Безопасность жизнедеятельности работе с электрооборудованием. Методы и средства обеспечения электробезопасности. Ситуационный анализ поражения током

К общетехническим средствам электробезопасности относятся:

    рабочая изоляция;

    двойная изоляция;

    недоступность токоведущих частей (применение оградительных средств – кожух, электрический шкаф и др.);

    блокировки безопасности (механические, электрические);

    малое напряжение. Малое напряжение, согласно стандарту – номинальное напряжение не более 42 В, применяемое в целях уменьшения опасности поражения электрическим током (ГОСТ12.1.009-76 ССБТ. Электро-безопасность. Термины и определения). В 7-м издании ПУЭ водится понятие «сверхнизкое (малое) напряжение» (СНН) – напряжение, не превышающее 50 В переменного и 120 В постоянного тока. Для переносных светильников – 36 В, для особоопасных помещений и вне помещений – 12 В;

    меры ориентации (использование маркировок отдельных частей электрооборудования, надписи, предупредительные знаки, разноцветная изоляция, световая сигнализация).

Специальные средства защиты

Наибольшее распространение среди технических мер защиты человека в сетях до 1000 В получили:

    защитное заземление;

    зануление;

    защитное отключение.

Средства индивидуальной защиты, используемые в электроустановках

Средства защиты, используемые в электроустановках, по своему назначению подразделяются на две категории: основные и дополнительные .

Основные электрозащитные средства – это средства защиты, изоляция которых длительно выдерживает рабочее напряжение электроустановок и которые позволяют прикасаться к токоведущим частям, находящимся под напряжением.

Дополнительные электрозащитные средства – это средства защиты, дополняющие основные средства, а также служащие для защиты от напряжения прикосновения и напряжения шага, которые сами по себе не могут при данном напряжении обеспечить защиту от поражения током, а применяются совместно с основными электрозащитными средствами.

Все электрозащитные средства перед эксплуатацией проходят приемо-сдаточные испытания и периодически (через 6…36 месяцев) подвергаются контрольным осмотрам и эксплуатационным электрическим испытаниям повышенным напряжением.

Классификация электрозащитных средств приведена в табл. 15.

Таблица 15

Классификация средств индивидуальной защиты, используемых в электроустановках

Виды средств

Наименование средств защиты при напряжении электроустановки

до 1000 В

свыше 1000 В

Основные

Изолирующие штанги, изолирующие и электроизмерительные клещи, указатели напряжения, диэлектрические перчатки, слесарно-монтажный инструмент с изолирующими ручками

Изолирующие штанги, изолирующие и электроизмерительные клещи, указатели напряжения, изолирующие устройства и приспособления для работ на высоковольтных линиях с непосредственным прикосновением электромонтера к токоведущим частям

Дополнительные

Диэлектрические галоши, диэлектрические коврики, переносные заземления, изолирующие подставки и накладки, оградительные устройства, плакаты и знаки безопасности

Диэлектрические перчатки и боты, диэлектрические коврики, изолирующие подставки и накладки, индивидуальные изолирующие комплекты, диэлектрические колпаки, переносные заземления, оградительные устройства, плакаты и знаки безопасности

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования Российской Федерации

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

СЕРВИСА И ЭКОНОМИКИ

Безопасность жизнедеятельности

Реферат на тему: Электробезопасность

Выполнил студент

группы 65-у (0608у)

Козырев Виктор

Санкт Петербург 2011

Введение

Причины и виды поражения электрическим током

Классификация помещений по электробезопасности

Технические способы и средства защиты

Первая помощь пострадавшему от электрического тока

Заключение

Введение

электробезопасность защита помощь пострадавший ток

Электробезопасностью называется система организационных и технических мероприятий и средств, обеспечивающих защиту людей от вредного и опасного воздействия электрического тока, электрической дуги, электромагнитного поля и статического электричества. Она достигается: конструкцией электроустановок; техническими способами и средствами защиты; организационными и техническими мероприятиями. Требования (правила и нормы) электробезопасности конструкции и устройства электроустановок изложены в системе стандартов безопасности труда, а также в стандартах и технических условиях па электротехнические изделия.

Электроустановками называются также устройства, которые производят, преобразуют, распределяют и потребляют электрическую энергию. Наружными или открытыми электроустановками называют электроустановки, находящиеся на открытом воздухе, а внутренними или закрытыми -- находящиеся в закрытом помещении. Электроустановки могут быть постоянные и временные. По условиям электробезопасности электроустановки разделяют на электроустановки напряжением до 1000В включительно и выше 1000 В.

Технические способы и средства защиты, обеспечивающие электробезопасность, устанавливаются с учетом (ГОСТ 12,1.019--79): номинального напряжения, рода и частоты тока электроустановки; способа электроснабжения (от стационарной сети, от автономного источника питания электроэнергией); режима нейтрали (средней точки) источника питания электроэнергией (изолированная, заземленная нейтраль); вида исполнения (стационарные, передвижные, переносные); условий внешней среды (помещения: особо опасные, повышенной опасности, без повышенной опасности, на открытом воздухе).

Причины и виды поражения электрическим током

Причины поражения электрическим током:

1) прикосновение к находящимся под напряжением токоведущим частям оборудования;

2) появление напряжения на нетоковедущих частях оборудования (т. е. не находящихся под напряжением при работе исправного оборудования), на земле из-за замыкания, статического или атмосферного электричества;

3) работа на электроустройствах без соблюдения мер техники безопасности;

4) некачественное заземление или зануление электроустановок;

5) использование в особо опасных помещениях переносных электроустройств на напряжение более 36В.

Электрическое замыкание на землю -- это случайное соединение токоведущей части аппарата с землей или с нетоковедущими проводящими конструкциями, не изолированными от земли. Земля становится участком цепи в зоне растекания тока, в которой из-за сопротивления земли напряжение падает, т. е. появляется разность потенциалов между точками ее поверхности.

Статическое электричество - это возникновение, сохранение и релаксация (т.е. ослабление, уменьшение) электрического заряда в диэлектриках, полупроводниках или изолированных проводниках. Заряды накапливаются на оборудовании и материалах, а разряды могут вызвать пожар, взрыв, нарушение технологических процессов или работы электрических приборов и средств автоматики.

Атмосферное электричество (молния) может вызвать взрыв, пожар, поражение людей.

Виды электротравм:

1. Термическое воздействие

2. Электролитическое воздействие (разложение органической жидкости)

3. Механическое воздействие

4. Биологическое воздействие

5. Раздражение и возбуждение живых тканей в организме

Возможны местные электротравмы тканей и органов:

Электрические знаки (припухлость с затвердевшей в виде мозоли кожей при контакте с токоведущими частями)

Электрометаллизация кожи (проникновение металла в кожу вследствие разбрызгивания и испарения его при ожоге электрической дугой)

Электроофтальмия (поражение глаз ультрафиолетовым излучением дуги), механические повреждения (ушибы, переломы при падении с высоты из-за сокращений мышц или потери сознания).

Классификация помещений по электробезопасности

Помещения по степени опасности поражения током из-за характера окружающей среды делятся на классы:

1. Помещения без повышенной опасности

Сухие безпыльные помещения с нормальной температурой и изоляцией пола.

2. Помещения с повышенной опасностью

Характеризуются наличием одного из условий:

а) сырость (относительная влажность воздуха превышает 75%);

б) токопроводящая пыль;

в) токопроводящие полы (металлические, земляные, железобетонные, кирпичные и др.);

г) температура воздуха выше +35°С (помещения с сушилками, котельные и т.д.); д) возможность одновременного прикосновения человека к металлическим корпусам электрооборудования и к соединенным с землей металлоконструкциям здания, технологическим аппаратам, механизмам.

3. Особо опасные помещения

При наличии одного из условий:

а) особая сырость (влажность близка к 100%, при этом потолок, стены, пол и предметы покрыты влагой);

б) химически активная среда (т. е. агрессивные пары, газы, жидкости) или органическая среда, образующая отложения и плесень, разрушающие изоляцию и токоведущие части электрооборудования;

в) одновременно два и более условия повышенной опасности.

Технические способы и средства защиты

Для обеспечения электробезопасности должны применяться отдельно или в сочетании друг с другом следующие технические способы и средства: изоляция токоведущих частей (рабочая, дополнительная, усиленная двойная); оградительные устройства; предупредительная сигнализация, блокировка, знаки безопасности; расположение на безопасной высоте; малое напряжение; защитное заземление, зануление и защитное отключение; выравнивание потенциалов; электрическое разделение сетей; средства защиты и предохранительные приспособления.

Изоляция токоведущих частей. Исправная изоляция является основным условием, обеспечивающим безопасность эксплуатации электроустановок. Основными причинами нарушения изоляции и ухудшения ее качеств являются: нагревание рабочими, пусковыми токами, токами короткого замыкания, теплом посторонних источников, солнечной радиацией и т. п.; динамические усилия, смещение, истирание, механические повреждения, возникающие при малом радиусе изгиба кабелей, чрезмерных растягивающих усилиях при вибрациях и т. п.; воздействие загрязнения, масел, бензина, влаги, химических веществ.

В силовых и осветительных сетях напряжением до 1000В величина сопротивления изоляции между любым проводом и землей, а также между двумя проводниками, измеренная между двумя смежными предохранителями или да последними предохранителями, должна быть не менее 0,5 МОм, Существуют нормы на качество изоляции отдельных электроустановок.

Состояние изоляции проверяется перед вводом электроустановки в эксплуатацию, после ее ремонта, а также после длительного ее пребывания в нерабочем положении. Кроме того, проводится профилактический контроль изоляции с помощью специальных приборов: омметров и мегомметров. Правила технической эксплуатации электроустановок потребителей предписывают проводить такой контроль в электроустановках до 1000В но реже 1 раза в три года. В тех случаях, когда силовые или осветительные проводки имеют пониженное против норм сопротивление изоляции, необходимо принимать немедленные меры к восстановлению изоляции до нормы или к полной, или частичной замене проводки.

Двойная изоляция -- это электрическая изоляция, состоящая из рабочей и дополнительной изоляции. Последняя предусмотрена для защиты от поражения электрическим током в случае повреждения рабочей изоляции. На корпусе токоприемника с двойной изоляцией на видном месте наносится геометрический знак -- квадрат в квадрате.

Оградительные устройства. В случаях, когда токоведущие части электрооборудования не имеют конструкционного укрытия и доступны прикосновению, они должны иметь соответствующие защитные ограждения. Они выполняются из негорючего или трудно горючего материала в виде кожухов, крышек, ящиков, сеток и должны обладать достаточной механической прочностью и иметь такое конструктивное исполнение, чтобы снятие или открывание их было возможно только при помощи специальных инструментов или ключей и работниками, которым это поручено. Съемные крышки, закрепленные болтами, не обеспечивают надежной защиты, более надежны крышки, укрепленные на шарнирах, запирающиеся на замок или запор.

В общественных и производственных не электротехнических помещениях токоведущие части должны иметь сплошные ограждения. В электротехнических помещениях при напряжении до 1000В ограждения могут быть сетчатыми или дырчатыми.

Блокировочные устройства. Блокировки исключают опасности прикосновения или приближения к токоведущим частям в то время, когда они находятся под напряжением. Принципы блокировки заключаются в следующем:

а) при открывании ограждения электрооборудования происходит автоматическое отключение данного устройств от источника тока;

б) открывание ограждения электрооборудования становится возможным только после предварительного отключения данного устройства от источника тока.

Предупредительная сигнализация, надписи, плакаты. Предупредительная сигнализация привлекает внимание обслуживающего персонала и предупреждает о грозящей или возникающей опасности. Обычно применяется световая или звуковая сигнализация -- каждая в отдельности или сблокированные вместе. Следует помнить, что сигнализация только предупреждает об опасности, но не исключает ее.

В предупреждении несчастных случаев при эксплуатации электрооборудования важная роль принадлежит маркировке, надписям, указывающим состояние оборудования, название и назначение присоединений. При отсутствии маркировки и надписей обслуживающий персонал может во время ремонтов, осмотров и эксплуатации электрооборудования перепутать назначение проводов, рубильников, выключателей и т. д.

Различают плакаты: предостерегающие, запрещающие, разрешающие и напоминающие.

Размещение токоведущих частей на недоступной для прикосновения высоте. Производится в случаях, когда их изоляция и ограждение оказываются невозможными или экономически нецелесообразными. Неизолированными в помещениях разрешается применять только контактные провода подъемно-транспортных средств. В этом случае они должны быть проложены на высоте не менее 3,5 м от пола и иметь устройства для автоматического отключения при обрыве.

Электрическое разделение сети. На отдельные электрически не связанные между собой участки электрическую сеть делят с помощью разделяющего трансформатора. Он предназначен для отделения приемника энергии от первичной электрической сети и сети заземления. Таким образом, разделяющий трансформатор отделяет электроприемник от возможных в общей сети токов замыкания на землю, токов утечки и других условий, создающих опасность для людей.

Раздельное питание используют в установках напряжением до 1000 В при испытаниях, работах с переносными электрическими приборами, на стендах и в особо опасных помещениях. Заземления корпуса электроприемника, присоединенного к разделяющему трансформатору, не требуется, а соединение его с сетью зануления не допускается.

Защитные средства, применяемые в электроустановках. Для

обслуживания электроустановок собственным штатом станции необходимо укомплектовать защитные средства и обеспечить правильное их хранение. Изолирующие защитные средства: перчатки, галоши, коврики и монтерский инструмент с изолированными рукоятками.

Назначение, принцип действия и область применения защитного заземления. Одной из наиболее эффективных мер защиты от опасности поражения током в случае прикосновения к металлическим нетоковедущим частям электроустановок, оказавшимся под напряжением, является защитное заземление. Защитным заземлением называется преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением вследствие замыкания на корпус или по другим причинам. Замыкание на корпус возможно в результате повреждения изоляции, касания токоведущей части корпуса машины, падения провода, находящегося под напряжением, на нетоковедущие металлические части и т. п.

Принцип действия защитного заземления заключается в следующем. Допустим, что корпус токоприемника не заземлен и он находится под напряжением замкнувшейся фазы. Прикосновение человека к такому корпусу равносильно непосредственному прикосновению к фазному проводу. Сопротивление человека будет включено между корпусом и землей. Через человека пройдет ток, который может оказаться опасным для его жизни.

Чтобы уменьшить эту опасность и снизить значение тока, проходящего через тело человека, до безопасной величины, корпус токоприемника заземляют, в результате которого создается цепь, шунтирующая тело человека и обеспечивающая для токозамыкания путь с малым сопротивлением. При этом большая часть тока замкнувшейся фазы течет через заземляющее устройство, минуя тело человека.

Принцип действий и область применения зануления. При появлении напряжения на корпусах электрооборудования опасность поражения током может быть устранена путем быстрого отключения этого оборудования от питающей электросети. Такой принцип защиты людей осуществляется путем зануления корпусов оборудования.

Занулением называется преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением. Принцип действия зануления состоит в том, что при замыкании какой-либо фазы на корпус зануление приводит к однофазному короткому замыканию и быстрому росту тока замыкания до такой величины, которая обеспечивается срабатывание защиты и автоматическое отключение электрооборудования от питающей электросети. Аппаратами защиты могут быть: плавкие предохранители, максимальные автоматы защиты от токов короткого замыкания и др.

Зануление необходимо применять в электроустановках до 3000 В с глухозаземленной нейтралью. Зануление электроустановок следует выполнять при тех же номинальных напряжениях и в помещениях, в которых предусмотрено защитное заземление. Занулению подлежат те же металлические нетоковедущие части электрооборудования, которые подлежат защитному заземлению.

Первая помощь пострадавшему от электрического тока

Первая помощь при поражении электрическим током состоит в следующем. Так как при действии тока мышцы сокращаются, то человек крепко обхватывает предмет, находящийся под напряжением. Поэтому первая помощь -- освобождение пострадавшего от действия тока. Для этого в первую очередь необходимо обесточить аппарат, отключив рубильник, пускатель или вывернув предохранители или разорвав провода изолированным предметом (топор, багор с сухой деревянной ручкой и др.). При этом надо стоять на сухой доске или надеть галоши, диэлектрические перчатки или изолировать руки сухой тканью; брать пострадавшего нужно за неприлегающие к телу части одежды.

Если провод у пострадавшего в руках и разжать их не удается, то его необходимо приподнять, т. е. разорвать цепь через его тело. Ноги спасателя нужно изолировать и при освобождении пострадавшего от проводника, упавшего на землю. Если пострадавший находится на высоте -- предотвратить травмирование его при падении. Если он в сознании, но был в обмороке, ему необходимо расстегнуть воротник, пояс, обеспечить воздух и покой до прибытия врача. При отсутствии сознания, но сохранившемся дыхании ровно уложить пострадавшего на мягкую подстилку, обеспечить воздух, давать нюхать нашатырный спирт, сбрызгивать лицо водой, растирать и согревать тело. Если дыхания нет, а сердце работает -- делать искусственное дыхание "изо рта в рот" или "изо рта в нос" через чистую салфетку с частотой для взрослых 12-16 раз/мин, для детей -- 18-20 раз/мин.

Если не работает сердце, а дыхание есть -- применить закрытый массаж сердца в ритме 60-70 надавливаний в минуту: нижней частью ладони упираются в нижнюю половину грудины, но не ниже; нажимать на грудину по вертикали, а не под углом. Остановку кровообращения можно обнаружить также по расширению зрачков. В этом случае немедленно делать искусственное дыхание и массаж сердца: если один спасатель, то на два вдувания 15 нажимов; если два спасателя, то одно вдувание на пять нажимов. Доврачебную помощь начинать немедленно по возможности на месте происшествия, одновременно вызвав врача.

Заключение

Существует очень много видов опасностей при работе с электрическими приборами и электроустановками, поэтому нужно соблюдать все меры предосторожности и так как при несчастном случае срочное прибытие медиков маловероятно, то каждый работающий с электричеством должен уметь оказывать первую доврачебную помощь.

Литература

1. Белов С.В., Ильницкая А.В., Морозова Л.Л. Безопасность жизнедеятельности. М, «Высшая школа», 1999г. - 448 с.

2. Воронина А.А., Шибенко Н.Ф., Безопасность труда в электроустановках. М, «Высшая школа», 1984г.- 192 с.

3. Безопасность жизнедеятельности: Учеб.пособие для вузов / В.Е. Анофриков, С.А. Бобок, М.Н. Дудко, Г.Д. Елистратов / ГУУ. М., ЗАО « Финстатинформ», 1999.

4. Охрана труда. Под ред. Б.А. Князевского. М., «Высшая школа», 1972.

Размещено на www.allbest.ru

Подобные документы

    Виды поражения электрическим током. Основные факторы, влияющие на исход поражения током. Основные меры защиты от поражения. Классификация помещений по опасности поражения током. Защитное заземление. Зануление. Защитные средства. Первая помощь человеку.

    доклад , добавлен 09.04.2005

    Электротравматизм на производстве и в быту. Воздействие электрического тока на организм человека. Электротравма. Условия поражения электрическим током. Технические способы и средства электробезопасности. Оптимизация защиты в распределительных сетях.

    реферат , добавлен 04.01.2009

    Величина тока и его действие на организм, электрическое сопротивление тела человека. Степени электрических ударов, их характеристика. Причины смерти от электрического тока. Правила электробезопасности и методы защиты от поражения электрическим током.

    реферат , добавлен 16.09.2012

    Виды поражения электрическим током. Задачи и функции защитного заземления и зануления. Первая помощь человеку, пораженному электрическим током, виды защитных средств. Воздействие на организм человека вредных веществ, содержащихся в воздухе рабочей зоны.

    контрольная работа , добавлен 28.02.2011

    Сущность и значение электробезопасности, законодательные требования к ее обеспечению. Особенности действия электрического тока на организм человека. Анализ факторов, влияющих на исход поражения электрическим током. Способы защиты от этого вида поражения.

    контрольная работа , добавлен 21.12.2010

    Виды поражения организма человека электрическим током. Факторы, определяющие исход воздействия электричества. Основные способы обеспечения электробезопасности. Оказание помощи пострадавшему от электрического тока. Безопасное напряжение, его значения.

    презентация , добавлен 17.09.2013

    Виды поражений электрическим током. Электрическое сопротивление тела человека. Основные факторы, влияющие на исход поражения током. Критерии безопасности для электрического тока. Организационные меры по обеспечению электробезопасности на производстве.

    реферат , добавлен 20.04.2011

    Виды поражений электрическим током, электрическое сопротивление тела человека, основные факторы, влияющие на исход поражения током. Виды защиты от опасности поражения электрическим током и принцип их действия, мероприятия по электробезопасности.

    контрольная работа , добавлен 01.09.2009

    Первая медицинская помощь при поражении электрическим током и молнией. Психо-эмоциональная настороженность – "фактор внимания" при работе с электротоком. Пути профилактики электротравматизма. Физиологическое действие электрического тока на организм.

    реферат , добавлен 11.04.2013

    Индивидуальные средства защиты органов слуха от вибрации и шума. Классификация помещений по характеру окружающей среды и опасности поражения электрическим током. Правила безопасности обслуживания электрических установок в производственных помещениях.


2 Электробезопасность - система организационных и технических мероприятий и средств, обеспечивающих защиту людей от вредного и опасного воздействия электрического тока, электрической дуги, электромагнитного поля и статического электричества. Электроустановки - установки, в которых производится, преобразуется, распределяется и потребляется электроэнергия; к ним также относятся установки, содержащие в себе источники электроэнергии (химические, гальванические). Электротравма - - травма, вызванная воздействием электрического тока или электрической дуги.


3 технические - несоответствие электроустановок требованиям безопасности и условиям применения, связанное с дефектами изготовления, монтажа и ремонта; организационно-технические - несоблюдение технических мероприятий безопасности, осуществляемых потребителями на стадии эксплуатации; несвоевременная замена неисправного или устаревшего электрооборудования; организационные - невыполнение организационных мероприятий безопасности, несоответствие выполняемой работы заданию; организационно-социальные - работа в сверхурочное время; несоответствие работы специальности; нарушение трудовой дисциплины; допуск к работе на электроустановках лиц моложе 18 лет; привлечение к работе лиц, имеющих медицинские противопоказания. Причины электротравм


4 Особенности электротравматизма отсутствие видимых признаков опасности; возможность травмирования не только при прикосновении к частям установки, находящимся под напряжением, но и при перемещении по земле вблизи мест повреждения изоляции или мест замыкания на землю; снижение защитных свойств организма человека из-за внезапности воздействия электрического тока; возможность резких непроизвольных движений пострадавшего, которые могут привести к соприкосновению с другими токоведущими частями или к падению его с высоты.


5 Воздействие элетротока на организм человека биологическое –раздражение и возбуждение живых тканей организма. Вследствие этого наблюдаются судороги скелетных мышц, которые могут привести к остановке дыхания, спазму голосовых связок; электролитическое - электролиз (разложение) органических жидкостей, в том числе крови, существенно изменяющий функциональное состояние клеток; тепловое - ожоги отдельных участков тела, нагрев кровеносных сосудов, крови; механическое - расслоение и разрыв тканей.




7 Электрический ожог – результат теплового воздействия электрического тока в месте контакта тела человека с электродом. Количество тепла, выделяемое в ткани тела человека при прохождении электрического тока, определяется законом Джоуля-Ленца: I Ч – ток, проходящий через тело человека (А); R Ч – сопротивление тела (Ом); t – время протекания тока через тело (с).


8 Виды электрических ожогов токовый (контактный) - возникает при прохождении тока непосредственно через тело человека в результате контакта человека с токоведущей частью – 38 % пострадавших от электрического тока; дуговой - обусловлен воздействием на тело человека электрической дуги – 25 %. Степени электрических ожогов: I степень – покраснение кожи; II степень – образование пузырей на поверхности кожи; III степень – омертвление и обугливание кожи; IV степень – обугливание подкожной клетчатки, мышц, костей.


9 Электрические знаки – это четко очерченные пятна серого или бледно-желтого цвета на поверхности кожи человека, подвергнувшейся действию тока. В отличие от ожогов электрические знаки обычно возникают при хорошем контакте кожи с электродом. По внешнему виду - круглые или эллиптические образования серого или желтоватого цвета с резко очерченными краями. Размеры не более 5-10 мм. В некоторых случаях форма электрического знака представляет собой отпечаток электрода. Электрические знаки могут возникнуть как в момент прохождения тока, так и спустя некоторое время после контакта с электродом. Знаки возникают примерно у 20 % пострадавших от тока. Болезненных ощущений не вызывают, со временем исчезают.


10 Металлизация кожи – это повреждение участка кожи в результате проникновения в неё мельчайших частиц металлического электрода, расплавившегося под действием электрической дуги. Это возможно при коротких замыканиях, отключениях разъединителей и рубильников под нагрузкой и т.п. Окраска металлизированного участка кожи зависит от металла электрода: зеленая – при контакте с красной медью, сине-зеленая – при контакте с латунью, серо-желтая – при контакте со свинцом. С течением времени металлизированная кожа обычно отслаивается, пораженный участок приобретает нормальный вид, исчезают болезненные ощущения.


11 Механическое повреждение – следствие резких непроизвольных судорожных сокращений мышц под действием тока. В результате могут произойти разрывы кожи, кровеносных сосудов и нервов, а также вывихи суставов и переломы костей. Механические повреждения – серьёзные травмы, лечение их длительное, но они происходят сравнительно редко.


12 Электроофтальмия – воспаление наружных оболочек глаз, вызванное интенсивным излучением электрической дуги, в спектре которой имеются вредные для глаз ультрафиолетовые и инфракрасные излучения. Возникает сравнительно редко (1-2 %), чаще всего при проведении электросварочных работ.


13 Электрический удар – электротравма, вызванная рефлекторным действием электрического тока (через нервную систему). Ток, проходя через тело человека, раздражает периферические окончания чувствительных нервов, в результате чего наступает возбуждение тканей организма, сопровождающееся сокращением мышц. При этом исход воздействия тока на организм может быть различен – от легкого сокращения мышц пальцев руки до прекращения работы сердца или лёгких (смертельного поражения). Степени электрического удара: I степень – судорожное сокращение мышц без потери сознания; II степень – судорожное сокращение мышц с потерей сознания, но с сохранившимся дыханием и работой сердца; III степень – потеря сознания и нарушение сердечной деятельности или дыхания (либо того и другого вместе); IV степень – клиническая смерть, т.е. отсутствие дыхания и кровообращения.


14 Электрический шок – тяжелая нервно-рефлекторная реакция организма на раздражение электрическим током. При шоке возникают глубокие расстройства дыхания, кровообращения, нервной системы, обмена веществ и других систем организма. При шоке сразу же после воздействия тока наступает кратковременная фаза возбуждения организма. У пострадавшего появляется реакция на боль, повышается артериальное давление. Затем наступает фаза торможения: истощается нервная система, снижается артериальное давление, ослабевает дыхание, падает и учащается пульс, возникает состояние депрессии. Шоковое состояние может длиться от нескольких десятков минут до суток. После этого может наступить выздоровление, как результат активного лечебного вмешательства, или биологическая смерть.


15 Низковольтная (до 1000 В) электротравма Необходимо как можно быстрее: отключить рубильник, выключатель; разомкнуть штепсельное соединение; вывернуть пробки; удалить предохранители и пр. Если быстро отключить электроустановку невозможно, прежде чем прикоснуться к пострадавшему, спасатель обязан: Встать на сухие доски, бревна, свернутую сухую одежду, резиновый коврик или надеть диэлектрические галоши Надеть диэлектрические перчатки или обмотать руку сухой тряпкой, шарфом, защитить кепкой или краем рукава Не дотрагиваться до металлических предметов и до тела пострадавшего. Можно касаться только его одежды


16 Способы освобождения от токоведущего элемента любым сухим предметом, не проводящим ток (палкой, доской, канатом и т.д.); оттянуть пострадавшего за воротник или полу одежды; перерубить провод топором с сухим деревянным топорищем; перекусить (каждую фазу отдельно!) кусачками с изолированными рукоятками.


17 Высоковольтная (свыше 1000 В) электротравма Спасатель должен надеть диэлектрические боты, работать в диэлектрических перчатках. Действовать необходимо изолирующей штангой или изолирующими клещами, расчитанными на соответствующее напряжение. Остальное – как при низковольтной травме.


18 Факторы, влияющие на тяжесть поражения электротоком Электрическое сопротивление тела человека (от 3 тыс. до 100 тыс. Ом на поверхности сухой, чистой, неповрежденной кожи до Ом внутри тела). Безопасное напряжение: R Ч – расчетное сопротивление тела человека (1000 Ом) I БЕЗ – условно безопасная сила тока (10 мА) Род тока (переменный ток опаснее постоянного)


19 Факторы, влияющие на тяжесть поражения электротоком Частота тока (наиболее опасна промышленная частота 50 Гц) Путь прохождения тока в теле человека (наиболее вероятные и, одновременно, наиболее опасные пути протекания тока: рука-рука, рука- нога, нога-нога) Индивидуальные особенности организма (повышенная восприимчивостью к электротоку у лиц, страдающих болезнями сердечно-сосудистой системы, органов внутренней секреции, легких, нервной системы и кожи


20 Характер воздействия тока на организм человека Ток, мА Переменный (50 Гц) ток Постоянный ток 0,5- -1,5 Начало ощущений: слабый зуд, пощипывание кожи Не ощущается Сильные боли и судороги во всей руке, включая предплечье. Руки трудно оторвать от электродов Усиление ощущения нагрева кожи Едва переносимые боли во всей руке. Руки невозможно оторвать от электродов (неотпускающий ток) Значительный нагрев в месте контакта и в прилегающей области кожи Очень сильная боль в руках и в груди. Дыхание крайне затруднено. При длительном воздействии может наступить остановка дыхания или потеря сознания Сильный нагрев, боли и судороги в руках, При отрыве рук от электродов – сильные боли Дыхание парализуется через несколько секунд, нарушается работа сердца. При длительном воздействии может наступить фибрилляция сердца Очень сильный поверхностный и внутренний нагрев. Сильные боли в руке и в области груди. Руки невозможно оторвать от электродов Фибрилляция сердца через 2-3 с, ещё через несколько секунд – остановка дыхания То же действие, но выраженное сильнее. При длительном действии – остановка дыхания


21 Критерии безопасности в электроустановках Для расчета и разработки защитных мер в электроустановках в качестве исходных нормируемых величин рекомендуются три первичных критерия электробезопасности: пороговый ощутимый ток – наименьшее значение ощутимого тока, при частоте 50 Гц в среднем он составляет 1 мА; пороговый неотпускающий ток – человек может самостоятельно освободиться от действия тока, величина тока 10 мА; пороговый фибрилляционный ток – ток 50 мА и более может вызвать фибрилляцию желудочков сердца. Условно безопасная сила тока - 10 мА Смертельный ток мА


22 Классификация электроустановок и производственных помещений Помещения без повышенной опасности - характеризуются отсутствием признаков повышенной и особой опасности. Помещения с повышенной опасностью характеризуются наличием одного из следующих факторов: сырость (относительная влажность > 75 %); высокая температура воздуха (> 35 град. С); токопроводящая пыль; токопроводящие полы; возможность одновременного прикосновения к имеющим соединение с землей металлоконструкциям зданий, технологическим аппаратам, механизмам и т.п., с одной стороны, и к металлическим корпусам электроприемников, с другой стороны. 75 %); высокая температура воздуха (> 35 град. С); токопроводящая пыль; токопроводящие полы; возможность одновременного прикосновения к имеющим соединение с землей металлоконструкциям зданий, технологическим аппаратам, механизмам и т.п., с одной стороны, и к металлическим корпусам электроприемников, с другой стороны.">


23 Классификация электроустановок и производственных помещений Особо опасные помещения - характеризуются наличием одного из факторов: особая сырость (относительная влажность воздуха ~ 100 %); химически активная среда (содержащиеся в воздухе пары действуют разрушающе на изоляцию и токоведущие части оборудования); два или более признаков одновременно, свойственных помещениям с повышенной опасностью.






26 Однофазное прикосновение к сети U Ф – фазное напряжение; R Ч – сопротивление тела человека (1 к Ом); R ОБ и R П – сопротивления обуви и пола; R ИЗ – сопротивление изоляции фазных проводов сети относительно земли в установках с изолированной нейтралью (U до 1 кВ)


27 Однофазное прикосновение к сети U Ф – фазное напряжение; R Ч – сопротивление тела человека (1 к Ом); R ОБ и R П – сопротивления обуви и пола; R О – сопротивление заземления нейтрали трансформатора в установках с глухозаземленной нейтралью (U до 1 кВ)


28 Распределение потенциалов в зоне растекания тока 1 – электроприемник (заземленное электрооборудование); 2 – заземляющий зажим; 3 – заземляющий проводник; 4 – заземляющее устройство; 5 – кривые распределения: а-потенциалов; б-напряжения прикосновения.


29 Растекание тока в земле при замыкании Распределение потенциала на поверхности земли: I З – ток замыкания на землю; ρ – удельное сопротивление грунта. Напряжение прикосновения: φ З – потенциал корпуса; φ Х – потенциал точек почвы, в которых находятся ноги человека





5. Электробезопасность

По определению ГОСТ 12.1.009-76: "Электробезопасность − система организационных и технических мероприятий и средств, обеспечивающих защиту людей от вредного и опас-ного воздействия электрического тока, электрической дуги, электромагнитного поля и статического электричества".

Из всей совокупности ОВПФ наиболее травмирующим фактором является электрический ток.

В Российской Федерации ежегодно от электрического тока погибает ~ 2500 человек, откуда риск индиви-дуальной смерти от тока получается равным: 2500/145∙10 6 ≈ 16∙10 -6 , что втрое больше, чем в среднем на Земле (5∙10 -6). Доля электротравм среди всей совокупности несчастных слу-чаев на производстве составляла в России в 80-ые годы прошлого века 11.8% (каждая десятая травма на производстве свя-зана электрическим током).

С момента промышленного использования электри-ческой энергии пристальное внимание было направлено на специфику проявления электри-ческого тока, не обнаруживаемого без непосредственного кон-такта с токоведущей частью, находящейся под напряжением, и тяжесть его воздействия на человека. Многочисленные исследования и инженерно-технические разработки привели в настоящее время к созданию надеж-ной системы защитных мер от поражения током.

^

5.1. Электрический ток


Действие тока на человека.

Ток оказывает термическое, электролитическое и биоло-гическое действие.

По видам поражения воздействие подраз-деляется на:

- электротравмы - местное поражение тканей (ожоги, элек-трические знаки, металлизация кожи);

-электроудары - воздействие тока на весь организм.

По степени воздействия различают:

I степень - судорожные сокращения мышц без потери соз-нания;

II степень - судорожные сокращения мышц, потеря созна-ния;

III степень - потеря сознания, нарушение сердечной и/или дыхательной деятельности;

IV степень - клиническая смерть, т.е. отсутствие дыхания и кровообращения.

^ Факторы , определяющие исход поражения электрическим током:

1.Значение тока I (основной поражающий фактор). Смер-тельным для человека значением тока промышленной часто-ты 50 Гц считается ток

При этом токе вероятность смертельного исхода наступа-ет для 5% людей.

Выделяют три характерных значения тока промышленной частоты при его протекании через человека:


  • пороговый ощутимый 0,6-1,5 мА, при котором появля-ются первые ощущения;

  • пороговый неотпускающий 10-15 мА, при котором че-ловек не может оторваться от токоведущей части под напря-жением (из-за судорог мышц);

  • пороговый фибрилляционный 100 мА, при котором воз-никают хаотические сокращения волокон сердечной мышцы (фибрилл), в результате чего наступает смерть.
При постоянном токе ощутимый пороговый ток составля-ет 5-7 мА. пороговый неотпускающий 50-70 мА, а пороговый фибрилляционный - 300 мА.

2. Напряжение прикосновения U пр, которое, согласно ГОСТ 12.1.009-76, представляет напряжение между двумя точками цепи тока, которых одновременно касается человек.

Напряжение прикосновения, а также электрическое сопро-тивление тела человека существенно влияют на исход пора-жения, так как определяют значение тока, проходящего че-рез тело человека, согласно закону Ома:

U пр = I h ∙R h

В аварийном режиме предельно допустимым напряжени-ем является 20В (при длительности воздействия более 1 с.).

3. Сопротивление тела человека R h . Оно определяется в основном сопротивлением кожи. Сопротивление R h , колеблет-ся у разных людей от 3 кОм до 100 кОм. Согласно ГОСТ 12.1.038-82, в нормальном режиме R h принимается равным 6,7 кОм. В аварийном режиме при расчетах принимается обычно равным 1000 Ом.

4. Длительность воздействия t. Предельно допустимый ток, который может воздейство-вать на человека без особых последствий в интервале време-ни t = 0,2 − 1с, определяется согласно ГОСТ 12.1.038-82 из вы-ражения: I ≈ 50/t, мА. Вероятность тяжелого исхода возрастает при I менее 0,2с, что связано с особенностями кардиоцикла. Поэтому время срабатывания быстродействующей защиты ориентируется на этот промежуток времени.

5. ^ Путь тока через тело человека (петля тока). Наиболее опасна петля тока по пути рука-рука, так как проходит через жизненно важные органы, наименее - нога-нога.

6. Род тока . Постоянный ток менее опасен, чем переменный, что вид-но по значениям пороговых токов, но это справедливо для напряжений менее 250-ЗООВ. Выпрямленный ток из-за нали-чия гармоник опаснее постоянного тока от аккумулятора.

7. ^ Частота тока f. Наиболее опасным является ток с частотой 20-100 Гц. При частотах меньше 20 или больше 100 Гц опасность поражения несколько уменьшается. Ток частотой более 500 кГц являет-ся неопасным с точки зрения электрического удара, но мо-жет вызвать ожоги. В принципе, можно считать, что опас-ность электрического тока в зависимости от частоты умень-шается обратно пропорционально .

8. ^ Контакт в точках акупунктуры . На теле имеются особые точки (точки акупунктуры), куда подходят нервные окончания, в результате чего сопротивле-ние в этих местах резко (на два порядка) снижается по срав-нению с соседними участками. Поэтому подвод тока к точкам акупунктуры резко увеличивает вероятность неблагопри-ятного исхода.

9. ^ Фактор внимания . Известно, что кровообращение центральной нервной системы под влиянием напряженного внимания уси-ливается. Это вызывает повышенное потребление кисло-рода, что, в свою очередь, приводит к увеличению числа элек-тронов в процессах биохимических реакций обмена веществ. Усиленный поток электронов сложнее нарушить импульсом тока. Значит, биосистему автоматического регулирования при усиленном кровообращении нервной системы расстроить сложнее. Сосредоточенный, внимательный к опасности че-ловек менее подвержен воздействию тока.

10. ^ Индивидуальные свойства человека (состояние здоро-вья, масса и пол человека и др.).

11. Условия внешней среды . По Правилам устройства электроустановок (ПУЭ) выде-ляют 3 класса помещений по опасности поражения электри-ческим током:

1 − без повышенной опасности (без признаков повышен-ной и особой опасности);

2 − повышенной опасностью (температура воздуха бо-лее 35"С, относительная влажность более 75%, наличие в воз-духе токопроводящей пыли, токопроводящий пол, возмож-ность одновременного прикосновения к заземленному объек-ту и к корпусу электроустановки);

3 − особо опасные (влажность около 100%, химически ак-тивная среда в воздухе помещения, наличие двух и более при-знаков повышенной опасности).

12. ^ Схема включения человека в цепь тока. Наиболее опасно двухфазное прикосновение, при котором человек касается проводов двух разных фаз (в трехфазной сети), и исход поражения (часто смертельный при напряже-нии 380В) не зависит от режима нейтрали сети.

Наименее опасно однофазное прикосновение к сети с изо-лированной нейтралью. Даже при токопроводящем основа-нии человек теоретически избежит неблагоприятного исхода.

^ Причины поражения электрическим током:

− случайное прикосновение;

− появление напряжения на корпусе электрооборудования;

− появление напряжения на отключенных токоведущих частях;

− напряжение шага.

^ Основные нормативные документы:

Правила устройства электроустановок (ПУЭ);

Правила эксплуатации (ПЭ) электроустановок потребите-лей и Правила техники безопасности (ПТБ) при эксплуата-ции электроустановок потребителей;

ГОСТ 12.1.009-76 ССБТ. Электробезопасность. Термины и оп-ределения;

ГОСТ 12.1.019-79 (СТ СЭВ 4830-84) ССБТ. Электробезопасность. Общие требования и номенклатура видов защиты.

ГОСТ 12.1.030-81 ССБТ. Электробезопасность. Защитное заземление, зануление.

ГОСТ 12.2.007.0-14-75 ССБТ. Изделия электротехнические. Об-щие требования безопасности;

ГОСТ 12.3.019-80 ССБТ. Испытания и измерения электриче-ские;

ГОСТ 12.3.032-84 ССБТ. Работы электромонтажные;

ГОСТ 12.1.038-82 ССБТ. Электробезопасность. Предельно допустимые значения напряжений прикосновения и токов.

ГОСТ 12.4.124-83 ССБТ. Средства защиты от статического электричества. Общие технические требования.

Средства защиты.

При разработке средств защиты от опасности поражения электрическим током реализованы следующие принципы обеспечения безопасности:

− снижения опасности (изоляция; применение малых на-пряжений);

− ликвидации опасности (защитное отключение);

− блокировки (оградительные устройства);

− информации (сигнализация, знаки безопасности, пла-каты);

− слабого звена (защитное заземление).

Средства коллективной защиты от электрического тока:

1. Защитное заземление.

2. Зануление.

3. Защитное отключение.

4. Применение малых напряжений.

5. Изоляция.

6. Оградительные устройства.

7. Сигнализация, блокировка, знаки безопасности, плака-ты.

Кроме перечисленных СКЗ, применяются СИЗ (инструмен-ты с изолированными рукоятками, коврики, токоизмерительные клещи и т.п.).

^ Защитное заземление − преднамеренное соединение с зем-лей или ее эквивалентом металлических нетоковедущих час-тей оборудования, не находящихся под напряжением в обыч-ных условиях, но которые могут оказаться над напряжением в результате повреждения изоляции электроустановки.

^ Принцип действия защитного заземления − снижение до безо-пасных значений напряжений прикосновения и шага, обуслов-ленных "замыканием на корпус".

^ Область применения − трехфазные трехпроводные сети на-пряжением до 1000В с изолированной нейтралью и выше 1000В с любым режимом нейтрали. Принципиальная схема защит-ного заземления приведена на рис. 1.

а) б)

Рис. 1. Принципиальная схема защитного заземления.

а) защитное заземление в сети с изолированной нейтралью до 1000В;

б) защитное заземление в сети с заземленной нейтралью выше 1000В.

1 - заземленное оборудование; 2 - заземлитель защитного заземления; 3 - заземлитель рабочего заземления;

r з, r о, - сопротивления соответственно защитного и рабо-чего заземлений.

Заземление или зануление электроустановок является обя-зательным в помещениях без повышенной опасности пора-жения током при переменном напряжении 380В и выше, по-стоянном напряжении − 440В и выше. В помещениях с повы-шенной опасностью и особо опасных необходимо заземлять или занулять установки, начиная с 42В переменного и 110В постоянного напряжения.

Во взрывоопасных помещениях заземление или зануление установок обязательно независимо от напряжения сети.

Сопротивление заземления электроустановок должно быть не более 8; 4; 2 Ом для трехфазной сети с заземленной нейтралью напряжением 220; 380; 660В соответственно. В ста-ционарных сетях до 1000В с изолированной нейтралью со-противление заземления должно быть не более 10 Ом (в со-четании с контролем сопротивления изоляции).

Занулением называется присоединение к неоднократно за-земленному нулевому проводу питающей сети корпусов и дру-гих конструктивных металлических частей электрооборудо-вания, которые нормально не находятся под напряжением, но вследствие повреждения изоляции могут оказаться под напряжением.

Принципиальная схема зануления приведена на рис. 2.

Рис. 2. Принципиальная схема защитного зануления.

1 – корпус; 2 − аппараты для защиты от токов короткого замыкания (предохра-нители);

Ro − сопротивление зазем-ления нейтрали сети; Rn − сопротивление пов-торного заземления нулевого провода; I − ток короткого замы-кания.

Принцип действия зануления − превращение пробоя на кор-пус в короткое однофазное замыкание (т.е. замыкание между фазным и нулевым проводами) с целью создания большого тока, способного обеспечить срабатывание защиты и тем самым отключить автоматически поврежденную установку из сети.

^ Область применения − трехфазные четырехпроводные сети напряжением до 1000В с глухозаземленной нейтралью.

Первая помощь при поражении электрическим током долж-на оказываться немедленно (в течение первой минуты). Не-обходимо определить, что произошло, освободить (при необ-ходимости) пострадавшего от поражающего действия элек-трического тока; установить наличие дыхания, пульса, шока; организовать вызов скорой помощи; при необходимости, про-водить реанимационные мероприятия: искусственное дыха-ние, непрямой массаж сердца.

^

5.2. Статическое электричество


Статическое электричество − совокупность явлений, связанных с возникновением, сохранением и релаксацией (ослаблением) свободного электрического заряда на поверхности и в объеме диэлектрических веществ, материалов, изделий или на изолированных проводниках. Протекание различных технологических процессов, таких, как измельчение, распыление, фильтрование и другие, сопровождается электризацией материалов и оборудования, причем возникающий на них электрический потенциал достигает значений тысяч и десятка тысяч вольт.

^ Опасность воздействия статического электричества проявляется в искровых разря-дах, которые могут явиться причиной воспламенения горю-чих веществ и взрывов, а также отрицательного воздействия на организм человека (слабые толчки, умеренный или силь-ный укол).

Статическое электричество может нарушать технологические процессы, создавать помехи в электронных приборах автоматики.

В производственных условиях накопление зарядов стати-ческого электричества происходит в следующих случаях:

1. При наливе электризующихся жидкостей (этилового эфира, бензола, бензина, спирта) в незаземленные резервуа-ры.

2. Во время протекания жидкостей по трубам, изолиро-ванным от земли.

3. При выходе из сопел сжиженных или сжатых газов.

4. Во время перевозки жидкостей в незаземленных цистер-нах и бочках,

5. При фильтрации через пористые перегородки или сет-ки.

6. При движении пылевоздушных смесей в незаземленных трубах и аппаратах.

7. В процессе перемешивания веществ в смесителях.

8. При механической обработке пластмасс (диэлектриков) на станках и вручную.

9. В ременных передачах во время трения ремней о шки-вы.

Основные методы защиты от статического электричества реализуют принцип слабого звена. Для предотвращения на-копления зарядов предусматривают:


  • защитное заземление;

  • добавки к обрабатываемым материалам антистатиков;

  • увеличение относительной влажности воздуха до 70%;

  • для людей - применение СИЗ (токопроводящей обуви, перил, поручней).

5.3. Молниезащита

Опасность поражения молнией заключается в прямом уда-ре и во вторичном проявлении молнии вследствие электро-статической и электромагнитной индукции. Сила тока в мол-нии − до 200000 А; температура канала − 6000 − 10000 о С. Наи-более подвержены поражению высокие объекты (трубы, мачты, ЛЭП).

Нормативный документ, в соответствии, с которым опре-деляются мероприятия по защите от молний, − СН 305-77, а также "Инструкция по устройству молниезащиты зданий и сооружений" РД 34.21 122-87.

Молниезащитой называется комплекс защитных устройств, предназначенных для обеспечения безопасности людей, со-хранности зданий и сооружений, оборудования и материалов от возможных взрывов, загорании и разрушений, вызванных электрическим, тепловым или механическим воздействием молнии.

Физическая сущность молниезащиты заключается в на-правлении потока электричества по специальному провод-нику − молниеотводу от защищаемого объекта в землю для дальнейшего растекания тока.

Зона защиты молниеотвода − это часть пространства, внут-ри которого здание или сооружение защищено от прямых уда-ров молнии с определенной степенью надежности (зона за-щиты А − 99,5%; Б − 95% и выше).

Зона защиты одиночного молниеотвода представлена на рис.3.

Рис. 3. Зона защиты единичного стержневого молниеотвода:

1 - граница зоны защиты на уровне высоты объекта; 2 - то же, на уровне земли; h - высота молниеотвода; h 0 - высота конуса защиты; h x - высота защищаемого объекта; r x - радиус зоны защиты на уровне высоты объекта; r 0 - радиус зоны зашиты объекта на уровне земли. Зона защиты для данного молниеотвода представляет собой конус высотой h 0 с радиусом основания на земле r 0 .

Зона защиты одиночного стержневого молниеотвода вы-сотой h≤150 м представляет со-бой круговой конус с вершиной на высоте ho = 0,85h и с радиу-сом у основания r o ≈ 1,5h.

Радиус круга защиты r x на высоте защищаемого сооруже-ния:

R x = (1,1 − 0,002h)(h − h x /0,85).

Существуют также зависимости, позволяющие, задаваясь размерами защищаемого объекта (h x и r x), определить величину h. Эта зависимость для зоны Б имеет вид:

H =(r x +1,63 h x)/1,5.

Для молниеотводов других типов зависимости иные.

Кроме одиночного молниеотвода, существуют двойные и многократные стержневые молниеотводы, а также одиночные и двойные тросовые молниеотводы, которые применяются для протяжен-ных защищаемых объектов.

Классификация технических способов и средств защиты от поражения электрическим током установлена ГОСТом 12.1.019-79 (Электробезопасность. Общие требования и номенклатура видов защиты). Эти способы и средства следующие:

1. Применение малого напряжения. Малое напряжение (не более 42 В) применяют, например, для питания ручных переносных ламп и светильников местного освещения в помещениях с повышенной опасностью и особо опасных, а также для питания ручных электрифицированных машин в особо опасных помещениях . При особо неблагоприятных условиях (сырые участки траншей, колодцы и т.п.) для питания ручных переносных ламп применяют напряжение 12 В.

2. Электрическая изоляция токоведущих частей. С течением времени в условиях химически активной среды или в других неблагоприятных условиях эксплуатации электроизоляционные свойства изоляции снижаются, поэтому сопротивление ее нужно периодически контролировать. В случае повреждения рабочей изоляции устраивают дополнительную изоляцию токоведущих частей.

3. Оградительные устройства . Это устройства, предотвращающие прикосновение или приближение на опасные расстояния к токоведущим частям в случаях, когда провода или токоведущие части оборудования не могут иметь изоляции (например, троллейные провода).

4. Предупредительная сигнализация. Звуковой сигнал и красный свет лампы предупреждают о появлении опасности, например, напряжения в электроустановках; зеленый свет оповещает о снятии этого напряжения.

5. Блокировка. Блокирующие устройства защищают от электротравматизма путем автоматического разрыва электрической цепи перед тем, как работающий может оказаться под напряжением.

6. Знаки безопасности . Знаки безопасности (плакаты) подразделяют на:

    предупреждающие : «Стой! Опасно для жизни!», «Осторожно! Электрическое напряжение»;

    указательные : «Заземлено»;

    запрещающие : «Не включать – работают люди», «Опасное электрическое поле. Без средств защиты проход запрещен»;

    предписывающие : «Работать здесь», «Проход здесь».

7. Средства защиты и предохранительные приспособления. Они предназначены для защиты персонала от электротравм при работе на электроустановках. Средства защиты подразделяют на:

а) ограждающие (щиты, временные переносные заземлители);

б) изолирующие (диэлектрические отвертки, изолирующие клещи);

в) вспомогательные (очки).

Предохранительные приспособления – это предохранительные пояса, лестницы и т.д.

8. Выравнивание потенциалов. Это метод снижения напряжение прикосновения и шага между точками электрической цепи, к которым может одновременно прикасаться или на которых может одновременно стоять человек. Практически для выравнивания потенциалов устраивают контурное заземление, т.е. располагают заземлители по контуру вокруг заземленного оборудования.

9. Электрическое разделение сетей. Это разделение сетей на отдельные электрически не связанные между собой участки с помощью разделяющего трансформатора.

10 Защитное заземление . Это устранение опасности поражения человека током в случае прикосновения его к нетоковедущим металлическим частям электроустановки, оказавшимся под напряжением.

11. Зануление . Это превращение замыкания на корпус электроустановки в однофазное короткое замыкание, в результате чего срабатывает токовая защита и отключает поврежденный участок.

12. Защитное отключение . Это быстродействующая защита, обеспечивающая автоматическое отключение электроустановки при возникновении в ней опасности поражения током.