Двухатомные спирты. Спирты — номенклатура, получение, химические свойства

Определение и номенклатура двухатомных спиртов

Органические соединения, содержащие две гидроксильные группы ($-OH-$) называются двухатомными спиртами или диолами.

Общая формула двухатомных спиртов $CnH_{2n}(OH)_2$.

При обозначении двухатомных спиртов, согласно номенклатуре ИЮПАК, к окончанию -ол добавляют приставку ди-, то есть двухатомный спирт имеет окончание «диол». Цифры указывают, к каким углеродным атомам присоединены гидроксильные группы, например:

Рисунок 1.

1,2-пропандиол транс-1,2-циклогександиол 1-циклогексил-1,4-пентадиол

В систематической номенклатуре существует дифференциация между 1,2-, 1,3-, 1,4- и т.д. диолами.

Если соединение содержит гидроксильные группы у соседних (вициеальных) атомов углерода, то двухатомные спирты называют гликолями.

В названиях гликолей отображается способ их получения путем гидроксилирования алкенов, например:

Рисунок 2.

Существование стойких двухатомных спиртов возможно, начиная с этана, которому соответствует один диол - этиленгликоль. Для пропана возможно существование двух спиртов: 1,2- и 1,3- пропандиолов.

Из спиртов, соответствующих нормальному бутану, возможно существование следующих соединений:

  • обе гидроксогруппы находятся рядом - одна в группе $CH_3$, другая в группе $CH_2$;
  • оба гидроксила расположены в соседних $CH_2$ группах;
  • гидроксогруппы примыкают к несоседним атомам углерода, в группах $CH_3$ и $CH_2$;
  • оба гидроксила расположены в группах $CH_3$.

Изобутану соответствуют следующие диолы:

  • гидроксогруппы находятся рядом - в группах $CH_3$ и $CH$;
  • оба гидроксила расположены в группах $CH_3$:

Рисунок 3.

Двухатомные спирты можно классифицировать на основании того, какие спиртовые группы входят с состав их частицы:

  1. Двупервичные гликоли. Этиленгликоль содержит две первичные спиртовые группы.
  2. Двувторичные гликоли. Содержат две вторичные спиртовые группы.
  3. Двутретичные гликоли. Содержат три вторичные спиртовые группы.
  4. Смешанные гликоли: первично - вторичные, первично - третичные, вторично - третичные.

Например: изопентану соответствует вторично-третичный гликоль

Рисунок 4.

Гексану (тетраметил-этану) соответствует двутретичный гликоль:

Рисунок 5.

Если в двухатомном спирте оба гидроксила расположены у соседних атомов углерода, то это $\alpha$-гликоли. $\beta$-гликоли появляются, когда гидроксогруппы разъединены одним углеродным атомом. У диолов $\gamma$-ряда гидроксилы расположены через два углеродных атома. При большем отдалении друг от друга гидроксилов появляются диолы $\delta$- и $\varepsilon$-ряда.

Геминальные диолы

В свободном состоянии могут существовать только такие диолы, которые произошли из углеводородов в результате замены гидроксильными группами двух атомов водорода, находящихся при двух разных углеродных атомах. Когда гидроксогруппы замещают два атома водорода при одном и том же атоме углерода, возникают нестойкие соединения - геминальные диолы или гем-диолы.

Геминальные диолы - двухатомные спирты, содержащие обе гидроксильные группы у одного атома углерода. Это нестабильные соединения, легко разлагаются с отщеплением воды и образованием карбонильного соединения:

Рисунок 6.

Равновесие смещено в сторону образования кетона, поэтому геминальные диолы также называют гидратами альдегидов или кетонов.

Простейшим представителем геминальных диолов является метиленгликоль. Это соединение сравнительно устойчивое в водных растворах. Однако попытки его выделения приводят к появлению продукта дегидратации - формальдегиду:

$HO-CH_2-OH \leftrightarrow H_2C=O + H_2O$

Например: Не может существовать в свободном состоянии двухатомный спирт, соответствующий этану, если обе гидроксильные группы находятся при одном атоме углерода. Сразу выделяется вода и образуется уксусный альдегид:

Рисунок 7.

Два двухатомных спирта, отвечающих пропану, также не способны к самостоятельному существованию, так как будут выделять воду за счет гидроксилов, расположенных при одном углеродном атоме. При этом будут образовываться, в одном случае - пропионовый альдегид, в другом - ацетон:

Рисунок 8.

Незначительное количество гем-диолов могут существовать не в растворенном состоянии. Это соединения, которые содержат сильные электроноакцепторные заместители, например хлоральгидрат и гидрат гексафотрацетон

Рисунок 9.

Физические свойства гликолей

Для гликолей характерны следующие физические свойства:

  • низшие гликоли - бесцветные прозрачные жидкости, имеющие сладковатый вкус;
  • высокая температура кипения и плавления (tкип этиленгликоля 197$^\circ$С);
  • высокие плотность и вязкость;
  • хорошая растворимость в воде, этиловом спирте;
  • плохая растворимость в неполярных растворителях (например, в эфирах и углеводородах).

Общая закономерность: с увеличением молекулярной массы двухатомных спиртов растет температура кипения. При этом растворимость в воде уменьшается. Низшие спирты смешиваются с водой в любых соотношениях. У высших диолов растворимость в эфире больше, а в воде - меньше.

Для многих веществ двухатомные спирты выступают в роли хороших растворителей (исключение - ароматические и высшие предельные углеводороды).

Имеют общую формулу C n H 2n (OH) 2 . Простейшим гликолем является этиленгликоль НО-СН 2 -СН 2 -ОН.

Номенклатура

Названия гликолей образованы от названий соответствующих углеводородов с суффиксами -диол или -гликоль:

H O - C H 2 - C H 2 - O H {\displaystyle {\mathsf {HO{\text{-}}CH_{2}{\text{-}}CH_{2}{\text{-}}OH}}} - 1,2-этандиол, этиленгликоль

H O - C H 2 - C H 2 - C H 2 - O H {\displaystyle {\mathsf {HO{\text{-}}CH_{2}{\text{-}}CH_{2}{\text{-}}CH_{2}{\text{-}}OH}}} - 1,3-пропандиол, 1,3-пропиленгликоль

Физические и химические свойства

Низшие гликоли представляют собой бесцветные прозрачные жидкости со сладковатым вкусом. Безводные гликоли гигроскопичны. Из-за наличия двух полярных OH-групп в молекулах гликолей у них высокие вязкость, плотность, температуры плавления и кипения.

Низшие гликоли хорошо растворяются в воде и органических растворителях (спиртах, кетонах, кислотах и аминах). В то же время гликоли сами являются хорошими растворителями для многих веществ, за исключением ароматических и высших предельных углеводородов

Гликоли обладают всеми свойствами спиртов (образуют алкоголяты , простые и сложные эфиры), при этом гидроксильные группы реагируют независимо друг от друга, образовывая смесь продуктов.

С альдегидами и кетонами гликоли образуют 1,3-диоксоланы и 1,3-диоксаны.

Получение и применение

Гликоли синтезируют несколькими основными способами:

  • гидролиз соответствующих дихлоралканов
C l - C H 2 - C H 2 - C l → 200 o C 10 M P a N a 2 C O 3 H O - C H 2 - C H 2 - O H {\displaystyle {\mathsf {Cl{\text{-}}CH_{2}{\text{-}}CH_{2}{\text{-}}Cl{\xrightarrow[{200^{o}C\ 10MPa}]{Na_{2}CO_{3}}}HO{\text{-}}CH_{2}{\text{-}}CH_{2}{\text{-}}OH}}}
  • окисление алкенов перманганатом калия:
  • гидратация оксиранов (эпоксидов)

Гликоли служат в качестве растворителей и пластификаторов. Этиленгликоль и пропиленгликоль используются в качестве антифриза и гидравлических жидкостей. Благодаря высокой температуре кипения (например, 285°C у триэтиленгликоля), гликоли нашли применение в качестве тормозной жидкости . Гликоли применяются для получения различных эфиров, полиуретанов и др.

Спиртами (или алканолами) называются орга­нические вещества, молекулы которых содержат одну или несколько гидроксильных групп (групп -ОН), соединенных с углеводородным радикалом.

Классификация спиртов

По числу гидроксильных групп (атомности) спир­ты делятся на:

Одноатомные , например:

Двухатомные (гликоли), например:

Трехатомные , например:

По характеру углеводородного радикала выде­ляют следующие спирты:

Предельные , содержащие в молекуле лишь пре­дельные углеводородные радикалы, например:

Непредельные , содержащие в молекуле крат­ные (двойные и тройные) связи между атомами углерода, например:

Ароматические , т. е. спирты, содержащие в мо­лекуле бензольное кольцо и гидроксильную группу, связанные друг с другом не непосредственно, а через атомы углерода, например:

Органические вещества,содержащие в молекуле гидроксильные группы, связанные непосредственно с атомом углерода бензольного кольца, существенно отличаются по химическим свойствам от спиртов и поэтому выделяются в самостоятельный класс органических соединений-фенолы.

Например:

Существуют и полиатомные (многоатомные спирты),содержащие более трех гидроксильных групп в молекуле. Например, простейший шестиатомный спирт гексаол (сорбит)

Номенклатура и изомерия спиртов

При образовании названий спиртов к названию углеводорода,соответствующего спирту,добавляют (родовой) суффикс-ол.

Цифрами после суффикса указывают положение гидроксильной группы в главной цепи, а префиксами ди-, три-,тетра- и т.д.-их число:

В нумерации атомов углерода в главной цепи положение гидроксильной группы приоритетно перед положением кратных связей:

Начиная с третьего члена гомологического ряда, у спиртов появляется изомерия положения функциональной группы (пропанол-1 и пропанол-2), а с четвертого — изомерия углеродного скелета (бутанол-1, 2-метилпропанол-1). Для них характерна и межклассовая изомерия- спирты изомерны простым эфирам:

Давайте дадим название спирту, формула которого указана ниже:

Порядок построения названия:

1. Углеродная цепь нумеруется с конца к которому ближе находится группа –ОН.
2. Основная цепь содержит 7 атомов С, значит соответствующий углеводород — гептан.
3. Число групп –ОН равно 2, префикс – «ди».
4. Гидроксильные группы находятся при 2 и 3 атомах углерода, n = 2 и 4.

Название спирта: гептандиол-2,4

Физические свойства спиртов

Спирты могут образовывать водородные связи как между молекулами спирта, так и между молекулами спирта и воды. Водородные связи возникают при взаимодействии частично положительно заряженного атома водорода одной молекулы спирта и частично отрицательно заряженного атома кислорода другой молекулы.Именно благодаря водородным связям между молекулами спирты имеют аномально высокие для своей молекулярной массы температуры кипения.Так, пропан с относительной молекулярной массой 44 при обычных условиях является газом, а простейший из спиртов-метанол,имея относительную молекулярную массу 32, в обычных условиях-жидкость.

Низшие и средние члены ряда предельных одноатомных спиртов,содержащих от 1 до 11 атомов углерода-жидкости.Высшие спирты(начиная с C 12 H 25 OH) при комнатной температуре-твердые вещества. Низшие спирты имеют алкогольный запах и жгучий вкус,они хорошо растворимы в воде.По мере увеличения углеродного радикала растворимость спиртов в воде понижается, а октанол уже не смешивается с водой.

Химические свойства спиртов

Свойства органических веществ определяются их составом и строением. Спирты подтверждают общее правило. Их молекулы включают в себя углеводородные и гидроксильные группы, поэтому химические свойства спиртов определяются взаимодействием друг на друга этих групп.

Характерные для данного класса соединений свойства обусловлены наличием гидроксильной группы.

  1. Взаимодействие спиртов со щелочными и щелочноземельными металлами. Для выявления влияния углеводородного радикала на гидроксильную группу необходимо сравнить свойства вещества, содержащего гидроксильную группу и углеводородный радикал,с одной стороны, и вещества,содержащего гидроксильную группу и не содержащего углеводородный радикал,-с другой. Такими веществами могут быть,например, этанол (или другой спирт) и вода. Водород гидроксильной группы молекул спиртов и молекул воды способен восстанавливаться щелочными и щелочноземельными металлами(замещаться на них)
  2. Взаимодействие спиртов с галогеноводородами. Замещение гидроксильной группы на галоген приводит к образованию галогеналканов. Например:
    Данная реакция обратима.
  3. Межмолекулярная дегидратация спиртов- отщепление молекулы воды от двух молекул спиртов при нагревании в присутствии водоотнимающих средств:
    В результате межмолекулярной дегидратации спиртов образуются простые эфиры. Так, при нагревании этилового спирта с серной кислотой до температуры от 100 до 140°С образуется диэтиловый (серный) эфир.
  4. Взаимодействие спиртов с органическими и неорганическими кислотами с образованием сложных эфиров(реакция этерификации)

    Реакция этерификации катализируется сильными неорганическими кислотами. Например, при взаимодействии этилового спирта и уксусной кислоты образуется-этилацетат:

  5. Внутримолекулярная дегидратация спиртов происходит при нагревании спиртов в присутствии водоотнимающих средств до более высокой температуры,чем температура межмолекулярной дегидратации. В результате образуются алкены. Эта реакция обусловлена наличием атома водорода и гидроксильной группы при соседних атомах углерода. В качестве примера можно привести реакцию получения этена (этилена) при нагревании этанола выше 140°С в присутствии концентрированной серной кислоты:
  6. Окисление спиртов обычно проводят сильными окислителями, например, дихроматом ка­лия или перманганатом калия в кислой среде. При этом действие окислителя направляется на тот атом углерода, который уже связан с гидро­ксильной группой. В зависимости от природы спирта и условий проведения реакции могут обра­зовываться различные продукты. Так, первичные спирты окисляются сначала в альдегиды, а затем в карбоновые кислоты:
    При окислении вторичных спиртов образуются кетоны:

    Третичные спирты достаточно устойчивы к окислению. Однако в жестких условиях (сильный окислитель, высокая температура) возможно окисление третичных спиртов, которое происходит с разрывом углерод-углеродных связей, ближай­ших к гидроксильной группе.
  7. Дегидрирование спиртов. При пропускании паров спирта при 200-300 °С над металлическим катализатором, например медью, серебром или платиной, первичные спирты превращаются в аль­дегиды, а вторичные - в кетоны:

  8. Качествен­ная реакция на многоатомные спирты.
    Присутствием в молекуле спирта одновремен­но нескольких гидроксильных групп обусловлены специфические свойства многоатомных спиртов, которые способны образовывать растворимые в во­де ярко-синие комплексные соединения при взаимо­действии со свежеполученным осадком гидроксида меди (II). Для этиленгликоля можно записать:

    Одноатомные спирты не способны вступать в эту реакцию. Поэтому она является качествен­ной реакцией на многоатомные спирты.

Получение спиртов:

Применение спиртов

Метанол (метиловый спирт СН 3 ОН) - бесцветная жидкость с характерным запахом и температурой кипения 64,7 °С. Горит чуть голубоватым пламенем. Историческое название метанола - древесный спирт объясняется одним из путей его получения способом перегонки твердых пород дерева (греч. methy - вино, опьянеть; hule - вещество, древесина).

Метанол требует осторожного обращения при работе с ним. Под действием фермента алкогольдегидрогеназы он превращает­ся в организме в формальдегид и муравьиную кислоту, которые повреждают сетчат­ку глаза, вызывают гибель зрительного нерва и полную потерю зрения. Попадание в организм более 50 мл метанола вызывает смерть.

Этанол (этиловый спирт С 2 Н 5 ОН) - бесцветная жидкость с характерным запахом и температу­рой кипения 78,3 °С. Горюч. Смешивается с водой в любых соотношениях. Концентрацию (крепость) спирта обычно выражают в объемных процентах. «Чистым» (медицинским) спиртом называют про­дукт, полученный из пищевого сырья и содержа­щий 96 % (по объему) этанола и 4 % (по объему) воды. Для получения безводного этанола - «аб­солютного спирта» этот продукт обрабатывают ве­ществами, химически связывающими воду (оксид кальция, безводный сульфат меди (II) и др.).

Для того чтобы сделать спирт, используемый в технических целях, непригодным для питья, в него добавляют небольшие количества трудноот­делимых ядовитых, плохо пахнущих и имеющих отвратительный вкус веществ и подкрашивают. Содержащий такие добавки спирт называют дена­турированным, или денатуратом.

Этанол широко используется в промышленности для производства синтетического каучука, лекар­ственных препаратов, применяется как раствори­тель, входит в состав лаков и красок, парфюмерных средств. В медицине этиловый спирт - важнейшее дезинфицирующее средство. Используется для при­готовления алкогольных напитков.

Небольшие количества этилового спирта при попадании в организм человека снижают болевую чувствительность и блокируют процессы торможе­ния в коре головного мозга, вызывая состояние опьянения. На этой стадии действия этанола увели­чивается водоотделение в клетках и, следователь­но, ускоряется мочеобразование, в результате чего происходит обезвоживание организма.

Кроме того, этанол вызывает расширение крове­носных сосудов. Усиление потока крови в кожных капиллярах приводит к покраснению кожи и ощу­щению теплоты.

В больших количествах этанол угнетает дея­тельность головного мозга (стадия торможения), вызывает нарушение координации движений. Про­межуточный продукт окисления этанола в организ­ме - ацетальдегид - крайне ядовит и вызывает тяжелое отравление.

Систематическое употребление этилового спир­та и содержащих его напитков приводит к стой­кому снижению продуктивности работы головного мозга, гибели клеток печени и замене их соедини­тельной тканью - циррозу печени.

Этандиол-1,2 (этиленгликоль) - бесцветная вязкая жидкость. Ядовит. Неограниченно раство­рим в воде. Водные растворы не кристаллизуются при температурах значительно ниже О °С, что по­зволяет применять его как компонент незамерзаю­щих охлаждающих жидкостей - антифризов для двигателей внутреннего сгорания.

Пролактриол-1,2,3 (глицерин) - вязкая сиропо­образная жидкость, сладкая на вкус. Неограниченно растворим в воде. Нелетуч. В качестве составной ча­сти сложных эфиров входит в состав жиров и масел.

Широко используется в косметике, фармацевтиче­ской и пищевой промышленностях. В косметических средствах глицерин играет роль смягчающего и успо­каивающего средства. Его до­бавляют к зубной пасте, чтобы предотвратить ее высыхание.

К кондитерским изделиям глицерин добавляют для пре­дотвращения их кристаллиза­ции. Им опрыскивают табак, в этом случае он действует как увлажнитель, предотвращаю­щий высыхание табачных листьев и их раскрошивание до переработки. Его добавляют к клеям, чтобы предохранить их от слишком быстрого высыхания, и к пластикам, особенно к целлофану. В последнем случае глицерин выполняет функции пластификато­ра, действуя наподобие смазки между полимерными молекулами и, таким образом, придавая пластмассам необходимую гибкость и эластичность.


Самые известные и применяемые в жизни человека и в промышленности вещества, принадлежащие к категории многоатомных спиртов - это этиленгликоль и глицерин. Их исследование и использование началось несколько веков назад, но свойства этих во многом неповторимы и уникальны, что делает их незаменимыми и по сей день. Многоатомные спирты используют во многих химических синтезах, отраслях промышленности и сферах человеческой жизнедеятельности.

Первое «знакомство» с этиленгликолем и глицерином: история получения

В 1859 году, посредством двухстадийного процесса взаимодействия дибромэтана с ацетатом серебра и последующей обработки едким кали полученного в первой реакции этиленгликольдиацетата, Шарль Вюрц впервые синтезировал этиленгликоль. Некоторое время спустя был разработан метод прямого гидролиза дибромэтана, но в промышленных масштабах в начале двадцатого века двухатомный спирт 1,2-диоксиэтан, он же - моноэтиленгликоль, или просто гликоль, в США получали посредством гидролиза этиленхлоргидрина.

На сегодняшний день и в промышленности, и в лаборатории применяют ряд других методов, новых, более экономичных с сырьевой и энергетической точек зрения, и экологичных, так как применение реагентов, содержащих или выделяющих хлор, токсины, канцерогены и другие опасные для окружающей среды и человека вещества, сокращается по мере развития «зелёной» химии.

Аптекарем Карлом Вильгельмом Шееле в 1779 году был открыт глицерин, а особенности состава соединения изучил в 1836 году Теофиль Жуль Пелуз. Двумя десятилетиями позже было установлено и обосновано строение молекулы данного трёхатомного спирта в трудах Пьера Эжена Марселея Вертело и Шарля Вюрца. Наконец, ещё двадцать лет спустя Шарль Фридель провёл полный синтез глицерина. В настоящее время промышленность использует два метода его получения: через хлористый аллил из пропилена, а также через акролеин. Химические свойства этиленгиликоля, как и глицерина, широко используют в различных сферах химического производства.

Строение и структура соединения

В основе молекулы лежит непредельный углеводородный скелет этилена, состоящий из двух атомов карбона, в котором произошёл разрыв двойной связи. На освободившиеся валентные места у атомов углерода присоединились две гидроксильные группы. Формула этилена - С 2 Н 4 , после разрыва кранной связи и присоединения гидроксильных групп (через несколько стадий) она выглядит как С 2 Н 4 (ОН) 2 . Это и есть этиленгликоль.

Молекуле этилена присуща линейная структура, в то время как двухатомный спирт имеет некое подобие транс-конфигурции в размещении гидроксильных групп по отношению к углеродному остову и друг к другу (в полной мере этот термин применим к положению относительно кратной связи). Такая дислокация соответствует самому удаленному расположению водородов из функциональных групп, меньшей энергии, а значит - максимальной устойчивости системы. Попросту говоря, одна ОН-группа «смотрит» вверх, а другая - вниз. В то же время неустойчивыми являются соединения с двумя гидроксилами: при одном атоме карбона, образуясь в реакционной смеси, они тут же дегидратируются, переходя в альдегиды.

Классификационная принадлежность

Химические свойства этиленгликоля определяются его происхождением из группы многоатомных спиртов, а именно подгруппы диолов, то есть соединений с двумя гидроксильными фрагментами у соседних атомов карбона. Веществом, также содержащим несколько ОН-заместителей, является и глицерин. Он имеет три спиртовых функциональных группы и является самым распространённым представителем своего подкласса.

Многие соединения этого класса также получают и используют в химическом производстве для различных синтезов и прочих целей, но применение этиленгликоля имеет более серьёзные масштабы и задействовано практически во всех отраслях промышленности. Этот вопрос будет рассмотрен ниже более подробно.

Физические характеристики

Применение этиленгликоля объясняется наличием ряда свойств, которые присущи многоатомным спиртам. Это отличительные черты, характерные только для данного класса органических соединений.

Самое важно из свойств - это неограниченная способность смешиваться с Н 2 О. Вода + этиленгликоль даёт раствор, обладающий уникальной характеристикой: температура его замерзания, в зависимости от концентрации диола, ниже на 70 градусов, чем у чистого дистиллята. Важно отметить, что зависимость эта нелинейная, и по достижении определённого количественного содержания гликоля начинается обратный эффект - температура замерзания повышается при увеличении процентного содержания растворяемого вещества. Эта особенность нашла применение в области производства различных антифризов, жидкостей «незамерзаек», которые кристаллизуются при крайне низких термических характеристиках окружающей среды.

Кроме как в воде, процесс растворения отлично протекает в спирте и ацетоне, но не наблюдается в парафинах, бензолах, эфирах и тетрахлорметане. В отличие от своего алифатического родоначальника - такого газообразного вещества, как этилен, этиленгликоль - это сиропоподобная,прозрачная, с незначительным желтым оттенком жидкость, сладковатая по вкусу, с нехарактерным запахом, практически нелетучая. Замерзание стопроцентного этиленгликоля происходит при - 12,6 градусах Цельсия, а кипение - при +197,8. В нормальных условиях плотность составляет 1,11 г/см 3 .

Методы получения

Этиленгликоль можно получить несколькими способами, некоторые из них сегодня имеют лишь историческое или препаративное значение, а другие активно используются человеком в промышленных масштабах и не только. Следуя в хронологическом порядке, рассмотрим самые важные.

Выше уже был описан первый метод получения этиленгликоля из дибромэтана. Формула этилена, двойная связь которого разорвана, а свободные валентности заняты галогенами, - главного исходного вещества в данной реакции - помимо углерода и водорода имеет в своём составе два атома брома. Образование промежуточного соединения на первой ступени процесса возможно как раз благодаря их отщеплению, т. е. замещению ацетатными группами, которые при дальнейшем гидролизе превращаются в спиртовые.

В процессе дальнейшего развития науки стало возможным получение этиленгликоля прямым гидролизом любых этанов, замещенных двумя галогенами у соседних атомов карбона, с помощью водных растворов карбонатов металлов из щелочной группы или (менее экологичный реагент) Н 2 О и диоксида свинца. Реакция довольно «трудоёмкая» и протекает лишь при значительно повышенных температурах и давлении, но это не помешало немцам в периоды мировых войн использовать этот метод для производства этиленгликоля в промышленных масштабах.

Свою роль в становлении органической химии сыграл и способ получения этиленгликоля из этиленхлоргидрина путём его гидролиза угольными солями металлов щелочной группы. При повышении температуры реакции до 170 градусов выход целевого продукта достигал 90 %. Но был значительный недостаток - гликоль нужно было как-то извлекать из раствора соли, что непосредственно сопряжено с рядом трудностей. Учёные решили этот вопрос, разработав метод с тем же исходным веществом, но разбив процесс на две стадии.

Гидролиз этиленгликольацетатов, являясь ранее завершающей стадией метода Вюрца, стал отдельным способом, когда сумели получить исходный реагент окислением этилена в уксусной кислоте кислородом, то есть без применения дорогих и совсем неэкологичных соединений галогенов.

Известно также много способов производства этиленгликоля путём окисления этилена гидроперекисями, перекисями, органическими надкислотами в присутствии катализаторов (соединений осмия), и др. Также существуют электрохимические и радиационно-химические методы.

Характеристика общих химических свойств

Химические свойства этиленгликоля определяются его функциональными группами. В реакциях может принимать участие один гидроксильный заместитель или оба, в зависимости от условий процесса. Главное отличие в реакционной способности заключается в том, что за счёт наличия у многоатомного спирта нескольких гидроксилов и их взаимного влияния проявляются более сильные чем у одноатомных "собратьев". Поэтому в реакциях со щелочами продуктами являются соли (для гликоля - гликоляты, для глицерина - глицераты).

В химические свойства этиленгликоля, равно как и глицерина, входят все реакции спиртов из категории одноатомных. Гликоль даёт полные и неполные эфиры в реакциях с одноосновными кислотами, гликоляты, соответственно, образуются с щелочными металлами, а при химическом процессе с сильными кислотами или их солями выделяется альдегид уксусной кислоты - за счёт отщепления от молекулы атома водорода.

Реакции с активными металлами

Взаимодействие этиленгликоля с активными металлами (стоящими после водорода в химическом ряде напряженности) при повышенных температурах даёт этиленгликолят соответствующего металла, плюс выделяется водород.

С 2 Н 4 (ОН) 2 + Х → С 2 Н 4 О 2 Х, где Х - активный двухвалентный металл.

на этиленгликоль

Отличить многоатомный спирт от любой другой жидкости можно с помощью наглядной реакции, характерной только для данного класса соединений. Для этого к бесцветному раствору спирта вливают свежеосажденный (2), имеющий характерный голубой оттенок. При взаимодействии смешанных компонентов наблюдается растворение осадка и окрашивание раствора в насыщенно синий цвет - в результате образования гликолята меди (2).

Полимеризация

Химические свойства этиленгликоля имеют большое значение для производства растворителей. Межмолекулярная дегидратация упомянутого вещества, то есть отщепление воды от каждой из двух молекул гликоля и их последующее объединение (одна гидроксильная группа отщепляется полностью, а от другой отходит только водород), даёт возможность получения уникального органического растворителя - диоксана, который часто используется в органической химии, несмотря на его высокую токсичность.

Обмен гидроксила на галоген

При взаимодействии этиленгликоля с галогеноводородными кислотами наблюдается замена гидроксильных групп соответствующим галогеном. Степень замещения зависит от мольной концентрации галогенводорода в реакционной смеси:

НО-СН 2 -СН 2 -ОН + 2НХ → Х-СН 2 -СН 2 -Х, где Х - хлор или бром.

Получение эфиров

В реакциях этиленгликоля с азотной кислотой (определённой концентрации) и одноосновными органическими кислотами (муравьиной, уксусной, пропионовой, масленой, валерьяновой и т. д.) происходит образование сложных и, соответственно, простых моноэфиров. При других концентрация азотной кислоты - ди- и тринитроэфиров гликоля. В качестве катализатора используется серная кислота заданной концентрации.

Важнейшие производные этиленгликоля

Ценными веществами, которые можно получить из многоатомных спиртов с помощью несложных (описанных выше), являются эфиры этиленгликоля. А именно: монометиловый и моноэтиловый, формулы которых - НО-СН 2 -СН 2 -О-СН 3 и НО-СН 2 -СН 2 -О-С 2 Н 5 соответственно. По химические свойства они во многом похожи на гликоли, но, так же, как и любой другой класс соединений, имеют уникальные реакционные особенности, присущие только им:

  • Монометилэтиленгликоль представляет собой жидкость без цвета, но с характерным отвратным запахом, закипающую при 124,6 градусах Цельсия, отлично растворяющуюся в этаноле, других органических растворителях и воде, значительно более летучую, чем гликоль, и с плотностью, меньшей, чем у воды (порядка 0,965 г/см 3).
  • Диметилэтиленгликоль - также жидкость, но с менее характерным запахом, плотностью 0,935 г/см 3 , температурой закипания 134 градуса выше ноля и растворимостью, сравнительной с предыдущим гомологом.

Применение целлозольвов - так в общем называют моноэфиры этиленгликоля - довольно распространено. Они используются в качестве реагентов и растворителей в органическом синтезе. Также применяются и их для антикоррозийных и антикристаллизационных добавок в антифризы и моторные масла.

Области применения и ценовая политика продукционного ряда

Стоимость на заводах и предприятиях, занимающихся производством и продажей подобных реактивов, колеблется в среднем около 100 рублей за килограмм такого химического соединения, как этиленгликоль. Цена зависит от чистоты вещества и максимального процентного содержания целевого продукта.

Применение этиленгликоля не ограничивается какой-то одной областью. Так, в качестве сырья его используют в производстве органических растворителей, искусственных смол и волокон, жидкостей, замерзающих при отрицательных температурах. Он задействован во многих промышленных отраслях, таких как автомобильная, авиационная, фармацевтическая, электротехническая, кожевенная, табачная. Неоспоримо весомо его значение для органического синтеза.

Важно помнить, что гликоль - это токсичное соединение, которое может нанести непоправимый вред здоровью человека. Поэтому его хранят в герметичных сосудах из алюминия или стали с обязательным внутренним слоем, защищающим ёмкость от коррозии, только в вертикальных положениях и помещениях, не снабженных отопительными системами, но с хорошей вентиляцией. Срок - не более пяти лет.

Гликоли. Гидроксильные группы в гликолях содержатся у различных атомов углерода. Гликоли с двумя гидроксилами у одного углеродного атома нестойки. Они отщепляют воду с образованием альдегидов или кетонов.

Изомерия гликолей определяется взаимным расположением гидроксильных групп и изомерией углеродного скелета. В зависимости от взаимного расположения групп OH– различают α-, β-, γ-, δ-, … гликоли. В зависимости от характера углеродных атомов, несущих гидроксилы, гликоли могут быть первично-вторичными, первично-третичными, двупервичными, двувторичными и т.д.

Названия гликолей могут даваться двумя способами. По номенклатуре ИЮПАК к названию основной углеродной цепи добавляют суффикс –диол иуказывают номера углеродных атомов самой длинной углеродной цепи, несущих гидроксильные группы. Названия α- гликолей могут производиться от названия соответствующего этиленового углерода с добавлением слова гликоль . Классификация и названия гликолей даны ниже на примере бутандиолов:

Способы получения. В принципе, гликоли могут быть получены всеми обычными синтетическими методами получения спиртов.

Примером могут служить следующие реакции.

– Гидролиз дигалогенпроизводных насыщенных углеводо-родов и галогенгидринов:

– Гидратация α -окисей в кислой среде:

– Окисление олефинов перманганатом калия в разбавленном водном слабощелочном растворе (реакция Вагнера) или пероксидом водорода в присутствии катализаторов (CrO 3):

Физические свойства. Низшие гликоли хорошо растворимы в воде. Плотность их выше, чем у одноатомных спиртов. Соответственно выше и температуры кипения из-за значительной ассоциации молекул: например, этиленгликоль кипит при температуре 197,2 °C; пропиленгликоль – при температуре 189 °C и бутандиол-1,4 – при температуре 230 °C.

Химические свойства. Все сказанное ранее о свойствах соответствующих одноатомных спиртов приложимо и к гликолям. При этом следует помнить, что в реакцию может вступать как один гидроксил, так и сразу оба.– Окисление двупервичных гликолей дает альдегиды:

– При окислении α- гликолей йодной кислотой происходит разрыв связи между углеродными атомами, несущими гидроксилы, и образование соответствующих альдегидов или кетонов:

Метод имеет большое значение для установления строения α- гликолей.

–Результаты внутримолекулярного отщепления воды отгликолей в значительной мере зависят от типа гликоля .

Дегидратация α-гликолей протекает с образованием альдегидов или кетонов, γ-гликоли за счет атомов гидроксильных групп отщепляют воду с образованием гетероциклических соединений – тетрагидрофурана или его гомологов:

Первая реакция идёт через образование карбониевого иона с последующим перемещением атома водорода с его электронной парой:

При парофазной дегидратации над Al 2 O 3 α- двутретичных гликолей , называемых пинаконами, получаются диеновые углеводороды:

Межмолекулярная дегидратация приводит к образованию гидроксиэфиров или циклических простых эфиров:

Температура кипения диэтиленгликоля 245,5 °C. Его используют как растворитель для заполнения тормозных гидравлических систем, при отделке и крашении тканей.

Среди циклических простых эфиров наибольшее распространение как растворитель получил диоксан. Он получен впервые А.Е. Фаворским нагреванием этиленгликоля с серной кислотой:

Этиленгликоль – это вязкая бесцветная жидкость, сладковатая на вкус, t кип = 197,2 °C. В промышленных масштабах получается из этилена по трем схемам.

В смеси с водой этиленгликоль сильно понижает температуру её замерзания. Например, 60 %-ный водный раствор гликоля замерзает при температуре – 49 °C и с успехом применяется как антифриз . Большая гигроскопичность этиленгликоля используется для приготовления печатных красок. Большое количество этиленгликоля идёт на получение пленкообразующих материалов, лаков, красок, синтетических волокон (например, лавсана – полиэтилентерефталата), диоксана, диэтиленгликоля и других продуктов.

Многоатомные спирты

Многоатомные спирты - спирты, имеющие несколько гидроксильных групп OH.
Многоатомные спирты с небольшим числом атомов углерода - это вязкие жидкости, высшие спирты - твёрдые вещества. Многоатомные спирты можно получать теми же синтетическими методами, что и предельные многоатомные спирты.Получение спиртов

1. Получение этилового спирта (или винный спирт) путём брожения углеводов:
C2H12O6 => C2H5-OH + CO2

Суть брожения заключается в том, что один из простейших сахаров - глюкоза, получаемый в технике из крахмала, под влиянием дрожжевых грибков распадается на этиловый спирт и углекислый газ. Установлено, что процесс брожения вызывают не сами микроорганизмы, а выделяемые ими вещества - зимазы. Для получения этилового спирта обычно используют растительное сырьё, богатое крахмалом: клубни картофеля, хлебные зёрна, зёрна риса и т.д.

2. Гидратация этилена в присутствии серной или фосфорной кислоты
CH2=CH2 + KOH => C2H5-OH

3. При реакции галогеналканов со щёлочью:

4. При реакции окисления алкенов

5. Гидролиз жиров: в этой реакции получается всем известный спирт - глицерин

Свойства спиртов

1) Горение: Как и большинство органических веществ спирты горят с образованием углекислого газа и воды:
C2H5-OH + 3O2 -->2CO2 + 3H2O
При их горении выделяется много теплоты, которую часто используют в лабораториях Низшие спирты горят почти бесцветным пламенем, а у высших спиртов пламя имеет желтоватый цвет из-за неполного сгорания углерода.

2) Реакция со щелочными металлами
C2H5-OH + 2Na --> 2C2H5-ONa + H2
При этой реакции выделяется водород и образуется алкоголят натрия. Алкоголяты похожи на соли очень слабой кислоты, а также они легко гидролизуются. Алкоголяты крайне неустойчивы и при действии воды - разлагаются на спирт и щелочь.

3) Реакция с галогеноводородом C2H5-OH + HBr --> CH3-CH2-Br + H2O
В этой реакции образуется галогеноалкан (бромэтан и вода). Такая химическая реакция спиртов обусловлена не только атомом водорода в гидроксильной группе, но и всей гидроксильной группой! Но эта реакция обратима: для её протекания нужно использовать водоотнимающее средство, например серную кислоту.

4) Внутримолекулярная дегидратация (в присутствии катализатора H2SO4)

Отщепление атома водорода от спирта может происходить в его же. Эта реакция является межмолекулярной реакцией дегидратации. Например, так:

В процессе реакции происходит образование простого эфира и воды.

5) реакция с карбоновыми кислотами:

Если добавить к спирту карбоновую кислоту, например уксусную, то произойдёт образование простого эфира. Но сложные эфиры менее устойчивы, чем простые эфиры. Если реакция образования простого эфира почти необратима, то образование сложного эфира - обратимый процесс. Сложные эфиры легко подвергаются гидролизу, распадаясь на спирт и карбоновую кислоту.

6) Окисление спиртов. Кислородом воздуха при обычной температуре спирты не окисляются, но при нагревании в присутствии катализаторов идёт окисление. Примером может служить оксид меди (CuO), марганцовка (KMnO4), хромовая смесь. При действии окислителей получаются различные продукты и зависят от строения исходного спирта. Так, первичные спирты превращаются в альдегиды (реакция А), вторичные - в кетоны (реакция Б), а третичные спирты устойчивы к действию окислителей.
- a) для первичных спиртов

- б) для вторичных спиртов

- в) третичные спирты оксидом меди не окисляются!

Что касается многоатомных спиртов, то они имеют сладковатый вкус, но некоторые из них ядовиты. Свойства многоатомных спиртов похожи на одноатомные спирты, при этом различие в том, что реакция идёт не по одной к гидроксильной группе, а по нескольким сразу.
Одно из основных отличий - многоатомные спирты легко вступают в реакцию гидроксидом меди. При этом получается прозрачный раствор ярко сине-фиолетового цвета. Именно этой реакцией можно выявлять наличие многоатомного спирта в каком-либо растворе.
Взаимодействуют с азотной кислотой:

Этиленгликоль - типичный представитель многоатомных спиртов. Его химическая формула CH2OH - CH2OH. - двухатомный спирт. Это сладкая жидкость, которая способно отлично растворяться в воде в любых пропорциях. В химических реакциях может участвовать как одна гидроксильная группа (-OH), так и две одновременно.Этиленгликоль - его растворы - широко применяются как антиобледенительное средство (антифризы). Раствор этиленгликоля замерзает при температуре -340C, что в холодное время года может заменить воду, например для охлаждения автомобилей.
При всей пользе этиленгликоля нужно учитывать, это это очень сильный яд!