поглощающими ионизирующее излучение.

  • Ионизирующие излучения и обеспечение радиационной безопасности . Ионизирующее излучение – это явление, связанное с радиоактивностью. Радиоактивность– самопроизвольное превращение ядер атомов одних элементов в другие...


  • Ионизирующие излучения и обеспечение радиационной безопасности . Ионизирующее излучение


  • Ионизирующие излучения и обеспечение радиационной безопасности . Ионизирующее излучение – это явление, связанное с радиоактивностью. Радиоактивность– самопроизвольное.


  • Ионизирующие излучения и обеспечение радиационной безопасности . Ионизирующее излучение – это явление, связанное с радиоактивностью. Радиоактивность– самопроизвольное... подробнее ».


  • Нормы радиационной безопасности . Организм человека постоянно подвергается воздействию космических лучей и природных радиоактивных элементов, присутствующих в воздухе, почве, в тканях самого организма»
    Для ионизирующего излучения установлена ПДД 5 бэр в год.


  • В соответствии с вышеизложенным Минздравом России в 1999 г. были утверждены нормы радиационной безопасности (НРБ-99)
    Экспозиционная доза - основана на ионизирующем действии излучения , это - количественная характеристика поля ионизирующего излучения .


  • В настоящее время лучевое поражение людей может быть связано с нарушением правил и норм радиационной безопасности при выполнении работ с источниками ионизирующих излучений , при авариях на радиационноопасных объектах, при ядерных взрывах и др.


  • 5) многочисленные источники ионизирующего излучения как закрытого, так и открытого типов
    Законодательство о ядерной и радиационной безопасности объединяет правовые акты различной юридической силы.


  • безопасности
    Противорадиационные укрытия - это сооружения, защищающие людей от ионизирующего излучения , заражения радиоактивными веществами, каплями АОХВ и...


  • Достаточно скачать шпаргалки по безопасности жизнедеятельности - и никакой экзамен вам не страшен!
    уровень шума, инфразвука, ультразвука, вибрации -повышенное или пониженное барометрическое давление -повышенный уровень ионизирующих излучений -повышенное...

Найдено похожих страниц:10


100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Источники электромагнитных излучений

Известно, что около проводника, по которому протекает ток, возникают одновременно электрическое и магнитное поля. Если ток не меняется во времени, эти поля не зависят друг от друга. При переменном токе магнитное и электрическое поля связаны между собой, представляя единое электромагнитное поле.

Электромагнитное поле обладает определённой энергией и характеризуется электрической и магнитной напряжённостью, что необходимо учитывать при оценке условий труда.

Источниками электромагнитных излучений служат радиотехнические и электронные устройства, индукторы, конденсаторы термических установок, трансформаторы, антенны, фланцевые соединения волноводных трактов, генераторы сверхвысоких частот и др.

Современные геодезические, астрономические, гравиметрические, аэрофотосъёмочные, морские геодезические, инженерно-геодезические, геофизические работы выполняются с использованием приборов, работающих в диапазоне электромагнитных волн, ультравысокой и сверхвысокой частот, подвергая работающих опасности с интенсивностью облучения до 10 мкВт/см2.

Биологическое действие электромагнитных излучений

Электромагнитные поля человек не видит и не чувствует и именно поэтому не всегда предостерегается от опасного воздействия этих полей. Электромагнитные излучения оказывают вредное воздействие на организм человека. В крови, являющейся электролитом, под влиянием электромагнитных излучений возникают ионные токи, вызывающие нагрев тканей. При определённой интенсивности излучения, называемой тепловым порогом, организм может не справиться с образующимся теплом.

Нагрев особенно опасен для органов со слаборазвитой сосудистой системой с неинтенсивным кровообращением (глаза, мозг, желудок и др.). При облучении глаз в течение нескольких дней возможно помутнение хрусталика, что может вызвать катаракту.

Кроме теплового воздействия электромагнитные излучения оказывают неблагоприятное влияние на нервную систему, вызывают нарушение функций сердечно-сосудистой системы, обмена веществ.

Длительное воздействие электромагнитного поля на человека вызывает повышенную утомляемость, приводит к снижению качества выполнения рабочих операций, сильным болям в области сердца, изменению кровяного давления и пульса.

Оценка опасности воздействия электромагнитного поля на человека производится по величине электромагнитной энергии, поглощённой телом человека.

3.2.1.2 Электрические поля токов промышленной частоты

Установлено, что негативное воздействие на организм работающих оказывают и электромагнитные поля токов промышленной частоты (характеризуются частотой колебаний от 3 до 300 Гц). Неблагоприятные воздействия токов промышленной частоты проявляются только при напряжённости магнитного поля порядка 160-200 А/м. Зачастую магнитная напряжённость поля не превышает 20-25 А/м, поэтому оценку опасности воздействия электромагнитного поля достаточно производить по величине электрической напряжённости поля.

Для измерения напряжённости электрического и магнитного полей используют приборы типа "ИЭМП-2". Плотность потока излучения измеряют различного рода радар-тестерами и термисторными измерителями малой мощности, например, "45-М", "ВИМ" и др.

Защита от электрических полей

В соответствии со стандартом "ГОСТ 12.1.002-84 ССБТ. Электрические поля промышленной частоты. Допустимые уровни напряжённости и требования к проведению контроля на рабочих местах." нормы допустимых уровней напряжённости электрических полей зависят от времени пребывания человека в опасной зоне. Присутствие персонала на рабочем месте в течение 8 часов допускается при напряжённости электрического поля (Е), не превышающей 5 кВ/м. При значениях напряжённости электрического поля 5-20 кВ/м время допустимого пребывания в рабочей зоне в часах составляет:

Т=50/Е-2. (3.1)

Работа в условиях облучения электрическим полем с напряжённостью 20-25 кВ/м должна продолжаться не более 10 минут.

В рабочей зоне, характеризуемой различными значениями напряжённости электрического поля, пребывание персонала ограничивается временем (в часах):

где и ТЕ - соответственно фактическое и допустимое время пребывания персонала (ч), в контролируемых зонах с напряжённостями Е1, Е2, ..., Еn.

Основными видами средств коллективной защиты от воздействия электрического поля токов промышленной частоты являются экранирующие устройства. Экранирование может быть общим и раздельным. При общем экранировании высокочастотную установку закрывают металлическим кожухом - колпаком. Управление установкой осуществляется через окна в стенках кожуха. В целях безопасности кожух контактируют с заземлением установки. Второй вид общего экранирования - изоляция высокочастотной установки в отдельное помещение с дистанционным управлением.

Конструктивно экранирующие устройства могут быть выполнены в виде козырьков, навесов или перегородок из металлических канатов, прутьев, сеток. Переносные экраны могут быть оформлены в виде съёмных козырьков, палаток, щитов и др. Экраны изготовляют из листового металла толщиной не менее 0,5 мм.

Наряду со стационарными и переносными экранирующими устройствами применяют индивидуальные экранирующие комплекты. Они предназначены для защиты от воздействия электрического поля, напряжённость которого не превышает 60 кВ/м. В состав индивидуальных экранирующих комплектов входят: спецодежда, спецобувь, средства защиты головы, а также рук и лица. Составные элементы комплектов снабжены контактными выводами, соединение которых позволяет обеспечить единую электрическую сеть и осуществить качественное заземление (чаще через обувь).

Периодически проводится проверка технического состояния экранирующих комплектов. Результаты проверки регистрируются в специальном журнале.

Полевые топографо-геодезические работы могут проводиться вблизи линий электропередачи. Электромагнитные поля воздушных линий электропередачи высокого и сверхвысокого напряжений характеризуются напряжённостью магнитной и электрической, составляющих соответственно до 25 А/м и 15 кВ/м (иногда на высоте 1,5-2,0 м от земли). Поэтому в целях уменьшения негативного воздействия на здоровье, при производстве полевых работ вблизи линий электропередачи напряжением 400 кВ и выше, необходимо либо ограничивать время пребывания в опасной зоне, либо применять индивидуальные средства защиты.

3.2.1.3 Электромагнитные поля радиочастот

Источники электромагнитных полей радиочастот

Источниками возникновения электромагнитных полей радиочастот являются: радиовещание, телевидение, радиолокация, радиоуправление, закалка и плавка металлов, сварка неметаллов, электроразведка в геологии (радиоволновое просвечивание, методы индукции и др.), радиосвязь и др.

Электромагнитная энергия низкой частоты 1-12 кГц широко используется в промышленности для индукционного нагрева с целью закалки, плавки, нагрева металла.

Энергия импульсивного электромагнитного поля низких частот применяется для штамповки, прессовки, для соединения различных материалов, литья и др.

При диэлектрическом нагреве (сушка влажных материалов, склейка древесины, нагрев, термофиксация, плавка пластмасс) используются установки в диапазоне частот от 3 до 150 МГц.

Ультравысокие частоты используются в радиосвязи, медицине, радиовещании, телевидении и др. Работы с источниками сверхвысокой частоты осуществляются в радиолокации, радионавигации, радиоастрономии и др.

Биологическое действие электромагнитных полей радиочастот

По субъективным ощущениям и объективным реакциям организма человека не наблюдается особых различий при воздействии всего диапазона радиоволн ВЧ, УВЧ и СВЧ, но более характерны проявления и неблагоприятны последствия воздействий СВЧ электромагнитных волн.

Наиболее характерными при воздействии радиоволн всех диапазонов являются отклонения от нормального состояния центральной нервной системы и сердечно-сосудистой системы человека. Общим в характере биологического действия электромагнитных полей радиочастот большой интенсивности является тепловой эффект, который выражается в нагреве отдельных тканей или органов. Особенно чувствительны к тепловому эффекту хрусталик глаза, желчный пузырь, мочевой пузырь и некоторые другие органы.

Субъективными ощущениями облучаемого персонала являются жалобы на частую головную боль, сонливость или бессонницу, утомляемость, вялость, слабость, повышенную потливость, потемнение в глазах, рассеянность, головокружение, снижение памяти, беспричинное чувство тревоги, страха и др.

К числу перечисленных неблагоприятных воздействий на человека следует добавить мутагенное действие, а также временную стерилизацию при облучении интенсивностями выше теплового порога.

Для оценки потенциальных неблагоприятных воздействий электромагнитных волн радиочастот приняты допустимые энергетические характеристики электромагнитного поля для различного диапазона частот - электрическая и магнитная напряжённости, плотность потока энергии.

Защита от электромагнитных полей радиочастот

Для обеспечения безопасности работ с источниками электромагнитных волн проводится систематический контроль фактических значений нормируемых параметров на рабочих местах и в местах возможного нахождения персонала. Если условия работы не удовлетворяют требованиям норм, то применяются следующие способы защиты:

1. Экранирование рабочего места или источника излучения.

2. Увеличение расстояния от рабочего места до источника излучения.

3. Рациональное размещение оборудования в рабочем помещении.

4. Использование средств предупредительной защиты.

5. Применение специальных поглотителей мощности энергии для уменьшения излучения в источнике.

6. Использование возможностей дистанционного управления и автоматического контроля и др.

Рабочие места обычно располагают в зоне минимальной интенсивности электромагнитного поля. Конечным звеном в цепи инженерных средств защиты являются средства индивидуальной защиты. В качестве индивидуальных средств защиты глаз от действия СВЧ-излучений рекомендуются специальные защитные очки, стёкла которых покрыты тонким слоем металла (золота, диоксида олова).

Защитная одежда изготовляется из металлизированной ткани и применяется в виде комбинезонов, халатов, курток с капюшонами, с вмонтированными в них защитными очками. Применение специальных тканей в защитной одежде позволяет снизить облучение в 100-1000 раз, то есть на 20-30 децибел (дБ). Защитные очки снижают интенсивность излучения на 20-25 дБ.

В целях предупреждения профессиональных заболеваний необходимо проводить предварительные и периодические медицинские осмотры. Женщин в период беременности и кормления грудью следует переводить на другие работы. Лица, не достигшие 18-летнего возраста, к работе с генераторами радиочастот не допускаются. Лицам, имеющим контакт с источниками СВЧ- и УВЧ-излучений, предоставляются льготы (сокращённый рабочий день, дополнительный отпуск).