Гражданские правоотношения 9 кл. Конспект урока "гражданские правоотношения". вещи, работы и услуги, информацию, результаты

§ 1. Поворот и центральная симметрия - Учебник по Математикe 6 класс (Зубарева, Мордкович)

Краткое описание:

В этом параграфе мы переходим к изучению новой темы в геометрии: поворот и центральная симметрия. Что поможет нам разобраться в том, что такое поворот в геометрическом понимании, как поворачивать точки, отрезки или целые фигуры, а также какие точки отрезки или фигуры можно считать симметричными.
Поворотом точки можно считать движение точки во круг другой точки на плоскости, при этом другая точка остается неподвижной. Поворот можно осуществить на любое расстояние, такое расстояние измеряется в градусах, измерить его можно с помощью транспортира. Кроме точек могут перемещаться целые фигуры и рисунки. Так, мы можем наблюдать много примеров использования поворотов в реальной жизни – симметричные растения, цветы, фрукты, разрезанные пополам, строительные элементы, например, винтовые лестницы, обувь – правые и левые ботинки. Так, звезды вращаются вокруг полюса, изменяя свое положение только относительно одной точки. Для геометрического построения поворота удобно использовать циркуль и транспортир. Симметрию можно определить как одинаково отдаленное расположение точек относительно одного центра. В повседневной жизни мы часто встречаемся с симметричными предметами. Но стоит заметить, что в природе не существует идеальной симметрии, даже лицо человека не может быть идеально симметричным. Но предметы, которые мы используем для повседневной деятельности, готовки, приготовления уроков, игры, чаще всего симметричны. Интересно? Предлагаем подробнее ознакомиться с материалом параграфа в учебнике!


При изучении темы «Поворот» учащимся дается задание: нарисовать на альбомном листе фигуру, выбрать центр поворота и угол поворота. Построить новую фигуру. Техника работы может быть различной. Например, дети часто используют апп ликацию. На нашей виртуальной выставке вторая работа выполнена в этой технике. А вот на 3 рисунке ученик использовал готовое изображение (аппликация) и вторую подвижную фигуру нарисовал самостоятельно.

Особенно интересны работы, выполненные с помощью карандашей, фломастеров или красок. Конечно, при составлении этих работ дети предварительно изготовили шаблон. Этот шаблон-трафарет помог им при выполнении творческих работ по другим темам "Симметрия относительно прямой", " Симметрия относительно точки ", "Параллельный перенос".

Детям особенно нравиться делать динамические модели. Их можно покрутить и выполнить поворот по часовой стрелке и против часовой стрелки. На представленной выставке только одна работа статическая на первом рисунке. Остальные работы динамические.

Для изготовления динамической модели одну фигуру надо нарисовать на альбомном листе. Вторую фигуру вырезать по шаблону из белого картона. Некоторые ребята вторую подвижную фигуру для большей надежности еще оклеили бесцветной пленкой. Например, красивая рыба в верхнем ряду. Ей уже больше 10 лет, а она выглядит, как новенькая. Не потускнели и не выгорели яркие краски. Для обозначения центра ученики используют маленькую круглую точку из картона, скрепляют подвижную фигуру с альбомным листом с помощью обычных швейных ниток. Некоторые дети использовали металлические гайки. Правда этот вариант не очень эстетично выглядит.

Есть в копилке лучших работ по теме "Поворот" работы, выполненные на фанере с помощью прибора для выжигания. Среди них есть подвижные модели и статические рисунки. Для динамических моделей надо выполнить значительно больший объем работ, ведь подвижную фигура необходимо выпилить. Вот, какая трудоемкая работа!


Лучшие работы оформляются на стенде в классе. А работы на фанере стоят в шкафах. После Выставки в кабинете я архивирую творческие работы в тематические папки, они пополняют методическую базу кабинета. Эта папка представляется на Выставках в гимназии, проходящих в рамках различных методических мероприятий, семинарах. Например, Выставка творческих работ учащихся в рамках Дня открытых дверей в гимназии, на который традиционно приглашаются родители обучающихся.

31.01(01.02)Урок математики по теме "Поворот и центральная симметрия". 6-й класс

Цели урока:

    повторение действий с десятичными дробями;

    знакомство учащихся с понятием поворот и центральная симметрия;

    формирование навыка построения симметричных точек относительно центра;

    воспитание устойчивого интереса к изучению математики через применение различных видов деятельности на уроке;

    воспитание графической культуры;

    развитие мыслительной деятельности, анализа и синтеза через практическую деятельность на уроке;

    развитие внимания, познавательного интереса.

Оборудование: интерактивная доска, презентация к уроку.

План урока.

    Организационный момент.

    Повторение действий с десятичными дробями.

    Изучение нового материала, первоначальное закрепление.

    Итог урока, домашнее задание.

Ход урока

1. Организационный момент.

Сообщение о требованиях к уроку, необходимых инструментах и пособиях.

Что изучает математика в 6 классе.

2. Повторение.

1) Вспомнить правила действий с десятичными дробями, привести примеры.

2) Устный счет (используется “Математический тренажер”, 6 класс, стр. 10 , задание на ИД).

3) Письменная работа № 14, 15 по первой строчке в каждом номере (у доски 1 ученик по желанию работает на оценку).

14 а) 2, 31+ 15, 7= 18, 01

в) 4, 327 – 2, 05 = 2, 277

д) 15, 6 + 0, 671 = 16, 271

15 а) 91, 05 · 3, 2 = 291, 36

в) 268, 8: 5,6 = 48

д) 7, 02 · 0, 0055 = 0, 03861

3. Изучение нового материала.

Тема нашего урока “Поворот и центральная симметрия” (Слайд 1)

В геометрии рассматриваются вопросы, связанные с движением фигур. Мы сегодня познакомимся с поворотом и центральной симметрией.

1) Возьмем на плоскости точки О и А. Повернем точку А вокруг точки О на некоторый угол. Точка А перейдет в точку А 1 . (Слайд 2). Сделаем такое же построение в тетради, заполним пропуски в тексте.

При этом точка О (неподвижная точка) будет являться центром поворота, точка А – подвижная точка, а угол поворота - это угол АОА 1 . Поворот может быть как по часовой, так и против часовой стрелки.

Таким образом мы можем дать определение поворота:

Опр. Поворо"т (враще"ние) - движение, при котором по крайней мере одна точка плоскости остаётся неподвижной (щелчок мышью).

2) Рассмотрите рисунок (щелчок мышью ). Здесь также показаны повороты точек. Опишите этот рисунок и определите, на какой угол поворачивается точка в каждом случае. Для какой точки угол поворота можно определить без транспортира? Охарактеризуйте расположение начальной и конечной точек относительно центра. (Устная работа по рисунку 2 из учебника)

3) Поворот - естественный процесс, происходящий в природе, окружающем нас мире.

Рассмотрите рисунки, дайте характеристику каждому повороту. (Слайд 3, 4)

4) Выполним письменно задание №1. (Слайд 5)

Постройте образ отрезка MN= 4 см при повороте на угол 90° вокруг точки О по часовой стрелке.

(Обсуждается алгоритм выполнения поворота и поэтапно вместе с анимацией выполняется построение в тетрадях. Учитель контролирует выполнение заданий и оказывает необходимую помощь).

Сравните отрезки MN и M 1 N 1 .

5) На следующем слайде вы видите различные орнаменты (Слайд 6). Все они состоят из одинаково повторяющихся элементов. Укажите эти элементы. Обратите внимание на фрагменты орнаментов б), г), е), ж). Что их объединяет? (Каждый из них можно получить из другой части поворотом на 180° относительно некоторой точки).

6) Рассмотрим следующий поворот. (Слайд 7)

Отметим на плоскости точки О и А, проведем прямую АО. На этой прямой отложим от точки О отрезок ОА 1 , равный отрезку АО, но по другую сторону от точки О. Получим развернутый угол АОА 1 . Это значит, что точку А 1 можно получить поворотом точки А на 180° вокруг точки О. Точки А и А 1 называют симметричными относительно точки О, а точку О называют центром симметрии.

Рассмотрим рисунок желтой и красной рыбы. Они симметричны относительно точки О.

Опр . Фигуры, симметричные относительно какой-либо точки называют центрально симметричными фигурами.

Как расположены центрально-симметричные точки, относительно центра симметрии?

(Лежат на одной прямой с центром симметрии)

7) Устно №1 стр.7 рис.7. (Слайд 8). Укажите центр симметрии и какие-нибудь пары центрально-симметричных точек.

(Слайд идет в обычном режиме или рисунок выносится на интерактивную доску, чтобы можно было выполнить необходимое построение).

8) Устно ( Слайд 9 ). Укажите, какие фигуры на рисунках имеют центр симметрии.

4. Итог урока.

Ответьте на вопросы:

    Как вы поняли, что такое поворот?

    Как используя поворот, получить центрально-симметричные точки?

    Как построить центрально- симметричные точки?

Точки X и X" называются симметричными относительно прямой a, и каждая из них симметричной другой, если a является серидинным перпендикуляром отрезка XX". Каждая точка прямой a считается симметрична самой себе (относительно прямой a). Если дана прямая a, то каждой точке X соответсвует единственная точка X", симметричная X относительно a.

Симметрией плоскости относительно прямой a называется такое отображение, при котором каждой точке этой плоскости ставится в соответствие точка, симметриченая ей относительно прямой a.

Докажем, что осевая симметрия является движением успульзуя метод координат: примем прямую a за ось x декартовых координат. Тогда при симметрии относительно нее точка, имеющая координаты (x;y) будет преобразована в точку с координатами (x, -y).

Возьмем любые две точки A(x1, y1) и B(x2, y2) и рассмотрим симметричные им относительно оси x точки A"(x1,- y1) и B"(x2, -y2). Вычисляя растояния A"B" и AB, получим

Таким образом осевая симметрия сохраняет расстояние, следовтельно она является движением.

Поворот

Поворот плоскости относительно цетра O на данный угол () в данном направлении определяется так: каждой точке X плоскости ставится в соответсвие такая точка X", что, во-первых, OX"=OX, во-вторых и, в-третих, луч OX" откладывается от луча OX в заданном направлении. Точка O называется центром поворота , а угол -углом поворота .

Докажем, что поворот является движением:

Пусть при повороте вокруг точки O точкам X и Y сопостовляются точки X" и Y". Покажем, что X"Y"=XY.

Рассмотрим общий случай, когда точки O, X, Y не лежат на одной прямой. Тогда угол X"OY" равен углу XOY. Действительно, пусть угол XOY от OX к OY отсчитывается в направлении поворота. (Если это не так, то рассматриваем угол YOX). Тогда угол между OX и OY" равен сумме угла XOY и угла поворота (от OY к OY"):

с другой стороны,

Так как (как углы поворота), следовтельно. Кроме того, OX"=OX, и OY"=OY. Поэтому - по двум сторонам и углу между ними. Следовтельно X"Y"=XY.

Если же точки O, X, Y лежат на одной прямой, то отрезки XY и X"Y" будут либо суммой, любо разностью равных отрезков OX, OY и OX", OY". Поэтому и в этом случае X"Y"=XY. Итак, поворот является движением.

Понятие симметрии проходит через всю историю человечества. Оно встречается уже у истоков человеческого знания. Возникло оно в связи с изучением живого организма, а именно человека. И употреблялось скульпторами ещё в 5 веке до нашей эры. Слово “симметрия ” греческое, оно означает “соразмерность, пропорциональность, одинаковость в расположении частей ”.


Его широко используют все без исключения направления современной науки. Немецкий математик Герман Вейль сказал: “Симметрия является той идеей, посредством которой человек на протяжении веков пытался постичь и создать порядок, красоту и совершенство ”. Его деятельность приходится на первую половину ХХ века. Именно он сформулировал определение симметрии, установил по каким признакам усмотреть наличие или, наоборот, отсутствие симметрии в том или ином случае. Таким образом, математически строгое представление сформировалось сравнительно недавно – в начале ХХ века.

1.1. Осевая симметрия

Две точки А и А1 называются симметричными относительно прямой а, если эта прямая проходит через середину отрезка АА1 и перпендикулярна к нему (Рисунок 2.1). Каждая точка прямой а считается симметричной самой себе.


Фигура называется симметричной относительно прямой а, если для каждой точки фигуры симметричная ей точка относительно прямой a также принадлежит этой фигуре (Рисунок 2.2).

Прямая а называется осью симметрии фигуры.


Говорят также, что фигура обладает осевой симметрией.

Осевой симметрией обладают такие геометрические фигуры как угол, равнобедренный треугольник, прямоугольник, ромб (Рисунок 2.3).

Фигура может иметь не одну ось симметрии. У прямоугольника их две, у квадрата – четыре, у равностороннего треугольника – три, у круга – любая прямая, проходящая через его центр.

Если присмотреться к буквам алфавита (Рисунок 2.4)., то и среди них можно найти, имеющие горизонтальную или вертикальную, а иногда и обе оси симметрии. Объекты, имеющие оси симметрии достаточно часто встречаются в живой и неживой природе.

Имеются фигуры, у которых нет ни одной оси симметрии. К таким фигурам относятся параллелограмм, отличный от прямоугольника, разносторонний треугольник.

В своей деятельности человек создаёт много объектов (в том числе и орнаменты), имеющих несколько осей симметрии.

1.2 Центральная симметрия

Две точки А и А1 называются симметричными относительно точки О, если О - середина отрезка АА1. Точка О считается симметричной самой себе (Рисунок 2.5).

Фигура называется симметричной относительно точки О, если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре .

Простейшими фигурами, обладающими центральной симметрией, является окружность и параллелограмм (Рисунок 2.6).

Точка О называется центром симметрии фигуры. В подобных случаях фигура обладает центральной симметрией. Центром симметрии окружности является центр окружности, а центром симметрии параллелограмма - точка пересечения его диагоналей.

Прямая также обладает центральной симметрией, однако в отличие от окружности и параллелограмма, которые имеют только один центр симметрии у прямой их бесконечно много - любая точка прямой является её центром симметрии. Примером фигуры, не имеющей центра симметрии, является треугольник.

1.3. Поворотная симметрия

Предположим, что объект совмещается сам с собой при повороте вокруг некоторой оси на угол, равный 360°/n (или кратный этой величине), где n = 2, 3, 4, … В этом случае о поворотной симметрии, а указанную ось называют поворотной осью n-го порядка.

Рассмотрим примеры со всеми известными буквами «И » и «Ф ». Что касается буквы «И », то у нее есть так называемая поворотная симметрия. Если повернуть букву «И » на 180° вокруг оси, перпендикулярной к плоскости буквы и проходящей через ее центр, то буква совместится сама с собой.

Иными словами, буква «И » симметрична относительно поворота на 180°. Заметим, что поворотной симметрией обладает также буква «Ф ».

На рисунке 2.7. даны примеры простых объектов с поворотными осями разного порядка – от 2-го до 5-го.