Эволюция биосферы. Учение Вернадского о биосфере. Эволюция биосферы земли

На настоящем этапе к этим факторам добавляется третий фактор — деятельность человеческого общества (антропогенный).

Эволюция биосферы подразделяется на три этапа: образование биосферы , эволюция организмов , появление человека . Первый и второй этапы эволюции биосферы проходили исключительно по биологическим закономерностям, и поэтому они называются этапом биогенеза. Так как третий период связан с возникновением и развитием человеческого общества, он носит название ноогенеза .

  • На первом этапе образовалась первичная биосфера с биотическим круговоротом веществ. Этот этап начался приблизительно 3 млрд лет назад и продолжался до кембрийского периода палеозойской эры .
  • На втором этапе происходило усложнение биотической части биосферы — многоклеточных организмов. Этот этап начался 0,5 млрд лет назад с кембрийского периода и продолжался до появления современных людей .
  • Третий этап связан с появлением человеческого общества. Он начался приблизительно 40-50 тысяч лет тому назад и продолжается сегодня.

Образование биосферы

Образование биосферы происходило одно-временно с появлением живых организмов на Земле. Эволюция живых организмов шла параллельно с изменением биосферы. Первые живые организмы были одноклеточными гетеротрофными, анаэробными прокариотами. Эти организмы накапливали энергию в основном в результате процессов гликолиза и брожения. В первичной биосфере было мало органических веществ, и гетеротрофные прокариоты не могли быстро размножаться . В результате естественного отбора возникли аутотрофные организмы , способные самостоятель-но синтезировать органические вещества из неорганических — первые хемосинтезирующие и фотосинтезирующие бактерии и сине-зелёные водоросли .

Первые фотосинтезирующие организмы, поглощая углекислый газ и выделяя кислород, изменили состав атмосферы .

В результате содержание углекислого газа в атмосфере уменьшалось, а содержание кислорода все больше увеличивалось. В верх-них слоях атмосферы на высоте 15-25 км под воздействием электрохимических процессов кислород образовал озоновый экран , который защищал живые организмы на Земле от губительного воздействия ультрафиолетовых солнечных и космических лучей. В этих условиях происходило дальнейшее увеличение численности живых организмов на поверхности морей.

Эволюция организмов

Увеличение свободного кислорода в атмосфере обусловило появление на поверхности Земли организмов, приспособленных к аэробному дыханию кислородом, и многоклеточных существ .

Озоновый экран дал возможность живым организмам выйти из воды на сушу и распространиться по ней. Предполагается, что первые многоклеточные организмы появились в период, когда содержание кислорода в атмосфере достигло примерно 3%, — в начале кембрийского периода, примерно 500 млн лет назад.

Фотосинтезирующие организмы, обитающие в морях, вырабатывали избыточное количество кислорода, что привело к интен-сивному развитию аэробных организмов . Вследствие расщепления веществ в процессе аэробного дыхания выделялось большое количество энергии, а большой запас энергии создавал возможности для ещё большего усложнения организмов.

Организмы завоевали различные среды обитания и широко распространились. В палеозойской эре жизнь имела широкое распространение не только в водной среде, она выходила также на сушу. Интенсивное развитие зелёных растений способствовало дальнейшему обогащению атмосферы кислородом и большему усложнению организмов .

В середине палеозойской эры установилось равновесие между образованием и расходом кислорода, содержание его в атмосфере достигло 20%, и это равновесие сохраняется и поныне.

В результате уравновешивания деятельности автотрофов, гетеротрофов и редуцентов, участвующих в круговороте веществ , в биосфере сформировалось состояние гомеостаза (постоянство, устойчивость). Появление человека привело к образованию очень мощного в истории биосферы фактора, который по степени своего воздействия приравнивался к крупным геологическим процессам. Этот фактор (человеческая деятельность) становился причиной нарушения гомеостатического состояния биосферы .

С появления человеческого общества в эволюции биосферы начался этап ноогенеза. На этом этапе эволюция биосферы продолжается под влиянием сознательной трудовой деятельности человека.

Ноосфера

Сознательная деятельность человека в пределах биосферы способствовала теперь превращению её в ноосферу. Материал с сайта

Понятие «ноосфера» было впервые введено в науку в 1927 году французским геологом Э. Леруа (от греч. noos — разум + sphaira — шар). В. И. Вернадский истолковывал ноосферу как биосферу, изме-нённую под влиянием труда и разумной деятельности человека.

Человек должен правильно понимать закономерности эволюции биосферы и исходя из этого разумно регулировать её экологическое развитие. Другими словами, своей трудовой деятельностью человек не должен нарушать закономерности эволюции биосферы.

Ноогеника

Ноогеника — это наука, которая занимается разработкой мероприятий по предупреждению эколо-гического кризиса в условиях беспрерывного научно-технического прогресса . Она сформировалась в середине XX в. Основной задачей этой науки является восстановление нарушенных взаимоотношений между человеком и природой, обусловленных техничес-ким прогрессом.

Государственный университет управления

Институт информационных систем управления

студенческий билет №18-98м

Реферат по дисциплине

“ Концепции современного естествознания”

на тему

“ Эволюция биосферы Земли”

Студента ММиИОЭ 1-1

Печерицина Алексея

ПЛАН:

Введение_____________________________1

Развитие биосферы в докембрии _______ 1

1. Добиогенное развитие земли______________1

2. Возникновение органических соединений__3

3. Возникновение живых организмов_______4

4. Возникновение биосферы________________5

5. Появление автотрофов__________________5

6. Изменение состава атмосферы___________6

7. Эволюция живого вещества и климат ____7

Развитие биосферы в фанерозое________7

1. Развитие животных со скелетными образованиями______________________________________7

2. Основные итоги развития биосферы_____9

3. Появление наземных растений__________10

Особенности эволюции органического мира, важные для развития биосферы ______11

Появление человека _________________13

Аннотация

Человек связан с природой неразрывными узами. Начиная с первобытного периода своего существования он пытался ее познать в целях использования. Природа давало ему пищу, растительную и животную; одежду, жилище; орудия и оружие - каменные, металлические; энергию огня, воды, ветра.

Постепенно из наблюдений и опыта использования различных природных объектов возникли науки. Наука о природе - естествоведение - дифференцировалась на отдельные отрасли знания: биологию, геологию, физику, химию. Каждая из них углублялась в изучение деталей и выделяла новые науки, например ботаника: анатомию, морфологию, физиологию, систематику, филогению растений, микробиологию. То же происходило с зоологией и многими другими науками.

С развитием отдельных наук о природе все настоятельнее проявляется потребность в выявлении всеобъемлющей картины жизни на планете Земля и общих процессов, происходящих на ней.

Ламарк впервые вводит термин “биосфера” , обозначающий область жизни и влияние живых организмов на процессы, происходящие на Земле.

Биосфера тесно связана с деятельностью человека, и сохранность равновесия ее состава зависит от него.

В настоящее время в связи с весьма ощутимыми последствиями научно-технического прогресса, ставящим под угрозу дальнейшее существования человека, во всех странах мира испытывается настоятельная потребность в охране биосферы. А чтобы устранить опасности, нависшие над Землей, необходимо знать историю биосферы, знать,как она существовала до возникновения человека. Знание процессов, происходящих в биосфере, и соответственно разумная организация всей деятельности и жизни человечества может помочь восстановить былую красоту природы.

Под биосферой принято понимать сложную внешнюю оболочку Земли, населенную организмами. Биосфера качественно отличается от всех других сфер Земли, так как в ее пределах проявляется геологическая деятельность живых существ: растений, животных, микроорганизмов, а на последнем этапе истории Земли - и человека. При этом характерно, что определенные группы живых существ могут оказывать различное, вплоть до диаметрально противоположного, влияния на окружающую среду. Например, зеленые растения обогащают ее кислородом, животные - углекислым газом,растения извлекают громадные массы углерода из атмосферы, а микроорганизмы, разлагая органическое вещество, возвращают большую часть углерода обратно, и т.д.

Современная биосфера включает в себя полностью гидросферу, верхнюю часть литосферы и нижнюю часть атмосферы.

РАЗВИТИЕ БИОСФЕРЫ В ДОКЕМБРИИ

ДОБИОГЕННОЕ РАЗВИТИЕ ЗЕМЛИ

По современным представлениям,возраст Земли оценивается около 5 млрд. лет. Во время своего образования Земля, вероятно представляла холодное тело, близкое по составу к метеоритам.Материал, из которого она образовалась, содержал радиоактивные элементы. Присутствовали, очевидно, и короткоживущие изотопы. Вещество Земли первоначально характеризовалась однородностью состава.

Вследствие выделения тепла при гравитационном сжатии и особенно при радиоактивном распаде недра Земли стали постепенно разогреваться. Однако из-за постоянной потери тепла через поверхность и недостаточности радиогенного тепла полного расплавления Земли не произошло.

В начальные моменты плавки вещества Земли процессы выплавления и дегазации, очевидно, охватывали всю поверхность, которая была относительно ровной и слагалась лишь материалом излившихся базальтов и первичным веществом планеты.Однообразие и монотонность ландшафтов нарушалось лишь бесчисленным количеством вулканов да беспрепятственно достигавшими земной коры солнечными лучами.

Проходили миллионы лет.И по мере того, как шло время, постепенно менялся облик планеты: формировались гидросфера и атмосфера. В результате процессов плавления Земли, на ее поверхность выносилась вода и разнообразные газы. За счет этой воды и начала формироваться гидросфера, масса которой постепенно росла, а соответственно увеличивалась и площадь ее поверхности.

С увеличением площадей, покрытых водой, все меньше становилось наземных вулканов, и все больше увеличивалось число подводных извержений или вулканических построек в виде очень пологих островов, поднимающихся над водой.

Помимо воды, выделявшейся в виде паров и жидком состоянии, из недр Земли одновременно поступали газы и дымы: CH4,CO,S,HCl,HF,HBr и др. Одни из них растворялись в водах гидросферы и участвовали тем самым в формировании ее солевого состава; другие же, которые практически не растворялись в воде, образовывали атмосферу.

Одновременно с образованием гидросферы происходило формирование атмосферы. Основными компонентами ее были водяные пары, метан, окись углерода, аммиак, азот, CO2. Состав атмосферы примерно отвечал составу современных вулканических газов. Естественно, параллельно с увеличением объема гидросферы происходило возрастание содержания газов в атмосфере.

С какого-то момента, когда содержание паров воды и газов в атмосфере достигло существенного уровня стали существовать условия, благоприятствующие возникновению жизни.

ВОЗНИКНОВЕНИЕ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

В то время атмосфера была проницаема для космического излучения в несравненно большей степени, чем сейчас, поскольку основные компоненты современной атмосферы - азот и кислород - не играли заметной роли, отсутствовал озоновый экран, меньше было паров воды. Можно предположить, что в таких условиях в древней атмосфере должны были постоянно образовываться сложные органические молекулы (эксперименты показали, что при особых воздействиях (ультрафиолетовое излучение, ионизирующее излучение) на смеси газов и паров воды, сходные с возможным первичным составом атмосферы, могут возникать разнообразные органические вещества, которые входят в состав биологических макромолекул). Но эти соединения под влиянием коротковолнового излучения должны были подвергаться и постоянному разрушению. Поэтому предполагают, что образовавшиеся соединения сохранялись лишь в том случае, если они попадали в водоемы, в которых верхний слой воды был достаточен, чтобы задержать губительную коротковолновую радиацию.

Таким образом, органические соединения постепенно могли накапливаться в первичном океане и должны были служить не только материалом для создания первых организмов, но и необходимой питательной средой для них.

ВОЗНИКНОВЕНИЕ ЖИВЫХ ОРГАНИЗМОВ

Предполагается, что органические соединения, рассеянные в воде, в результате бесчисленных взаимодействий друг с другом, переодических образований привели в конце концов к возникновению специфических скоплений органического вещества. Эти скопления могли не только длительно существовать, но и расти, а затем постепенно обмениваться веществом с окружающей средой, делиться на части себе подобные. Это момент был революционным скачком, в результате которого “капля “ органического вещества превратилась в живое существо. Дальше все было относительно проще, так как не требовалось радикального изменения состояния вещества, а шло лишь усовершенствование живой материи.

Конечно, это лишь одна из наиболее возможных схем пути возникновения жизни на Земле. В действительности все могло быть иначе. Нельзя с полной уверенностью сказать,что жизнь возникла именно на Земле. Она могла быть и принесена в виде каких-то простейших организмов с метеоритным веществом из космоса, в то время, когда еще не было плотной атмосферы, которая могла сильно разогреть или даже сжечь метеорит.

ВОЗНИКНОВЕНИЕ БИОСФЕРЫ

Появление в древнем океане одного жизнеспособного организма могло привести к мгновенному в масштабе геологического времени распространению жизни на Земле. Ведь у живых организмов не было никаких соперников, а пище в виде разнообразных органических веществ - целый океан. В связи с этим принято полагать, что возникновение жизни на Земле и возникновение биосферы с геологической точки зрения явления синхронные. Кислород в небольших количества выделялся вследствие частичной диссоциации молекул вода и углекислого газа.

ПОЯВЛЕНИЕ АВТОТРОФОВ

Но вот в процессе эволюции простейших организмов какой-то организм за счет энергии Солнца осуществил в своем теле синтез органического водорода, сопровождающийся разложением воды и выделением свободного кислорода. Появился первый автотрофный организм, родоначальник фотосинтезирующих растений. Это событие ознаменовало величайшую революцию в развитии жизни, поскольку именно фотосинтез является двигателем органических процессов.

Эта революция сопровождалась практически уничтожением старого органического мира. На смену примитивным, малоэффективным в энергетическом отношении организмам, использовавшим энергию брожения, получающуюся за счет уничтожения органических веществ, пришли более совершенные организмы, которые использовали энергию солнечных лучей и сами создавали органические вещества.

Автотрофные организмы, как и гетеротрофные, практически мгновенно, в смысле геологического времени, распространились на все пространство Земли.

Ограничивающими факторами были, вероятно, лишь коротковолновое излучение, которое не давало возможности выйти организмам на сушу, но и делало непригодным для обитания самую поверхностную часть гидросферы, и недостаток солнечного света в воде не глубине, превышающей несколько десятков метров.

ИЗМЕНЕНИЕ СОСТАВА АТМОСФЕРЫ

Для первой половины архея было характерно резкое преобладание в воде и атмосфере углекислого газа, значительно количество аммиака, а так же вероятно, присутствие метана и паров соляной, фтористой и серной кислот.

Во вторую половину архея и в раннем протерозое в атмосфере и гидросфере уже присутствовал свободный кислород, увеличилось содержание азота и уменьшилось распространение CO2 .

Третий этап развития газовой оболочки Земли, начавшийся около 2 млрд. лет назад, качественно отличается от предшествующих ему этапов. Для него характерно полное отсутствие аммиака, преобладание свободного азота, значительное содержание свободного кислорода. Атмосфера имела уже состав, аналогичный ее современному составу.

ЭВОЛЮЦИЯ ЖИВОГО ВЕЩЕСТВА И КЛИМАТ

Полагают, что очень большое воздействие на среднегодовую температуру воздуха на Земле оказывает содержание в атмосфере углекислого газа. Он пропускает солнечные лучи, но поглощает основную часть тепловых лучей, идущих от поверхности земли, что препятствует охлаждению Земли и повышает общую температуру на ее поверхности. Наличие CO2 обуславливает так называемый оранжерейный эффект воздушной оболочки Земли.

По мере изменения состава и массы атмосферы среднегодовая температура должна была существенно меняться. В архее она значительно превышала современную. Уже примерно около 2 млрд. лет назад температура должна была быть близкой к современной.

Великие оледенения, аналогичные известному оледенению Европы и Северной Америки и каменноугольному оледенению были в обоих полушариях и позднем протерозое.

РАЗВИТИЕ БИОСФЕРЫ В ФАНЕРОЗОЕ

РАЗВИТИЕ ЖИВОТНЫХ СО СКЕЛЕТНЫМИ ОБРАЗОВАНИЯМИ.

Начало кембрийского периода, а следовательно и начало фанерозоя, ознаменовались очень важным событием в развитии органического мира. Впервые появились организмы, обладающие карбонатными, фосфатными и хитиновыми скелетными образованиями.

Чрезвычайно большую геологическую роль в кембрии играли археоциаты: морские беспозвоночные животные с внутренним известковым скелетом очень сложного и тонкого строения, иногда напоминающие вазочки и кубики величиной от нескольких миллиметров до 40см.

Эти животные наподобие кораллов строили на дне мелких участков морей своеобразные береговые и барьерные известковые рифы. Они вероятно питались микроскопическим фитопланктоном, спорами водорослей и бактериями. Археоциаты очень быстро распространились в морях, захватывая средние и небольшие глубины и вытесняя из них обитавшие там водоросли. Археоциаты появились в кембрийском периоде и в этом же периоде вымерли.

Карбонатным или реже фосфатным скелетным образованием (двустворчатая раковина с неодинаковыми створками) обладали плеченогие, одиночные двусторонне-симметричные животные, ведущие прикрепленный образ жизни. Обитали они на морском дне. В кембрии появилась и большая группа древнейших членистоногих - трилобитов, имевших хитиновый панцирь. Это уже были преимущественно ползающие по дну животные

В общем с начала кембрийского периода мир животных, несомненно, начал развиваться очень бурно, сложно, с вымиранием одних групп организмов и появлением других, более многочисленных. В результате к концу кембрия существовали представители почти всех типов животного мира, хотя наиболее распространенными были трилобиты и археоциаты.

С чем связано появление на границе докембрия и кембрия организмов с карбонатными и фосфатными скелетами, до сих пор точно не ясно, но главная причина - изменение содержания кислорода в атмосфере. Распространено представление, что именно к кембрийскому периоду содержание его в атмосфере достигло почти 1% от содержания его в современной атмосфере. Это привело к образованию у поверхности Земли озонового экрана, благодаря чему жесткое излучение Солнца стало проникать в верхние слой гидросферы и животный мир смог проникнуть в крайнее мелководье - наиболее благоприятную для обитания зону. Именно мелководье наиболее благоприятно для образования карбонатных и некоторых фосфатных материалов, поскольку в водах его содержится наименьшее количество углекислого газа, резко повышающего растворимость минералов. Появление у организма того или иного скелета давало им большое преимущество перед бесскелетными формами. Поэтому в процессе борьбы за существование у многочисленных форм организмов стали возникать скелетные образования.

Основные итоги развития биосферы

Итак, живые организмы создали свободный кислород на Земле.Увеличение его количества привело к образованию озонового экрана, что расширило границы распространения жизни в гидросфере. Фотосинтез растений стал идти более интенсивно. Увеличилась в связи с этим масса автотрофных организмов и количество выделяемого ими кислорода и поглощаемого углекислого газа.

На границе криптозоя и фанерозоя появился новый мощный фактор, повлиявший на эволюцию биосферы - образование осадочных пород вследствие накопления извести в результате жизнедеятельности многоклеточных животных.До этого карбонатные породы образовывались лишь в результате деятельности водорослей.

Этот фактор был полезен для развития животного мира в целом, поскольку постоянно приводило к изъятию из гидросферы значительной части углекислого газа. В связи с этим породообразующая роль живых организмов с ходом времени все увеличивалась, что сопровождалось параллельным уменьшением роли водорослей и бактерий в процессах образования биогенных карбонатных отложений.

Появление наземных растений

По-видимому, в конце силурийского периода произошло событие первостепенной важности для всего дальнейшего развития биосферы - появление наземных растений. Это событие стало возможным благодаря тому, что к концу силура содержание кислорода в атмосфере достигло уровня в 10% от современного. Образование озона стало происходить на большой высоте, поэтому ультрафиолетовое излучение солнца уже не должно было оказывать губительное влияние на организмы, находящиеся на поверхности суши.

Первой растительностью, появившейся на суше, по мнению Давиташвили и ряда других ученых, была группа растений, которую иногда выделяют в особый тип нематофитов, являющийся как бы промежуточным звеном между водорослями и сосудистыми растениями.

Можно полагать, что нематофиты произрастали в прилежащей к морю полосе суши. Остатки нематофитов встречены в отложениях позднего силура и девона.

В верхнесилурийских отложения известны остатки и древнейших сосудистых растений - псилофитов. Это были очень своеобразные споровые растения, имевшие вид невысоких кустарников без листьев. Эти растения не могут быть названы деревьями, а их скопления - лесом, тем более, что у этих растений тело еще не было дифференцировано не только на листья, но и даже на стебель и корень. Был лишь многократно ветвящийся вверху и внизу ствол.

Псилофитовая флора может рассматриваться как следующий шаг, после появления нематофитов, эволюции растений. Появившиеся в дальнейшем новые типы споровых наземных растений (плуановые, членистостебельные, папоротники) уже более интенсивно наступали на сушу и постепенно захватывали ее.

В среднем девоне уменьшение содержания углекислого газа было значительно больше, чем увеличение кислорода.Животный мир девона характеризовался пышным расцветом брахиопод, кораллов, строматопороидей, мшанок. В общем фауна беспозвоночных в девоне достигла наибольшего расцвета.

Возможно, значительное увеличение содержания в девоне кислорода и уменьшение углекислого газа способствовали появлению в девоне кистеперых рыб, способных не только поглощать кислород из воды, но и дышать воздухом. Поэтому они могли выползать на сушу и, вероятно являлись предками земноводных позвоночных, которые появились, в конце девонского периода.

Первыми земноводными были стегоцефалы (крышеголовые) - неуклюжие, коротконогие, с волочившимся по земле туловищем животные, с головой, покрытой панцирем из массивных костных образований.

Представляется, что происшедшее в девоне увеличение содержания кислорода и уменьшение концентрации углекислого газа в воздухе благоприятствовали и появлению на суше паукообразных, скорпионов, насекомых

Наземная растительность этого периода была уже типично лесного типа. Крупные древовидные папоротники, плуановые и хвощовые нередко достигали до 40 м и более. К концу периода разнообразие растительного мира еще более увеличилось и появились первые хвойные растения.

ОСОБЕННОСТИ ЭВОЛЮЦИИ ОРГАНИЧЕСКОГО МИРА, ВАЖНЫЕ ДЛЯ РАЗВИТИЯ БИОСФЕРЫ.

В каменноугольной флоре широко были распространены споровые влаголюбивые растения (плуан, хвощи и папоротники). Затем началось появление голосеменных растений, в том числе и хвойных.Эти растения обладали значительными преимуществами по сравнению со своими предшественниками и поэтому не только шире их расселились по поверхности суши, но и в значительной мере вытеснили их из зон, которые те вначале безраздельно занимали. В связи с этим в мезозойскую эру господствующее положение на суши приобрели голосеменные растения.

Затем на смену им пришло господство покрытосеменных растений, еще более высокоорганизованных.

Первые покрытосеменные появились в середине мезозойской эры. В кайнозое они быстро завладели всей поверхностью Земли.

С точки зрения развития биосферы, большой интерес представляет возможная направленность эволюции покрытосеменных.Травянистый тип покрытосеменных растений произошел от древесного. Процесс развития трав из древесных растений представляется следующим: деревья - кустарники -полукустарники - многолетние травы - однолетние травы. Травы являются наиболее приспособленными представителями растительности. Темпы эволюции травы был очень высок, и очень быстро после своего возникновения покрытосеменные растения расселились на громадных территориях.

Благодаря развитию биосферы Земля постепенно приобрела всевозможные цвета и оттенки и стала планетой-оазисом среди других планет солнечной системы. Живое вещество не только является главным и необходимым компонентом биосферы, определяющим ее развитие, но и наиболее изменчивой и наиболее быстро эволюционирующей составной частью земной коры.

Разнообразные процессы, связанные с существованием и развитием живого вещества, не только представляют собой главные факторы эволюции всей биосферы и осадочного породообразования на протяжении длительной геологической истории Земли, но и, очевидно, являются основной причиной образования самой земной коры.

ПОЯВЛЕНИЕ ЧЕЛОВЕКА

Появление на Земле человека представляло собой одно из самых значительных событий в длительной истории биосферы. По существу,неизмененные ландшафты, не несущие на себе заметных следов воздействия человека, в настоящее время,возможно, сохранилось только в пределах значительных глубин океанов. Все остальные ландшафты изменены под влиянием деятельности человека.

Вначале своего существования человек являлся ординарным компонентом биогеоценозов, принципиально не отличавшихся от других входивших в эти биогеоценозы организмов по воздействию на окружающую его природу. В начальный период воздействие человека на биогеоценозы, в которые он входил, ограничивалось лишь потреблением им некоторой части продуцировавшейся в них растительностью и животной биомассой.

Несмотря на то, что уже раннего питекантропа от животных отличала способность трудиться, длительное время воздействие человека на биосферу было чрезвычайно ничтожным. Собирательство растительной пищи и охота на животных мало отличали этого древнейшего человека от животных.

Время, отвечающее раннему и среднему палеолиту, которое окончилось примерно 30-40 тыс. лет назад, представляло собой эпоху складывания человеческого общества в виде первобытного человеческого стада.

Это стадо уже не было чисто биологическим объединением, поскольку представители его уже не только использовали примитивные орудия, но и изготавливали их. Однако оно не было и настоящим человеческим обществом, так ка в нем господствовали силы естественного отбора.

Лишь на рубеже среднего и позднего палеолита, после появления современного, в биологическом смысле, человека, возникла первая настоящая общественно-экономическая формация - первобытнообщинный строй. С этого времени чисто биологические законы развития человека оказались оттесненными социальными законами развития человеческого общества.

В позднем палеолите одновременно с появлением родового строя и развитием человеческого общества происходило относительно быстрое развитие материальной и духовной культуры. Значительно совершеннее стали орудия охоты и труда, люди стали строить себе жилища, шить одежду.

Мезолит, неолит и бронзовый век охватывает следующий период воздействия человека на природу, имевший продолжительность около 7 тысяч лет и длившийся примерно от 10 до 3 тыс. лет назад.

Развитию человеческого общества в этот период способствовало в какой-то мере улучшение природных условий - послеледниковое время. Климат стал более теплым, из-подо льда освободились обширные территории суши, на которых расселились люди.Широкое развитие приобретают рыболовство, скотоводство и земледелие.

Воздействие человека на биосферу в рассматриваемый период времени было уже не только разнообразным, но и достаточно глубоким. Это было воздействие не только на животный мир, но и на растительный и даже почвенный покров.

С начала исторического этапа для все возрастающего воздействия человеческой деятельности на биосферу имели основное значение быстро увеличивающийся рост численности населения и развитие техники.

ЗАКЛЮЧЕНИЕ

Население Земли к началу нашей эры составляло около 200 млн. человек, а в настоящее время - около 5 млрд. Неуклонный рост населения быстро сказывался на природе всей нашей планеты, что усугублялось одновременном чрезвычайно ускоряющимся прогрессом техники.

Значительная часть лесов оказалось вырубленной и выжженной. На их месте возникали пашни, луга и пустоши. Произошла замена естественных биогеоценозов на искусственные. В наше время воздействие человека на биосферу очень разнообразно и глубоко.Часто - это небезвредное влияние: загрязнение атмосферы, гидросферы приводят к накоплению вредных веществ, что естественно скажется на будушем нашей планеты. В реферате быля рассмотренны громадные временные сроки. В течении миллионов лет наша планета оставалась нетронутой, а за очень короткий отрезок с ней произошли громадные изменения.

Список используемой литературы:

1.Акимова Т.А. ,Хаскин В.В. “Основы экоразвития”

2. Войткевич “ Основы теории происхождения земли”

3.Николов “ Долгий путь жизни”

4.Казначеев В.П. “Учение Вернандского о биосфере и ноосфере”

5.”Экологически уроки прошлого и современность”.Л. Наука. 1991.


1.Введение.

Большинство биологов-эволюционистов до недавнего времени считали организм первичной и основной формой существования жизни, а эволюцию живого сводили преимущественно к формированию адаптации организмов к окружающей среде. Синтетическая теория эволюции доказала, что последняя может совершаться только в статистически насыщенных ансамблях родственных организмов - популяциях. Так, в центре эволюционно-биологических исследований оказались преобразования генетических и экологических структур популяций и способы видообразования. Однако эволюцию надвидовых уровней организации жизни почти не изучали, даже главные этапы развития биогеноценоза и биосферы характеризовали не специфическими признаками, присущими каждой из этих форм организации живого как целостной системы, а лишь описанием элементарных компонентов, входящих в их состав – организмов и видов.
Но глобальные изменения, произошедшие за последние десятилетия на Земле под влиянием промышленности, изменили представления о процессах развития природы. Стало общепризнанным, что эволюционный процесс захватывает не только отдельные организмы, виды, биогеоценозы, но и высший уровень организации живого – биосферу. В различных отраслях естествознания, связанных с изучением биосферы, накапливается все больше данных о том, что эволюция органического мира изменяет геохимическое строение и энергетику биосферы, ее биогеохимические функции и биогеохимический круговорот веществ. В свою очередь эти преобразования биосферы в целом становятся мощными факторами дальнейшей эволюции ее важнейшего компонента - органического мира.

2. Понятие биосферы. Структура и функции биосферы.

В трактовке понятия биосферы существуют значительные расхождения. Так, под биосферой в некотроых источниках предлагается понимать совокупность живых организмов. В БСЭ в статье «Биосфера» приводится такое определение: биосфера – это «оболочка Земли, состав, структура и энергетика которой в существенных чертах обусловлены прошлой или современной деятельностью живых организмов», в статьях же «Геосферы» и
«Геохимия» биосферой называется „область на границе твердой, жидкой и газовой оболочек Земли, занятая живым веществом – совокупностью организмов”.
Еще в XVII и XVIII вв стали появляться идеи о взаимосвязанности всех процессов неорганической и органической природы, так как уже тогда были накоплены достаточные данные для того, чтобы судить о взаимосвязи зависимости распространения животных от климатических условий, о газовом обмене у организмов, об участии животных и растений в формировании почв, известняков и горючих ископаемых, а также первые гипотезы о существовании биогенного круговорота элементов (А. Лавуазье, А. Сьнядецкий) По мнению Вернадского, понятие биосферы сформулировал Ж.-Б. Ламарк. Именно он первым отметил, что у „живых тел обнаруживаются все сложные неорганические вещества, наблюдаемые в природе” (1955, с. 10), и что в местах, незаселенных организмами, минералы весьма однородны. Это объясняется тем, что животные и растения активно участвуют в формировании поверхности Земли. Так в науке появилось представление о специальном пространстве, охваченном и организованном жизнедеятельностью организмов. Сам термин «биосфера» был предложен Э. Зюссом в 1875 г. при рассмотрении основных геологических оболочек Земли: лито-, атмо- и гидросферы. Он полагал, что „в области взаимодействия верхних сфер и литосферы и на поверхности материков можно выделять самостоятельную биосферу. Она простирается теперь как над сухой, так и над влажной поверхностью, но ясно, что раньше она была ограничена только гидросферой” (Suess, 1875, S. 159-160). Расхождения в толковании смысла термина имеют свое начало в том, что Зюсс не дал ему конкретного определения.
На рубеже XIX и XX веков стала осознаваться необходимость создания целостного учения о взаимозависимых изменениях органического мира, рельефа, вод, почв, осадочных пород и климата. Это учение было разработано В.И.Вернадским, который сумел связать воедино процессы развития органического мира с геологической историей других оболочек Земли. Вернадский предлагал следующую классификацию входящих в биосферу веществ: 1) живое вещество или совокупность организмов; 2) биогенное вещество, созданное и переработанное жизнью; 3) косное вещество, в образовании которого живое вещество не участвует; 4) биокосное вещество, представляющее собой динамические равновесные системы образующих его живого и косного веществ; 5) радиоактивные элементы; 6) рассеянные атомы, возникшие в результате воздействия космических излучений; 7) вещество космического происхождения. Такая классификация была не точной. Выделенные типы из-за обилия критериев либо частично перекрывали друг друга, либо один из типов полностью входил в состав другого. В 1975 г. М. Кашмилов предложил другую классификацию: четыре типа вещества: живое, биогенное, косное и биокосное. Но здесь сомнения вызывает самостоятельность биокосного вещества как типа, так как в том смысле, который использует Вернадский, биокосное вещество означает некую динамическую систему, образуемую организмами, продуктами их жизнедеятельности и материальными условиями обитания. В 1977 г. А. И. Перельман предложил биосферу рассматривать как некую гигантскую биокосную систему, подсистемами которой являются биокосные тела более низкого уровня организации: почвы, илы, кора выветривания, поверхностные воды, водоносные горизонты, ландшафты и т. д.
Место живого вещества в биосфере определяется его энергетическими и геохимическими функциями. Энергетическая функция связана с ассимиляцией солнечной энергии и обогащением ею биогенного и косного вещества. Геохимические функции выражаются в участии организмов в перемещениях и концентрациях химических элементов, а также в преобразованиях окружающей среды и в создании новых минералов.
В 1987 г. А.В. Лаппо, благодаря накопленным к тому времени знаниям, предложил следующую классификацию функции живого вещества :
1) энергетическая - поглощение солнечной энергии при фото-синтезе и химической энергии при разложении веществ;
2) концентрационная - избирательное накопление определенных элементов;
3) деструктивная - минерализация органического вещества и разложение неорганического вещества;
4) средообразующая – преобразование физико- химических параметров среды;
5) транспортная – перенос организмами элементов при миграциях.
Следовательно, под биосферой можно понимать поверхностную оболочку Земли, организованную живым веществом. Важнейшим структурным компонентом биосферы является биогеоценотический покров, состоящий из биогеоценозов разного уровня сложности и эволюционной продвинутости. В биогеоценозы входит косное, живое и биогенное вещество. Как гигантская биокосная система биосфера выполняет энергетические, геохимические и средообразующие функции на поверхности Земли.

3. Общие представления об эволюции биосферы.

4. Особые виды воздействия на биосферу.
Деятельность человека лишь в последние десятилетия стала оказывать заметное влияние на биосферу. Последствия хозяйственной деятельности человека нарастали на протяжении долгого времени нарастали и сейчас обрушились на цивилизацию.
Вернадский сказал: «Человек становится геологической силой, способной изменить лик Земли». Эти слова явились пророчеством. Человечество использует огромное количество энергетических ресурсов биосферы, а также «небиосферные» источники энергии (атомная), тем самым ускоряя геохимические процессы. В ХХ веке воздействие бурного развития промышленности на биосферу стало сравнимо по масштабам с естественными энергетическими и материальными процессами, происходящими в биосфере.
Антропогенное воздействие нарушило практически все виды природных биогеохимических циклов.
Загрязнение среды опасными отходами.
и т.д.................

Эволюция биосферы

История Земли насчитывает около 4,6 млрд лет. Жизнь возникла 3,46 млрд лет назад, в палеоархей, самая ранняя форма жизни найдена в эту эру (хорошо сохранившиеся остатки бактерий, Западная Австралия ). За это время на ней возникали и вымирали многие миллионы видов растений и животных; вырастали и обращались в прах высочайшие горные хребты; громадные материки то раскалывались на части и разбегались в разные стороны, то сталкивались друг с другом, образуя новые гигантские массивы суши. Откуда же мы все это знаем? Дело в том, что, несмотря на все катастрофы и катаклизмы, которыми столь богата история нашей планеты, на удивление многое из ее бурного прошлого запечатлевается в горных породах, существующих и поныне, в окаменелостях, которые в них находят, а также в организмах живых существ, обитающих на Земле в наши дни. Разумеется, эта летопись неполная. Нам попадаются лишь ее фрагменты, между ними зияют пустоты, из повествования выпадают целые главы, крайне важные для понимания того, что происходило на самом деле. И все-таки даже в столь урезанном виде история нашей Земли не уступит в увлекательности любому детективному роману.

До двух миллиардов лет назад палеонтологическая летопись является репрезентативной. И на этом уровне практически все основные рода и виды цианобактерий уже существовали. По-видимому, океаны оставались бескислородными до двух миллиардов лет назад, пока не произошла дифференциация Земли на ядро и мантию, и железо перестало поступать в океаны. В атмосфере, по-видимому, кислород стал накапливаться раньше, поскольку полученные геохимические данные говорят о том, что кислород появляется в атмосфере 2,7-2,8 миллиарда лет назад. В принципе можно говорить о появлении цианобактерий три миллиарда лет назад, может быть 3,5, но здесь уже вопрос не совсем однозначный.

Два миллиарда лет назад Земля была совершенно непохожей на то, что мы видим сегодня. По плоским континентам текли безжизненные реки, темно-бурые океаны были заселены огромным количеством циантобактерий, которые строили строматолиты на мелководье, выделяли кислород и насыщали им атмосферу. И были первые одноклеточные животные организмы, которые копошились в этой синезеленой слизи, где было повышенное содержание кислорода.

Земля была однообразная и, скорее всего, серая. До двух миллиардов лет назад и небо было другое – темно-коричневое. А два миллиарда лет назад небо стало голубеть, океаны очистились от железа, и тоже стали напоминать современные.

Земное ядро стремительно сжималось. Из-за ядерных реакций и распада радиоактивных элементов в недрах Земли выделялось так много тепла, что образующие ее горные породы расплавились. Более легкие вещества, богатые кремнием - похожим на стекло минералом, - отделились в земном ядре от более плотных железа и никеля и образовали первую земную кору. Спустя примерно миллиард лет, когда Земля существенно охладилась, земная кора затвердела и превратилась в прочную внешнюю оболочку нашей планеты, состоящую из твердых горных пород. Остывая, Земля выбрасывала из своего ядра множество различных газов. Обычно это происходило при извержении вулканов. Легкие газы, такие, как водород или гелий, большей частью улетучивались в космическое пространство. Однако сила притяжения Земли была достаточно велика, чтобы удерживать у ее поверхности более тяжелые газы. Они-то и составили основу земной атмосферы. Часть водяных паров из атмосферы сконденсировалась, и на Земле возникли океаны. Теперь наша планета была полностью готова к тому, чтобы стать колыбелью жизни.

Живое вещество всегда, в течение всего геологического времени, было и остается составной частью биосферы, источником энергии, ею захватываемой из солнечных излучений,- веществом, находящимся в активном состоянии, имеющим основное влияние на ход и направление геохимических процессов химических элементов во всей земной коре.

В. И. Вернадский

Развитие органических соединений, как и живого вещества, теснейшим образом связано с водой.

По мнению целого ряда исследователей, на ранних этапах своего развития жизнь не была связана с отдельными живыми организмами, а выражалась в едином живом веществе. Согласно В. И. Вернадскому, происхождение жизни сводится к происхождению биосферы, которая с самого начала была сложной саморегулирующейся системой. Большое разнообразие геохимических функций живого вещества вытекало хотя бы из того, что любая, самая примитивная клетка, находясь в водной, морской среде, имела теснейший контакт со всеми химическими элементами таблицы Менделеева. Эти примитивные организмы, естественно, выбирали в процессе жизнедеятельности не все элементы, а в первую очередь те, которые благоприятствовали их росту и совершенствованию целого ряда физиологических процессов.

В этом отношении В. И. Вернадский отмечал: ""Вывод о необходимости одновременной чрезвычайно разнообразной геохимической функции в биосфере представителей жизни является основным условием ее появления. Каково бы это появление ни было, оно должно быть представлено не совокупностью неделимых одного вида, а совокупностью многих видов, морфологически принадлежащих к разным резко разделенным классам организмов, или же гипотетически особой, отличной от видов, неизвестной нам формой живого вещества. Возможность полного осуществления всех геохимических функций организмов в биосфере одноклеточными организмами делает вероятным, что таково было первое появление жизни...

Таким образом, первое появление жизни при создании биосферы должно было произойти не в виде появления какого-нибудь вида организма, а в виде совокупности, отвечающей геохимическим функциям жизни. Должны были сразу появиться биоценозы"" (с. 87).

Можно предположить, что химическая эволюция в космической туманности с возрастанием роли каталитических реакций могла привести к образованию молекул ДНК. Однако реализация ее функций оказалась возможной лишь в пределах Земли, где на основании развития живого вещества сформировалась ранняя биосфера как сочетание благоприятных условий для жизни со стороны биокосных систем и самого живого вещества. В остальных телах Солнечной системы химическая эволюция оказалась замороженной.

В настоящее время принято четкое подразделение организмов на автотрофшле и гетеротрофные по способу питания. Однако в ранней биосфере Земли соотношение гетеротрофных и автотрофньгх организмов было иным. Какое точно, мы еще не знаем. Единственное, что можно допустить, это то, что фотосинтезирующая автотрофная биосфера, отмеченная данными изотопной геохимии 4 млрд лет назад, была образованием вторичным и возникла на основе биосферы иного биогеохимического типа.

Действительно, детальное изучение фотосинтеза показало, что он имеет сложный характер. Этот процесс не мог быть первым в истории живого вещества. Поэтому все гипотезы о первичности автотрофных организмов оказались несостоятельными. В свете современных данных складывается представление о первичности гетеротрофной формы обмена веществ в первичных организмах. В качестве обоснования первичности гетеротрофного питания можно привести следующую аргументацию.

1. Все современные организмы обладают системами, приспособленными к использованию готовых органических веществ как исходного строительного материала для процессов биосинтеза.

2. Преобладающее большинство видов организмов в современной биосфере Земли может существовать только при постоянном снабжении готовыми органическими веществами.

3. У гетеротрофных организмов не встречается никаких признаков или рудиментарных остатков тех специфических ферментных комплексов и биохимических реакций, которые необходимы для автотрофного способа питания. Последний довод наиболее существен. Таким образом, приведенная выше аргументация свидетельствует о вторичности автотрофной фотосинтетической жизни в биосфере на нашей планете.

Исходя из вышеизложенного, можно заключить, что первичная биосфера нашей планеты, во-первых, ограничивалась водной средой, во-вторых, была насыщена гетеротрофными организмами, которые питались растворенными в воде органическими веществами, ранее возникшими преимущественно в космохимических условиях. Длительность существования подобной биосферы, скорее всего, занимала небольшой отрезок геологического времени.

Первичные гетеротрофные организмы, обладая свойствами живого вещества, быстро размножались и, естественно, быстро исчерпали свою питательную базу. Поэтому, достигнув максимальной биомассы, они должны были вымирать или перейти к автотрофному фотосинтетическому способу питания. Этот новый способ питания способствовал быстрому расселению организмов у поверхности первичных водоемов. Однако первичная поверхность новорожденной Земли, лишенная свободного кислорода, облучалась ультрафиолетовой радиацией Солнца. Поэтому Г. Гаффрон допустил, что первичные фотохимические механизмы, принимавшие участие в последовательном синтезе органических веществ, а позже и живых организмов, первоначально использовали радиацию в ультрафиолетовой области спектра. Только после возникновения озонового экрана в связи с появлением свободного кислорода как побочного продукта того же фотосинтеза автотрофный фотосинтетический процесс начал использовать излучение в видимой части солнечного спектра. По мнению видного советского биолога М. М. Кам-шилова, жизнь, по всей вероятности, развивалась как круговорот веществ при тесном взаимодействии гетеротрофных и автотрофных организмов. Солнечное излучение было главным энергетическим фактором жизни, и ее возникновение заключалось в установлении круговых обменных процессов с использованием фотонов света.

Первичные гетеротрофные микроорганизмы обитали в древних водоемах лишь некоторое время. Затем их оттеснили фотоавтотрофные организмы, создавшие свободный кислород, который стал настоящим разрушителем для гетеротрофов. Можно полагать, что в раннем океане происходила борьба между первичными и вторичными организмами. В воде, обогащенной сероводородом, было мало свободного кислорода. Он уходил на хемосинтез некоторых организмов и поглощался минеральными недоокис-яенными веществами океана и первичной литосферы. Борьба за существование шла между фотосинтезирую-щими организмами планктона в освещенной части моря и организмами, поглощающими кислород при хемосинтезе и разложении органических остатков. Это стало одной из главных причин, определивших количество свободного кислорода в биосфере. Эта борьба завершилась победои фотосинтезирующих автотрофных организмов, которые, по существу, оттеснили анаэробную микрофлору в зону формирования глубоководных илов. В общем эволюция окислительных функций проходила при возрастании окислительно-восстановительного потенциала.

В настоящее время, исходя из некоторых геохимических данных, мы можем качественно реставрировать состав первичной атмосферы и гидросферы как среды для зарождения и развития ранней жизни. Вода и первичные газы атмосферы относятся к летучим веществам нашей планеты, и естественно, что их история связана с единым процессом дегазации первичной мантии. Ряд компонентов, слагающих в настоящее время осадочные горные породы, гидросферу и атмосферу, .представляют собой действительно летучие вещества. Если сравнить их количество в составе всего комплекса осадочных пород, гидросферы и атмосферы с тем количеством, которое могло освободиться при выветривании п переработке кристаллических изверженных пород земной коры, то обнаружится большая разница, которую В. Руби предложил именовать избытком летучих.

Избыток летучих - довольно внушительная величина и по отдельным компонентам превышает в десятки и даже сотни раз летучий материал от выветривания коренных изверженных пород литосферы. В избытке летучих паров Н2О в 128 раз, СО2 в 83, a Cl в 60 раз больше, чем это могла бы продуцировать первичная земная кора при ее полном интенсивном разрушении. Состав избытка летучих чрезвычайно близок к составу вулканических газов.

Если даже СО2 в действующих вулканах возник за счет термического разложения карбонатов, то и в этом случае он был заимствован из более ранней атмосферы в процессе образования самых древних карбонатных осадочных пород.

В порядке распространения вулканические газы сложены из Н2О, СО2, N2. При таком составе атмосферы наличие органических соединений и тем более их возникновение термодинамически невыгодно: любые органические соединения, состоящие из H, C, N, О, менее устойчивы, чем перечисленные выше основные компоненты первичной атмосферы.

При формировании первичных атмосферы и океана находящиеся в ранней мантии довольно сложные органические вещества были в тесном контакте с твердыми частицами силикатов, которые в дальнейшем могли играть роль сильных катализаторов в процессе образования все более сложных соединений.

Данные по вулканическим газам указывают вполне определенно, что в ходе извержения выделялся молекулярный азот (N2), но не аммиак; следовательно, аммиак никогда не был главной составной частью земной атмосферы.

Уже отмечалось, что период существования гетеротрофной биосферы был исключительно коротким, поэтому запасы органических веществ в первичных водоемах не могли возобновляться так же, как запасы автотрофных организмов. Правда, можно допустить, что трупы гетеротрофных организмов все же непрерывно пополняли запас питательных органических веществ. Таким образом, существовал баланс между живыми гетеротрофными и их разложившимися остатками.

Из сказанного можно предположить, что источник живого вещества и воды был единым, точнее, единым был источник летучих на Земле и органического вещества. Это были верхние горизонты мантии, возникшей главным образом за счет аккреции первичного вещества типа уг-листых хондритов. При этом нельзя просто отождествлять материал первичной верхней мантии Земли с материалом углистых хондритов. Речь может идти лишь о близких аналогах, поскольку состав отдельных зон первичной солнечной туманности зависел от гелиоцентрического расстояния.

Первичную атмосферу Земли, с которой так или иначе была связана ранняя жизнь, можно восстановить, сравнив ее с таковой других планет земной группы, таких, как Венера или Марс. С появлением фотосинтеза и свободного кислорода первоначальная атмосфера Земли коренным образом изменилась.

Современный уровень наших знаний позволяет принять в качестве гипотезы положение о том, что химическая эволюция в протопланетной туманности с возрастанием роли каталитических и радиохимических реакции на заключительных стадиях охлаждения могла привести не только к образованию сложных органических соединений, что является реально установленным фактом, но и к возникновению молекул ДНК.

Следует подчеркнуть одно важное обстоятельство: биологическая эволюция возникшей биосферы проходила необратимым путем, от простого к сложному. На это обстоятельство обратил внимание в 1893 г. видный бельгийский палеонтолог Л. Долло (1857-1931), сформулировавший закон необратимости эволюции. Согласно этому закону, организм не может вернуться, хотя бы частично, к тому состоянию, которое было свойственно его предкам. Далее, ссылаясь на Ч. Дарвина, он отмечал, что эволюционное превращение организмов происходит вследствие закрепления под влиянием естественного отбора, вызванного борьбой за существование полезных индивидуальных вариации. Все виды растений и животных со времени своего появления на Земле обязаны происхождением этому основному закону.

Необратимость биологической эволюции, естественно, предполагает, что сам процесс возникновения живого вещества и биосферы протекал в необратимых условиях. Наиболее типичным необратимым процессом можно признать радиоактивность. Ее возможная роль в синтезе органических веществ уже ранее была отмечена. Радиоактивность есть общее и наиболее глубокое свойство вещества, отражение процессов построения нуклидов в канун образования Солнечной системы. Радиоактивность создавала тот естественный радиационный фон, в котором протекала химическая эволюция как в космосе, так и не ранней Земле. Еще в 1926 г. было установлено, что при облучении метана происходит полимеризация углеводородов с образованием все более сложных многоатомных молекул.

Роль радиоактивности в развитии жизни на Земле представляет собой проблему, к решению которой мы только недавно стали приближаться. Воздействие радиоактивности на живые организмы уменьшалось в ходе геологического времени. При этом мы должны исходить из того факта, что просто организованные водоросли и бактерии переносят значительно более высокие дозы радиации, чем высокоорганизованные формы животных и растений. Отсюда можно высказать предположение, что меньшая чувствительность к радиоактивности простых форм жизни связана с возникновением их в ранние эпохи развития биосферы, когда радиоактивность окружающей среды была выше современной.

Основным событием при зарождении первых организмов было образование спиральных молекул ДНК, что в УСЛОВИЯХ обилия органических веществ могло быть относительно быстрым процессом. Однако, по-видимому, возник не один организм, а живое вещество. И лишь значительно позже оно разделилось на индивидуальные сферические формы, ставшие родоначальниками организмов.

В дальнейшем в живом веществе происходили процессы усложнения. Произошло качественное изменение в эволюции живой материи, связанное с точностью воспроизведения нуклеиновых кислот как кодирующего процесса синтеза белков, которые значительно превосходили остальные органические соединения по своим биокатали-тяческим свойствам.

В процессе размножения новые организмы занимали все пространство, пригодное для жизни, что явилось важным условием завершения формирования биосферы в целом. В. И. Вернадский выдвинул принцип постоянства биомассы живого вещества, распространив его на всю историю планеты. Этот принцип был и остается глубоким научным обобщением. Однако следует подчеркнуть, что он имеет относительное значение. Величайшая напряженность жизни, выражающаяся в высоких темпах размножения мельчайших организмов, приводит к планетарному равновесию между естественной продукцией живого вещества и его разложением. Поэтому сейчас правильнее говорить о вековой тенденции к установлению постоянства биомассы для определенных, может быть даже значительных, интервалов геологического времени.

По данным молекулярной биологии, древнеишие микробы были представлены гетеротрофными организмами, которые размножались в среде с обильными органическими и минеральными питательными веществами. Эти питательные вещества включали по крайней мере рибозу, дезоксирибозу, фосфат, пурины и их предшественников, пиримидины, разнообразные ""белковые"" и ""небелковые"" аминокислоты. На ранних стадиях развития Земли фосфаты Na, К, Са имелись, вероятно, в достаточном количестве, как продукты выветривания первых горных пород. Кроме того, в качестве пищи могли быть использованы многие неизвестные или неидентифицированные соединения, в том числе некоторые смолообразные длинные полимеры.

Для первых организмов характерным был процесс ферментативного превращения органических веществ - брожение, где акцепторами электронов были другие органические вещества. Осуществление таких превращений в промежуточном обмене едва ли не во всех организмах служит аргументом в пользу древности этих процессов.

В ранней гетеротрофной биосфере Земли вскоре зародились организмы, способные поглощать углекислый газ, используя энергию солнечных лучей. По Л. Маргелис, биосинтетическая фиксация углекислого газа, столь обильного в первичной атмосфере Земли, происходила тремя способами.

Первая, наиболее примитивная фиксация была свойственна большой группе микроорганизмов, не чувствительных к видимому свету. Вторая возникла при участии фосфоснолпируват - карбоксилазы, которая наблюдается у анаэробных фотосинтезирующих бактерий. Третья фиксация СО2 совершалась при участии рибилозобиофосфат - карбоксилазы. Она присуща многим аэробным организмам и типична для большинства фотосинтетиков и хемоавтотрофов. Почти одновременно выработалась фиксация атмосферного азота. Это идущий с затратой энергии анаэробный процесс, обнаруженный только у прокариот.

Фотосинтетические пигментные системы образовались у прокариот еще до того, как последние в результате симбиоза стали пластидами эукариот. Можно полагать, что фотосинтез с выделением свободного кислорода возник первоначально вовсе не у зеленых растений, а у выделяющих его фотосинтезирующих бактерий и синезеленых водорослей.

Развитие биосферы Земли можно рассматривать как последовательную смену трех этапов. Первый этап - восстановительный - начался еще в космических условиях и завершился на Земле появлением гетеротрофной биосферы. Для первого этапа характерно появление малых сферических анаэробов. Присутствуют только следы свободного кислорода. Ранний способ фотосинтеза был, по существу, анаэробным. Развилась фиксация азота, поскольку часть ультрафиолетовой радиации проникала через атмосферу и быстро разлагала присутствующий аммиак.

Второй этап - слабоокислительный - отмечен появлением фотосинтеза. Он продолжался до завершения осад-конакопления полосчатых железистых формаций докем-брия. Аэробный фотосинтез начался предками цианобак-терий. Кислород производился организмами, строящими строматолиты . Но кислород мало накапливался в атмосфере, так как реагировал с железом, растворенным в воде. При этом окислы железа осаждались, образуя полосчатые железистые формации докембрия. Только когда океан освободился от железа и других поливалентных металлов, концентрация кислорода начала возрастать по направлению к современному уровню.

Третий этап характеризуется развитием окислительной фотоавтотрофной биосферы. Он начался с завершения отложений полосчатых железистых кварцитов около 1800 млн лет назад, в эпоху Карельско-Свекофенского орогенеза. Для этого этапа развития биосферы характерно наличие такого количества свободного кислорода, которого достаточно для появления и развития животных, потребляющих его при дыхании.

Последние два этапа в развитии биосферы фиксированы в каменной летописи геологической истории. Первый этап - наиболее далекий и загадочный, и расшифровка его истории связана с решением основных проблем органической космохимии.

Некоторые организмы раннего докембрия, относящиеся к синезеленым водорослям и пианобактериям, мало изменились в ходе геологической истории. Можно полагать, что простейшие организмы обладали наиболее устойчивой персистентностью (от латинского persiste - упорствую). По существу, в течение всей истории Земли не было причин для того, чтобы некоторые морские микроорганизмы, в частности синезеленые водоросли и бактерии, сильно изменились.

Экология [Конспект лекций] Горелов Анатолий Алексеевич

3.3. Эволюция биосферы

3.3. Эволюция биосферы

Эволюцию биосферы изучает раздел экологии, который называется эволюционной экологией. Следует отличать эволюционную экологию от экодинамики (динамической экологии). Последняя имеет дело с короткими интервалами развития биосферы и экосистем, в то время как первая рассматривает развитие биосферы на более длительном отрезке времени. Так, изучение биогеохимических круговоротов и сукцессии – задача экодинамики, а принципиальные изменения в механизмах круговорота веществ и в ходе сукцессии – задача эволюционной экологии.

Одним из важнейших направлений в изучении эволюции является изучение развития форм жизни. Здесь можно отметить несколько этапов:

1. Клетки без ядра, но имеющие нити ДНК (напоминают нынешние бактерии и сине-зеленые водоросли). Возраст таких самых древних организмов более 3 млрд лет. Их свойства: 1) подвижность; 2) питание и способность запасать пищу и энергию; 3) защита от нежелательных воздействий; 4) размножение; 5) раздражимость; 6) приспособление к изменяющимся внешним условиям; 7) способность к росту.

2. На следующем этапе (приблизительно 2 млрд лет тому назад) в клетке появляется ядро. Одноклеточные организмы с ядром называются простейшими. Их 25–30 тыс. видов. Самые простые их них – амебы. Инфузории имеют еще и реснички. Ядро простейших окружено двухмембранной оболочкой с порами и содержит хромосомы и нуклеоли. Ископаемые простейшие – радиолярии и фораминиферы – основные части осадочных горных пород. Многие простейшие обладают сложным двигательным аппаратом.

3. Примерно 1 млрд лет тому назад появились многоклеточные организмы. В результате растительной деятельности – фотосинтеза – из углекислоты и воды при использовании солнечной энергии, улавливаемой хлорофиллом, создавалось органическое вещество. Возникновение и распространение растительности привело к коренному изменению состава атмосферы, первоначально имевшей очень мало свободного кислорода. Растения, ассимилирующие углерод из углекислого газа, создали атмосферу, содержащую свободный кислород – не только активный химический агент, но и источник озона, преградившего путь коротким ультрафиолетовым лучам к поверхности Земли.

Л. Пастером выделены следующие две важные точки в эволюции биосферы: 1) момент, когда уровень содержания кислорода в атмосфере Земли достиг примерно 1 % от современного. С этого времени стала возможной аэробная жизнь. Геохронологически это архей. Предполагается, что накопление кислорода шло скачкообразно и заняло не более 20 тыс. лет: 2) достижение содержания кислорода в атмосфере около 10 % от современного. Это привело к возникновению предпосылок формирования озоносферы. В результате жизнь стала возможной на мелководье, а затем и на суше.

Палеонтология, которая занимается изучением ископаемых остатков, подтверждает факт возрастания сложности организмов. В самых древних породах встречаются организмы немногих типов, имеющих простое строение. Постепенно разнообразие и сложность растут. Многие виды, появляющиеся на каком-либо стратиграфическом уровне, затем исчезают. Это истолковывают как возникновение и вымирание видов.

В соответствии с данными палеонтологии можно считать, что в протерозойскую геологическую эру (700 млн лет назад) появлялись бактерии, водоросли, примитивные беспозвоночные; в палеозойскую (365 млн лет назад) – наземные растения, амфибии; в мезозойскую (185 млн лет назад) – млекопитающие, птицы, хвойные растения; в кайнозойскую (70 млн лет назад) – современные группы. Конечно, следует иметь в виду, что палеонтологическая летопись неполна.

Веками накапливавшиеся остатки растений образовали в земной коре грандиозные энергетические запасы органических соединений (уголь, торф), а развитие жизни в Мировом океане привело к созданию осадочных горных пород, состоящих из скелетов и других остатков морских организмов.

К важным свойствам живых систем относятся:

1. Компактность. 5 ? 10-15г ДНК, содержащейся в оплодотворенной яйцеклетке кита, заключена информация для подавляющего большинства признаков животного, которое весит 5 ? 107г (масса возрастает на 22 порядка).

2. Способность создавать порядок из хаотического теплового движения молекул и тем самым противодействовать возрастанию энтропии. Живое потребляет отрицательную энтропию и работает против теплового равновесия, увеличивая, однако, энтропию окружающей среды. Чем более сложно устроено живое вещество, тем более в нем скрытой энергии и энтропии.

3. Обмен с окружающей средой веществом, энергией и информацией.

Живое способно ассимилировать полученные извне вещества, т. е. перестраивать их, уподобляя собственным материальным структурам и за счет этого многократно воспроизводить их.

4. В метаболических функциях большую роль играют петли обратной связи, образующиеся при автокаталитических реакциях. «В то время как в неорганическом мире обратная связь между „следствиями“ (конечными продуктами) нелинейных реакций и породившими их „причинами“ встречается сравнительно редко, в живых системах обратная связь (как установлено молекулярной биологией), напротив, является скорее правилом, чем исключением» (И. Пригожин, И. Стенгерс. Порядок из хаоса. М., 1986, с. 209). Автокатализ, кросс-катализ и автоингибиция (процесс, противоположный катализу, если присутствует данное вещество, оно не образуется в ходе реакции) имеют место в живых системах. Для создания новых структур нужна положительная обратная связь, для устойчивого существования – отрицательная обратная связь.

5. Жизнь качественно превосходит другие формы существования материи в плане многообразия и сложности химических компонентов и динамики протекающих в живом превращений. Живые системы характеризуются гораздо более высоким уровнем упорядоченности и асимметрии в пространстве и времени. Структурная компактность и энергетическая экономичность живого – результат высочайшей упорядоченности на молекулярном уровне.

6. В самоорганизации неживых систем молекулы просты, а механизмы реакций сложны; в самоорганизации живых систем, напротив, схемы реакций просты, а молекулы сложны.

7. У живых систем есть прошлое. У неживых его нет. «Целостные структуры атомной физики состоят из определенного числа элементарных ячеек, атомного ядра и электронов и не обнаруживают никакого изменения во времени, разве что испытывают нарушение извне. В случае такого внешнего нарушения они, правда, как-то реагируют на него, но, если нарушение было не слишком большим, они по прекращении его снова возвращаются в исходное положение. Но организмы – не статические образования. Древнее сравнение живого существа с пламенем говорит о том, что живые организмы подобно пламени представляют собой такую форму, через которую материя в известном смысле проходит как поток» (В. Гейзенберг. Физика и философия. Часть и целое. М., 1989, с. 233).

8. Жизнь организма зависит от двух факторов – наследственности, определяемой генетическим аппаратом, и изменчивости, зависящей от условий окружающей среды и реакции на них индивида. Интересно, что сейчас жизнь на Земле не могла бы возникнуть из-за кислородной атмосферы и противодействия других организмов. Раз зародившись, жизнь находится в процессе постоянной эволюции.

9. Способность к избыточному самовоспроизводству. «Прогрессия размножения столь высокая, что она ведет к борьбе за жизнь и ее последствию – естественному отбору» (Ч. Дарвин. Соч. Т. 3. М.-Л., 1939, с. 666).

Из книги Удивительная биология автора Дроздова И В

Дыхание биосферы Мы более склонны распространять на Вселенную земные законы, нежели в земном и обыденном замечать проявления законов космоса. В свое время А. Чижевский с горечью писал: «Как случается всегда, когда делается какое-либо серьезное научное открытие… стали

Из книги Открывая тайны океана автора Сузюмов Евгений Матвеевич

Океан и тайны эволюции биосферы Многие загадки океана были раскрыты учеными с помощью подводных аппаратов (ПА). Поэтому на НИС «Академик Мстислав Келдыш» также установили ангар и спуско-подъемное устройство для ПА. Вначале на судне разместили обитаемый

Из книги Общая экология автора Чернова Нина Михайловна

10.3. Стабильность биосферы Основой самоподдержания жизни на Земле являются биогеохимические круговороты. Процессы созидания органического вещества, аккумулирующего энергию, и противоположные процессы его разложения с высвобождением этой энергии одинаково необходимы

Из книги Виновато Солнце автора Зигель Феликс Юрьевич

10.4. Развитие биосферы Возраст Земли, определяемый методами изотопной геологии, составляет около 5 млрд лет. Наиболее принятые показатели 4,6–4,7 млрд лет. Приблизительно таков же возраст Солнца и других планет Солнечной системы. По современным представлениям, они

Из книги Нерешенные проблемы теории эволюции автора Красилов Валентин Абрамович

Космические связи биосферы «Биосфера» - термин, введенный в биологию еще Ж. Ламарком. В буквальном переводе он означает «сфера жизни». Стройное и глубокое учение о биосфере разработано нашим знаменитым соотечественником Владимиром Ивановичем Вернадским.Жизнь

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

ЭВОЛЮЦИЯ БИОСФЕРЫ Понятие биосферы тесно связывает жизнь с внешними оболочками Земли - атмосферой, гидросферой и верхней частью коры, где есть живые существа и продукты их жизнедеятельности. Сами эти оболочки - в значительной мере продукт жизнедеятельности, в их

Из книги Энергия и жизнь автора Печуркин Николай Савельевич

Из книги Современное состояние биосферы и экологическая политика автора Колесник Ю. А.

Глава 10. Человек в циклах биосферы Культура, если она развивается стихийно, а не направляется сознательно... оставляет поело себя пустыню... К. Маркс Есть такое твердое правило: утром встал, умылся, привел себя в порядок - и сразу же приведи в порядок свою планету. А.

Из книги автора

Глава 1 Введение в проблематику биосферы 1.1. Определение биосферы Что же представляет собой биосфера?Напомним некоторые ее характерные признаки.В современной науке имеется много определений биосферы. Приведем лишь некоторые. «Биосфера – особая, охваченная жизнью

Из книги автора

1.1. Определение биосферы Что же представляет собой биосфера?Напомним некоторые ее характерные признаки.В современной науке имеется много определений биосферы. Приведем лишь некоторые. «Биосфера – особая, охваченная жизнью оболочка Земли» (Вернадский, 2003,

Из книги автора

1.2. Характеристика и состав биосферы Впервые понятие «биосфера» (от греч. bios – жизнь и sphaira – шар) в биологию было введено Ж. Ламарком в начале XIX в. Он подчеркивал, что все вещества, находящиеся на поверхности земного шара и образующие его кору, сформировались благодаря

Из книги автора

1.3. Физические условия формирования биосферы Космологи считают, что примерно 20 млрд лет тому назад в результате чудовищного взрыва возникла наша Вселенная. Примерно около 6–7 млрд лет назад сформировались Солнце и другие тела его системы, и где-то 4,6–5 млрд лет назад

Из книги автора

Глава 5 Современное состояние биосферы Земли 5.1. Границы биосферы Биосфера является одним из трех (гидросфера, атмосфера и литосфера) компонентов климатической системы. Ее можно уподобить тонкой пленке, покрывающей поверхность нашей планеты. Плотность органического

Из книги автора

5.1. Границы биосферы Биосфера является одним из трех (гидросфера, атмосфера и литосфера) компонентов климатической системы. Ее можно уподобить тонкой пленке, покрывающей поверхность нашей планеты. Плотность органического вещества равна 1 г/см2. Для сравнения, средняя

Из книги автора

5.2. Основные функции биосферы В составе биосферы присутствуют вещества, которые различаются между собой по ряду признаков: природные вещества, живое вещество, биогенное вещество, косное вещество, биокосное вещество, органическое вещество, биологически активное

Из книги автора

8.4. Генетика и эволюция биосферы Общепризнанно, что теория Ч. Дарвина о происхождении видов эволюционным путем совершила переворот в мировоззрении не только ученых, но и многих миллионов людей. Это был сильнейший удар метафизическому взгляду на природу, который показал,