Критерии прогноза нефтегазоносности. Гидрогеологические критерии оценки перспектив нефтегазоносности

Установлено, что крупные и гигантские зоны нефтегазоносности приурочены к областям палеовпадин или палеосводов, которые характеризуются значительными размерами и устойчивым прогибанием со значительными амплитудами. Максимальные скопления нефти и газа приурочены к частям структур, которые, в соответствующие периоды времени, испытывали максимальные по площади и амплитуде прогибания. Амплитуда прогибания хорошо фиксируется по мощности осадочного чехла. Например на Западно-Сибирской плите за мезозойскую и кайнозойскую эпохи прогиба на территории Томской области накопилось, в среднем, 2500-3500м осадочных пород. Мощность осадочного чехла на континентальной окраине плиты до 7000м.

2. Структурные критерии определяют условия формирования ловушек УВ.

1.1. Благоприятные структурные условия для формирования скоплений УВ структурного типа: структурно-литологического, литолого-стратиграфического и литологического типов.

Образование и сохранность зон нефтегазонакопления зависит от следующих структурно-тектонических факторов:

1.Времени заложения ловушки. В тех случаях, когда миграция УВ происходила до заложения ловушки, то такие ловушки не содержат скоплений УВ, а только следы миграции УВ (рис.1.1 ).

2.Условий сохранности структурной замкнутости ловушки. Если структура в течении геологической истории испытывала структурные изменениям, то такие перестройки могут нарушить замкнутость ловушки (нарушить целостность покрышки) и сформировавшаяся залежь будет разрушена.

3. Палеогеографические критерии.

Благоприятными для формирования скоплений УВ являются прибрежные зоны палеоморей. Поскольку именно в таких палеофациальных условиях возможно накопление значительных по площади и по мощности покровных, хорошо отсортированных, и соответственно, с хорошими ФЕС песчаных пластов-коллекторов или крупных рифовых массивов. Таким образом, важным становится выяснение очертания береговых линий палеоморей, областей палеошельфа. Картирование областей сноса терригенного материала и областей седиментации пород-коллекторов повышенной емкости. Конечным результатом этих исследований являются палеогеографические карты или схемы.

4. Литолого-фациальные критерии.

Литолого-фациальные условия накопления осадков контролируют литологический состав и коллекторских свойств пород. Песчаные тела прибрежно-морского генезиса (рис.1.3 ) и аллювиального (рис.1.4 ) имеют радикально отличающиеся характеристики геометрии тел коллекторов и фильтрационно-емкостные характеристики.

Литолого-фациальные условия обуславливают формирование ловушек, связанных с зонами регионального литологического выклинивания.

Рис.1.3 Прогноз размещения прибрежно-морских фациальных обстановок

5.Геохимические критерии контролируют условия формирования и развития нефтематеринских толщ.

Например, баженовская свита формировалась в условиях теплого тропического внутреннего Западносибирского моря с богатой фито-и зообиотой. Сохранению и переработке сапропелевого осадка способствовала геохимическая среда на дне водоема (рис. 1.5 и1.6 ).

Рис. 1.4 Схема континентальных фациальных условий седиментации Пласта Ю 1 1-2

Рис. 1.5

Рис. 1.6 Основные параметры углефикации (Н.Б. Вассоевич)

6.Палеогидрогеологические критерии определяют условия сохранности залежей УВ, контролируются областями затрудненного флюидообмена, гидрогеологически застойным режимом и отсутствие промытости инфильтрационными водами.

Например, висячие залежи результат активного гидродинамического режима залежи, увеличение давления флюида может привести к полному разрушению скопления УВ, особенно если залежь малоамплитудная (рис.1.7).

Рис.1.7 Висячие залежи

Для положительной оценки перспектив новых седиментационных басс. как объектов для проведения поисковых работ на нефть и газ необходимо наличие: 1) в разрезе басс. мощных неме-таморфизованных осад. отл. в диапазоне возраста одной - двух эр, накопившихся при господствующем погружении, что обусловит в общем случае и достаточные размеры басс. по площади; 2) нефтегазопроявлений (отдается предпочтение при прочих равных условиях). При выборе басс. должны также учитываться и экономические условия. При региональных геолого-геофиз. и поисково-разведочных работах в новых р-нах нефтегазоносного басс. (уже с доказанной промышленной нефтегазоносностью в одном или нескольких его р-нах) учитываются следующие признаки: 1. Наличие на поверхности или в разрезе скважин нефтегазопроявлений. 2. Наличие в разрезе возможных материнских отл. 3. Наличие в разрезе ожидаемых нефтеносных отл. п. - коллекторов и ловушек разл. типа для залежей нефти и газа. 4. Наличие благоприятных гидрогеол. условий для нефтегазонакоп. и сохранности залежей нефти и газа.

  • - теорема, позволяющая установить отсутствие замкнутых траекторий у ди-намич...

    Математическая энциклопедия

  • - это признаки вида, позволяющие отличить один вид от другого: морфологический, физиологический, географический, экологический, генетический и биохимический...

    Начала современного Естествознания

  • - различают геохимические критерии основные и вспомогательные...

    Словарь по гидрогеологии и инженерной геологии

  • - установленные нормативно-техническими документами и органами государственного надзора и контроля значения параметров и характеристик последствий аварий, в соответствии с которыми обосновывается...

    Термины атомной энергетики

  • - требования, используемые аккредитующим органом, которым должна отвечать организация, чтобы быть аккредитованной. Источник: "Дом: Строительная терминология", М.: Бук-пресс, 2006...

    Строительный словарь

  • - составляется для сравнительного анализа наблюдающихся в разных геол. условиях совокупностей параметров нефтематеринских свойств п. и признаков миграции углеводородов, имея целью уяснение общих...

    Геологическая энциклопедия

  • - показатели, характеризующие условия образования нефтяных вод и углеводородов, формирования и существования в недрах нефтяных и газовых залежей в течение всей геол. истории развития нефтегазоносного басс. К....

    Геологическая энциклопедия

  • - син. термина предпосылки поисковые...

    Геологическая энциклопедия

  • - признаки, позволяющие с той или иной степенью достоверности восстановить фациальные условия накопления осадков прошлых эпох. К ним относятся: 1) критерии, позволяющие определить фациальную обстановку по...

    Геологическая энциклопедия

  • - политика, методы, процедуры или требования, по которым аудитор проверяет собранные данные об объекте аудита. Примечание...

    Экологический словарь

  • - см....

    Экологический словарь

  • - качественные и количественные показатели отклика организмов на воздействие токсических веществ...

    Экологический словарь

  • - цена или количество товара, принятые за основу при начислении таможенных пошлин...

    Словарь бизнес терминов

  • - Ряд критериев, которым должны удовлетворять страны, считающие практически целесообразным или желательным для себя принять единую валюту...

    Экономический словарь

  • - признак, на основании которого формируется оценка качества объекта, процесса, мерило такой оценки...

    Энциклопедический словарь экономики и права

  • - необходимые условия физического подобия двух явлений, например явлений, имеющих место для натурного объекта и его модели...

    Большая Советская энциклопедия

"КРИТЕРИИ НЕФТЕГАЗОНОСНОСТИ" в книгах

Критерии

автора Сергеев Борис Федорович

Критерии

Из книги Ступени эволюции интеллекта автора Сергеев Борис Федорович

Критерии Даже беглый анализ особенностей поведения современных животных, стоящих на разных уровнях развития, позволяет заметить, что эволюция живых организмов шла путем постепенного усложнения их взаимоотношений со средой. Вместе с усложнением поведения

4.6. Критерии

Из книги Все о бизнесе в Германии автора фон Люксбург Натали

4.6. Критерии 1. Приоритетные экономические интересы – критерий, применяемый при принятии решений о предоставлении вида на жительство с целью ведения предпринимательской деятельности.Какая деятельность подпадает под определение «приоритетного экономического

2. Критерии

Из книги Открытое общество и его враги автора Поппер Карл Раймунд

2. Критерии Самое существенное теперь - осознать и четко провести следующее различение: одно дело - знать, какой смысл имеет термин «истина» или при каких условиях некоторое высказывание называется истинным, а другое дело - обладать

Критерии

Из книги Кроме Стоунхенджа автора Хокинс Джеральд

Критерии 1. Даты строительства не могут быть определены по астрономической ориентацииСовременная археология достигла теперь такой степени развития, что даты возведения большинства доисторических построек могут быть установлены с достаточной точностью. Относительная

Критерии

Из книги автора

Критерии Солидная международная тусовка неврологов под названием ILAE – Международная лига борьбы с эпилепсией предложила в 2014 году три набора критериев, любого из которых как бы достаточно для постановки диагноза:1. Два неспровоцированных приступа, между которыми

6.4. Критерии

автора Andreasson Oskar

6.4. Критерии Здесь мы подробнее остановимся на критериях выделения пакетов. Я разбил все критерии на пять групп. Первая – общие критерии которые могут использоваться в любых правилах. Вторая – TCP критерии которые применяются только к TCP пакетам. Третья – UDP критерии

6.4.2.1. TCP критерии

Из книги Iptables Tutorial 1.1.19 автора Andreasson Oskar

6.4.2.1. TCP критерии Этот набор критериев зависит от типа протокола и работает только с TCP пакетами. Чтобы использовать их, вам потребуется в правилах указывать тип протокола –protocol tcp. Важно: критерий –protocol tcp обязательно должен стоять перед специфичным критерием. Эти

6.4.2.2. UDP критерии

Из книги Iptables Tutorial 1.1.19 автора Andreasson Oskar

6.4.2.2. UDP критерии В данном разделе будут рассматриваться критерии, специфичные только для протокола UDP. Эти расширения подгружаются автоматически при указании типа протокола –protocol udp. Важно отметить, что пакеты UDP не ориентированы на установленное соединение, и поэтому не

Критерии

Из книги Основы объектно-ориентированного программирования автора Мейер Бертран

Критерии Чтобы получить надлежащие описания объектов, наш метод должен удовлетворять трем условиям:[x]. Описания должны быть точными и недвусмысленными.[x]. Они должны быть полными - или, по крайней мере, иметь в каждом конкретном случае нужную нам полноту (некоторые детали

Глава 9. КРИТЕРИИ РЕАБИЛИТАЦИОННОГО ПРОЦЕССА. КРИТЕРИИ РЕАБИЛИТАЦИИ

Из книги Основы интенсивной реабилитации. ДЦП автора Качесов Владимир Александрович

Глава 9. КРИТЕРИИ РЕАБИЛИТАЦИОННОГО ПРОЦЕССА. КРИТЕРИИ РЕАБИЛИТАЦИИ 9.1. КРИТЕРИИ РЕАБИЛИТАЦИОННОГО ПРОЦЕССА ПРИ ПРИМЕНЕНИИ АВТОРСКОЙ ТЕХНОЛОГИИ В этом разделе описываются критерии, на которые должен ориентироваться врач при качественном исполнении тракционной

3.1. Критерии

автора Иванов Дмитрий Олегович

3.1. Критерии Эксперты ВОЗ (1997) делят гипотермию новорожденных на три степени тяжести: умеренная – внутренняя температура = 36,4-36,0 °C, накожная = 35,9-35,5 °C; средней степени тяжести – внутренняя температура = 35,9-32,0 °C, накожная = 35,4-31,5 °C; тяжелая – внутренняя температура?

4.1. Критерии

Из книги Нарушения теплового баланса у новорожденных детей автора Иванов Дмитрий Олегович

4.1. Критерии В этом вопросе существует большое количество противоречий и единого мнения нет. Maayan-Metzger A. et al. (2003) считают, что гипертермией является повышение ректальной или аксиллярной температуры более 37,8 °C. Levine D. A. et al. (2004) указывают на температуру свыше 38,0 °C. К таким же

Критерии

Из книги Нарушения обмена глюкозы у новорожденных детей автора Иванов Дмитрий Олегович

Критерии Гипергликемией считают уровень глюкозы более 6,5 ммоль/л натощак и более 8,9 ммоль/л в любое

Критерии

Из книги Феникс. Терапевтические паттерны Милтона Эриксона автора Гордон Дэвид

Критерии Каждый из нас, явно и неявно, так или иначе задается вопросом: «Что заставляет людей вести себя так, как они себя ведут?» Одним из возможных ответов на этот вопрос является рассмотрение поведения как функции тех интерпретаций, которые человек использует по

Процесс образования скоплений нефти и газа в земной коре имеет многоступенчатые генетические связи и контролируется совокупностью комплекса факторов :

1) определенным режимом тектонических движений;

2) палеогеографическими и литолого-фациальными, в т.ч. геохимическими условиями накопления осадков;

3) геотермодинамическими условиями вмещающей геологической среды во времени и пространстве;

4) гидрогеологическими и палеогидродинамическими условиями района нахождения скоплений нефти и газа в течение отдельных отрезков времени геологической истории;

5) условиями, обеспечивающими сохранность образовавшихся скоплений нефти и газа

Приведенный комплекс факторов определяет основные показатели и критерии прогноза нефтегазоносности недр.

Тектонические показатели. Рассматривая критерии нефтегазоносности, особое внимание уделяется тектоническим условиям, так как они играют важную роль в совокупности факторов, создающих геологическую среду, которая способствует возникновению и развитию процессов формирования скоплений УВ, а также их пространственному размещению в земных недрах. При этом роль тектонического фактора как в современных, так и в палеоусловиях двойственна: с одной стороны тектонический режим создает структуру территории и контролирует размещение УВ в разрезе и по площади, с другой – интенсивность и направленность структуроформирующих движений прямо или опосредованно воздействует на обстановку и масштабы осадконакопления, степень изменения пород, тип и характер преобразования ОВ, области питания и разгрузки пластовых вод, изменение во времени геотермического градиента, региональные направления перетока флюидов и на другие процессы, сопровождающие или определяющие нефтегазоносность. Поэтому выявление роли тектоники в прогнозе региона на нефть и газ представляется наиболее целесообразным.

Вместе с тем из-за недостаточной и неравномерной изученности ОПБ для ряда показателей, в том числе и тектонических, пока не определены диапазоны значений, в пределах которых они играют позитивную, а за их пределами – негативную роль. Примером такой неопределенности может служить показатель «неотектонические движения». С одной стороны новейшие неоген-четвертичные (N-Q) движения способствуют увеличению контрастности структур, усиливает процессы миграции и формирования залежей УВ, с другой – приводят к нарушению сплошности пород и интенсивному развитию трещинно-разрывной сети, выводят перспективные горизонты в зону активного дренажа и в конечном счете вызывают переформирование залежей или их полную деструкцию. «Золотая середина» этого показателя не установлена, но и не учитывать вообще его нельзя, так как известно, что активный новейший тектогенез особенно негативно сказывается на условиях сохранности газовых месторождений, весьма чутко реагирующих на любую перестройку структурного плана.

Качество прогноза возрастает вследствии использования статистически выявленных закономерностей, обеспечивающих количественную оценку перспективно нефтегазоносных объектов. Статистическому анализу подвергаются эмпирически выделенные и теоретически обоснованные фактические данные о геологическом строении объектов подобных исследуемому. При этом достоверность и точность количественной оценки зависит как от числа участвующих в выборке объектов, так и от степени их адекватности. Учитывая, что в природе нет абсолютно тождественных объектов, возникает необходимость выделения параметров, которые независимо друг от друга описывают эти объекты в наиболее обобщенном виде. Принимая во внимание, что тектонике принадлежит ведущая роль в прогнозе нефтегазоносности, в качестве основных, самых важных и универсальных, выделены параметры – «тектонотип» и «масштаб объекта». В классификации НГБ, предложенной В.С.Лазаревым и Я.А.Драновским (ВНИГРИ, 1986), все структуры земной коры разделены на четыре основных тектонотипа: платформы, краевые системы, межгорные впадины и синклинории; в каждом их них выделены подтипы и определена градация тектонических объектов по размеру. При этом субглобальные – региональные тектонические объекты обеспечивают все стадии онтогенеза УВ в недрах, субрегиональные структуры в основном создают условия для миграции, аккумуляции и консервации, а локальные – обеспечивают преимущественно аккумуляцию и консервацию УВ .

Таким образом, разделение нефтегазогеологических объектов по тектонотипам и масштабам, учитывающим особенности их строения и условий онтогенеза УВ, является необходимым требованием в прогнозе.

На региональном уровне прогноза главную роль играют тектонические показатели, обеспечивающие весьма удовлетворительное качество прогноза. Региональный уровень прогнозирования предусматривает прогноз целостных ОПБ или крупных частей очень больших бассейнов. Целью такого прогноза является количественная оценка параметров нефтегазоносности (начальные потенциальные ресурсы – НПР), удельные запасы, плотность запасов), соотношения нефть-газ, этаж нефтегазоносности.

Для регионального прогноза используются критерии и показатели (преимущественно тектонические), значимость которых установлена на материалах промышленных НГБ платформенных и складчатых областей Мира Наиболее важными критериями по методике В.С.Лазарева и Я.А.Драновского (1980, 1986, 1987) являются:

  • тектонотип ;
  • масштаб объекта ;
  • форма бассейна;
  • контрастность бассейна;
  • генерационный потенциал.
  • «мористость» отложений;
  • скорость осадконакопления.

Методика регионального прогнозирования сводится к нескольким последовательным операциям:

1. К выборке исходной информации для критериев и показателей со структурных карт, карт мощностей, геофизических и геологических разрезов и т.д.

2. Оценке критериев и показателей по эмпирическим графикам и таблицам с использованием принципа наислабейшего звена.

3. Анализу истории развития ОПБ с акцентом на ключевые вопросы (история движений, изолированность бассейна, время накопления осадков мощностью свыше 2 км, время образования региональных уклонов свыше 5 м/км и др.).

4. Сравнению и синтезу результатов статистического и исторического анализа.

Форма бассейна и егоконтрастность . Форма бассейна определяет литолого-фациальный характер распределения пород в пространстве и зависит от тектонического режима. Она определяет также условия онтогенеза УВ. Геометрически форма бассейна описывается такими параметрами, как максимальная и средняя мощности осадочного выполнения, отношение максимальной мощности к средней и степень асимметрии. Мощность чехла является наиболее обобщенным показателем тектонического развития бассейна и обусловливает его генерационные возможности. Через соотношение максимальной и средней мощностей раскрывается характер распределения осадков в бассейне. Степень асимметрии определяется соотношением ширины крыльев бассейна. Асимметрия влияет на типы и масштабы миграции УВ. Складчатость непосредственно воздействует не только на формирование структуры, но и в значительной степени определяет ход онтогенеза УВ. Количественным выражением меры интенсивности ее в обобщенном виде является показатель «контрастность». Контрастность – это отношение амплитуды прогибания к ширине крыла структуры. Она характеризует региональные уклоны бортов бассейна и степень их складчатости, величины которых влияют на условия миграции, а иногда на аккумуляцию и консервацию УВ. Очевидно, что по мере увеличения региональных уклонов возрастает трещиноватость пород и, следовательно, проницаемость осадочного чехла, способствующая вертикальному перетоку флюидов и уменьшающая возможности их широкой латеральной миграции. Вместе с тем увеличение крутизны крыльев бассейна ведет к уменьшению емкостного пространства и размеров ловушек, а также сказывается на величине запасов УВ.

Практический аспект оценки формы бассейна и его контрастности сводится к использованию эмпирических кривых, выражающих зависимость между их параметрами и удельными запасами нефти и газа и суммы УВ.

Генерационные возможностии НГБ достаточно информативно раскрываются через показатель «генерационный потенциал» . Этот показатель дает представление о доле объема осадков, вступивших в зоны ГФН и ГФГ. Кроме того, он позволяет косвенно судить о полезной емкости и условиях сохранности залежей УВ. На платформах современному положению зоны ГФН отвечают примерно глубины 2-4, а зоне ГФГ – 4-8 км. Это подтверждается анализом размещения зон нефте- и газонакопления в зависимости от мощности чехла. Причем около половины зон газонакопления располагается в интервале от 4 до 6 км. Подавляющее большинство нефтеносных зон (88%) имеет среднюю мощность чехла от 2 до 4 км.

Наличие в разрезе НГБ региональной покрышки (или покрышек) определяется показателем «мористость» , влияющим также и на генерацию УВ. Мористость – это доля осадков морского генезиса от общего объема отложений бассейна. В краевых системах континентальные осадки, хотя и достигают большой мощности, характеризуются пестротой литологического состава и обычно отличаются отсутствием региональных покрышек, что способствует вертикальной миграции и рассеиванию УВ по всему разрезу. Морские отложения образуют разрез, в котором, как правило, присутствуют мощные регионально выдержанные непроницаемые толщи, обеспечивающие наилучшие условия для латеральной миграции флюидов и худшие – для вертикальной. При региональном прогнозе «мористость» может учитываться и как косвенное свидетельство преобладания того или иного вида миграции УВ.

Показатель «скорость осадконакопления» учитывается при раздельном прогнозе скоплений нефти и газа. На региональном уровне он наиболее удовлетворительно обеспечивает прогноз газообразных УВ. В мобильных областях крупные скопления газа преимущественно тяготеют к молодым горизонтам, характеризующимся скоростью накопления не менее 100 м/млн.лет, а также к толщам их перекрывающим.

На ранних этапах изучения ОБ региональный прогноз позволяет определить геологические ресурсы (запасы) и удельные концентрации ресурсов (запасы) УВ. В последующем, в период зонального прогнозирования, региональный количественный прогноз сохраняет свое важное значение, так как дает исходную контрольную цифру НПР, без которой невозможно количественное прогнозирование ЗНГН.

Выявление условий размещения промышленных запасов УВ в НГБ по зонам определяет суть назначения зонального прогноза. ЗНГН представляется как преимущественно аккумуляционный объект. ЗНГН является (по В.С.Лазареву, 1986) объемным телом. Задачи зонального прогнозирования – выявление запасов УВ по зонам, стратиграфическим и гипсометрическим интервалам разреза. Качественно-количественный прогноз предусматривает оценку относительного распределения богатства НГБ по ЗНГН, а количественный – абсолютной величины запасов по ЗНГН.

Таким образом, региональный прогноз может опираться на набор тектонических показателей, позволяющих дать количественную оценку масштаба нефтегазоносности бассейнов.

Другая процедура (и показатели) экспертной оценки положения и качества нефтегазоносных объектов платформенных областей и краевых систем рассматривает показатели регионального, зонального и локального уровней, которые объединены в четыре группы: тектонические, литологические, гидрогеологические и геохимические показатели. Для этих показателей даются градации (баллы) экспертной оценки от 3 (5) до 0 по степени убывания качества объекта по тому или иному конкретному показателю. Причем показатели по зональному и локальному уровням не повторяют, а лишь детализируют и дополняют показатели регионального уровня. Таким образом, экспертная оценка, например, локального объекта должна начинаться с регионального уровня и продолжаться через зональный. Процедура экспертной оценки нефтегазоносного объекта заключается в последовательном ранжировании объектов по баллам. В случае присвоения объекту балла 0, он исключается из дальнейшего рассмотрения как неперспективный (Б.М.Фролов, В.Н.Зинченко, В.Б.Арчегов, 1986-1988).

Следует отметить, что в указанной процедуре остаются неясными относительные веса показателей. Вне ее остаются также (но присутствуют в неявной форме) процессы формирования нефтегазоносных объектов, вещество их слагающее и морфология объектов, хотя в незначительной степени последняя учтена в структурных показателях. Вне процедуры оказываются представления о НГК, его подразделениях (что влияет на процедуру локализации объекта) и методы получения показателей.

В числе наиболее общих и универсальных показателей, так или иначе контролирующих стадии онтогенеза УВ, рассматриваются (В.Б.Арчегов, 1986-1988):

1). Позиция тектонического (нефтегазогеологического) объекта в региональной перспективно нефтегазоносной структуре территории. Взаимоотношения объекта и окружающих структурных форм, учет условий их развития, морфологии и строения позволяют наметить главные направления миграции флюидов и разграничить эти структурные объекты по способности к генерации или аккумуляции УВ.

2). Мощность осадочной толщи не только опосредованно отражает направленность и интенсивность тектонических движений, но и определяет генерационные возможности НГБ и контролирует размещение месторождений по фазовому состоянию УВ. Последнее обстоятельство исключительно важно при прогнозе нефтегазоносности. Анализ зон нефте- и газонакопления в зависимости от мощности осадочного чехла показывает, что зоны газонакопления встречаются в диапазоне мощностей от (до) 2 до 6 км и более. Причем около половины их располагается в интервале глубин от 4 до 6 км.

3). Соотношение структурных планов. Структурные планы формировались тектоническими движениями, характерными для определенных интервалов геологической истории, в течение которых могли создаться условия, благоприятные для образования скоплений УВ. Каждому структурному плану присущи свои морфология, размерность и ориентировка структурных форм. Учет соотношения этих планов необходим для пространственного прогнозирования районов образования и накопления нефти и газа, а также при выборе объектов нефегазопоисковых работ.

4). Контрастность структурных форм в обобщенном виде выражает интенсивность складчатых деформаций. Она характеризуется региональными уклонами крыльев структуры, величины которых влияют на условия увеличения региональных уклонов, возрастает трещиноватость и, следовательно, проницаемость осадочного чехла, способствующая вертикальному перетоку флюидов и уменьшающая возможности их широкой латеральной миграции. Анализ материалов по эпигерцинским плитам показал, что значительные градиенты уклонов особенно благоприятны для формирования крупных газовых скоплений, тогда как нефтяные залежи тяготеют к участкам с малыми градиентами уклонов. Участки с залеганием пород близким к горизонтальному вообще не содержат промышленных скоплений УВ .

5). Активность неотектонических движений оказывает порой значительное влияние на нефтегазоносность территории. Новейший тектогенез, с одной стороны, способствует формированию залежей УВ, но с другой стороны, может привести к переформированию залежей или их полную деструкцию. Особенно негативно сказывается роль активного новейшего тектогенеза на условия сохранности газовых месторождений, весьма чутко реагирующих вообще на любую перестройку структурного плана.

6). Трещино-разрывная сеть. Плотность и масштабы ее проявления, характеризуя проницаемость недр, учитываются при выяснении условий образования и сохранности залежей УВ. Кроме того, разрывные нарушения учитываются при оценке этажа нефтегазоносности. В этом случае принимается во внимание время образования и степень отражения разломов в осадочном чехле территории.

Рассмотренные методы и параметры прогноза нефтегазононости апробированы в разных областях Сибирской и Восточно-Европейской (Русской) древних платформ.

Палеогеографические показатели. Нефтегазообразование происходит в определенных палеогеографических условиях. Региональные НГК во всех НГП могут быть представлены литологическими разностями преимущественно терригенных и карбонатных пород, накопление которых происходило в различных фациальных условиях (морских, прибрежных, лагунных и, реже, даже континентальных). Однако для всех региональных НГК независимо от литологического состава и фациальных условий их образования характерна одна объединяющая (диагностическая) их особенность, а именно накопление в водной (субаквальной) среде с анаэробной геохимической обстановкой на фоне относительно устойчивого прогибания бассейна седиментации. Установлено, что в некоторых провинциях встречаются регионально газоносные комплексы, генетически связанные с угленосными отложениями континентального происхождения.

Некоторые генетические группы ЗНГН, связанные, например, с погребенными песчаными образованиями типа бар или дельт палеорек, формируются в прибрежных зонах палеоморей. Следовательно, для прогнозирования их необходимо изучение палеогеографических условий с выяснением очертаний береговых линий палеоморей, границ областей суши (областей сноса), гидрографической сети и других физико-географических условий для каждого изучаемого времени геологической истории.

Литолого-фациальные и геохимические показатели. Литолого-фациальными и геохимическими условиями контролируются прежде всего вещественный состав осадочных образований и геохимическая обстановка накопления и последующего преобразования захороняемого в осадке исходного ОВ (или РОВ) - формирование возможно нефтегазоматеринских комплексов отложений в различных частях бассейна седиментации. Поэтому для прогнозирования перспектив нефтегазоносности территории необходимо выявление в разрезе возможно нефтегазоматеринских и нефтегазопроизводящих свит (отложений).

По современным представлениям общими характерными (диагностическими) особенностями потенциально нефтегазоматеринских отложений являются :

1) накопление в субаквальной среде с анаэробной геохимической обстановкой;

2) повышенное содержание в них ОВ (не менее 0.5%) преимущественно сапропелевой или гумусово-сапропелевой природы;

3) определенная степень преврещения (метаморфизма) ОВ от позднебуроугольной до ранне-среднекаменноугольных стадий;

4) повышенное содержание в составе РОВ битумоидов и УВ –нефтяного ряда;

5) региональная приуроченность к комплексу отложений битумопроявлений.

Литолого-фациальными условиями накопления осадков контролируется также формирование состава и коллекторских свойств пород, участвующих в строении природного резервуара, изменения их в разрезе и пространстве, а также распространение в разрезе и пространстве газонефтенепроницаемых пород-покрышек. Указанные факторы в совокупности с тектоническими и другими показателями предопределяют условия миграции и аккумуляции нефти и газа в природном резервуаре, а также формирование регионально выдержанных нефтегазоносносных этажей.

Литолого-фациальные условия накопления осадков, бывает, обусловливают формирование некоторых генетических типов ЗНГН, приуроченных к зонам регионального выклинивания коллекторов или замещения проницаемых пород непроницаемыми по восстанию пластов. //Реально это карты изменения коллекторских свойств, свойств покрышек, их мощностей, глинистости, песчанистости, зон трещиноватости и т.п./

Гидрогеологические и палеогидрогеологические показатели. Изучение закономерностей формирования и сохранности скоплений нефти и газа невозможно без детального изучения динамики и химизма пластовых и трещинных вод не только в современных геологических условиях, но и в палеогеологическом плане.

В.П.Батурин «…для того чтобы давать сейчас прогнозы нефте(газо)носности, мало знать палеогеографию бассейна, тектонику и свойства коллекторов, надо научиться также разгадывать движение подземных водных масс в геологическом прошлом» – т.е. создать историческую гидрогеологию .

Находящиеся в породах воды по своему генезису могут быть:

- эндогенными – образовавшимися непосредственно в горных породах за счет химических реакций;

- экзогенными , попавшими в породы при их формировании в процессе седиментации (седиментационные воды) или с поверхности, в результате фильтрации (инфильтрационные воды).

Роль этих вод существенно различна!

Главное значение при первичной миграции УВ из нефтегазопроизводящих отложений в породы-коллекторы и формировании залежей имеют седиментационные воды; инфильтрационные воды – обусловливают переформирование залежей и часто их разрушение . Природные процессы … протекают весьма сложно и неоднородно!

С течением времени одни процессы накладываются на другие, воды одного генезиса сменяются водами другого происхождения. В природе происходит непрерывный водообмен, характер и интенсивность которого определяются режимом и направленностью тектогенеза в пределах ОПБ и окружающих их областей сноса.

При погружении осадочные породы испытывают давление вышележащих пород, приводящее к уменьшению их объема и выжиманию седиментационных вод, которые мигрируют из плохо проницаемых пород (глины) в хорошо проницаемые (песчаники) и затем из области больших давлений перемещаются в зоны меньших давлений.

Указанный процесс Н.Б.Вассоевич (1970) назвал элизионным (греч сл. «элизио» - выжимаю). В результате элизионного процесса в недрах происходит движение огромных (огромнейших!) масс воды. Процесс проникновения в горные породы поверхностных инфильтрационных вод называются инфильтрационным водообменном.

Стадии (циклы) литогенеза, нефтегазообразования, нефтегазонакопления … и формирования подземных вод генетически связаны друг с другом и обусловливаются одним общим процессом – режимом и направленностью тектонических движений .

Первая часть гидрогеологического цикла (А.А.Карцев, 1969) начинается погружением территории, трансгрессией моря и накоплением осадков и заканчивается воздыманием, регрессией и денудацией водоносных пород в какой-либо части региона.

В элизионный этап происходят формирование седиментационных вод и элизионнный водообмен. При денудации водоносных комплексов происходит инфильтрация поверхностных вод, которая знаменует собой начало второго - инфильтрационного этапа гидрогеологического цикла, при котором начинается инфильтрационный водообмен и формируются инфильтрационные воды, постепенно или частично вытесняющие седиментационные воды. Инфильтрационный этап продолжается в течении всего периода, при котором водоносные горизонты выходят на поверхность, и заканчивается в начале регионального погружения, когда эти водоносные горизонты перекрываются более молодыми отложениями.

В процессе геологического развития гидрогеологические циклы и составляющие его этапы могут неоднократно повторяться, причем в одних регионах по времени может преобладать один этап, в других – другой и т.д. В зависимости от того, какой этап гидрогеологического цикла испытывает в данный момент определенный водоносный комплекс, который относят или к элизионной … или инфильтрационной природной водонапорной системе.

I Напор вод создается за счет выжимания вод из уплотняющихся осадков вследствие геостатического давления.

II Напор вод происходит в результате превышения гидростатической нагрузки, создаваемой при фильтрации поверхностных вод в водоносные комплексы, над пластовым (геостатическим или геодинамическим) в более погруженных его частях.

При инфильтрации поверхностные воды выбирают наиболее легкие пути, перемещаясь по проницаемым участкам породы и обходя менее проницаемые, т.е. на инфильтрационном этапе содержащиеся в водоносных комплексах седиментационные воды полностью не вытесняются инфильтрационными водами и их значительный объем остается в породах.

Начальная (первичная) миграция УВ из нефтегазопродуцирующих толщ в коллекторы связана с элизионным этапом палеогидрогеологической истории.

Последующая миграция флюидов в природном резервуаре также в значительной мере контролируется палеогидродинамическими условиями.

В инфильтрационные этапы палеогидрогеологической истории, наступающие в фазы развития движений воздымания, развивается инфильтрационный водообмен, в связи с чем происходит разрушение или перераспределение ранее сформировавшихся скоплений нефти и газа.

В зависимости от режима тектонических движений одни бассейны осадконакопления в течение длительного геологического времени (веков, эпох) могут оставаться в условиях непрерывного развития элизионного гидрогеологического этапа, а другие – находиться в обстановке неоднократного чередования элизионного и инфильтрационного этапов.

Указанными особенностями палеогидрогеологической истории могут отличаться отдельные области и районы одного и того же бассейна седиментации.

Территории, где элизионный этап гидрогеологической истории был геологически сравнительно длительным, будут отличаться более благоприятными палеогидрогеологическими условиями для регионального нефтегазообразования и нефтегазонакопления по сравнению с территориями, испытавшими развитие преимущественно инфильтрационных этапов или частое чередование элизионного и инфильтрационного этапов. Поэтому для прогнозирования распределения регионально нефтегазоносных территорий и зон нефтегазонакопления необходимо выяснение указанных особенностей палеогидрогеологической истории каждой исследуемой территории .

К основным гидрогеологическим показателям оценки региональной нефтегазоносности недр относятся :

1) условия распространения в разрезе и пространстве зон и областей затрудненного и интенсивного водообмена и гидрогеологически застойного режима;

2) степень промытости инфильтрационными водами отложений отдельных структурных этажей в пространстве и в геологическом времени. Гидрогеологическая закрытость каждого оцениваемого структурного этажа – важнейший фактор для положительной оценки перспектив нефтегазоносности недр. Степень промытости отложений одного и того же структурного этажа в пределах одной и той же водонапорной системы – от области питания до области разгрузки – может быть весьма различной.

В комплексе гидрогеологических исследований имеет значение изучение:

* состава природного газа;

* упругости (давления насыщения) растворенного газа;

* количества растворенного газа в пластовых водах.

Основным показателем существования нефтяных и газовых залежей является наличие УВ-газов и в первую очередь ТУВ. Присутствие в УВ–газах СО 2 , Н 2 S и N свидетельствуют о происходящих процессах разрушения нефтяных и газовых залежей. Присутствие кислорода, являясь отрицательным показателем нефтегазоносности, указывает на поверхностный состав вод.

При оценке газоносности района основную роль играет величина упругости растворенных газов. При положительной оценке перспектив нефтегазоносности по упругости растворенных газов обычно исходят из превышения давления насыщения растворенных газов над гидростатическим давлением пластовых вод. Только при этом условии, по законам фазового равновесия, может происходить выделение газа из воды в свободную фазу и формирование скоплений нефти и газа. При установлении превышения упругости растворенного газа над статическим давлением подземных вод в определенных горизонтах и при наличии благоприятных структурных форм район исследований считается перспективным в газоносном отношении (Гатальский, 1986).

Гидрогеохимические показатели. К числу гидрогеохимических косвенных показателей нефтегазоносности недр относятся :

  • высокая газонасыщенность подземных вод УВ газами и повышенная упругость давления насыщения водорастворенных газов;
  • содержание в подземных водах растворенных ТУВ нефтяного ряда;
  • специфические особенности химического состава высокоминерализованных подземных вод пониженной сульфатности, характерные для нефтегазоносных территорий;
  • сравнительно повышенное содержание в подземных водах микроэлементов (йод, бром, аммоний и др.) и некоторых органических соединений (нафтеновые кислоты, фенолы и др.).

Геотермические показатели. Глубины начала активизации процессов образования УВ нефтяного ряда из захороняемого в осадке ОВ и первичной миграции из нефтегазопродуцирующих толщ в коллекторы при прочих равных условиях в значительной мере контролировались палеогеотермическими параметрами ОПБ в течение каждого рассматриваемого отрезка времени геологической истории. В различных частях даже единого ОПБ, которые характеризовались разными показателями интенсивности теплового потока и палеогеотермического градиента, процессы нефтегазообразования и первичной миграции нефтяных УВ в коллекторы протекали на различных глубинах. В бассейнах седиментации со слабым тепловым потоком палеогеологические условия были сравнительно менее благоприятными для развития нефтеобразования и начальной (первичной) миграции нефтяных УВ из продуцирующих отложений в коллекторы. Во многих НГО геотермические условия являются одним из решающих факторов формирования вертикальной (глубинной) и площадной регионально геоструктурных зональностей размещения скоплений УВ, а также изменений их физических свойств в пространстве и разрезе .

Основные задачи – изучение условий формирования и закономерностей размещения месторождений нефти и газа, определение наиболее информативных геолого-геохимических показателей, контролирующих состав, крупность и пространственное распределение скоплений углеводородов на платформах .

Основной практической целью научных исследований в области нефтегазовой геологии является оценка нефтегазоносности территорий, определение особенностей размещения запасов и ресурсов нефти и газа, выделение первоочередных объектов (провинций, областей, районов, зон, структурных форм и т.д.) для постановки на них детальных работ, обнаружение наиболее экономически рентабельных месторождений УВ. Оценка нефтегазоносности земных недр требует последовательного решения двух крупных задач: определения критериев нефтегазоносности и набора показателей, отражающих геологические условия местонахождения УВ-скоплений и определения комплекса методов по обработке фактических данных для оценки нефтегазоносности природных объектов.

Процесс нефтегазообразования и нефтегазонакопления идет однонаправлено и регулируется повсюду едиными законами, но в зависимости от особенностей геологического строения и развития территорий он может в каждом конкретном случае иметь разную форму проявления и количественное выражение. Всю совокупность показателей, характеризующих условия протекания процесса, можно разбить на четыре укрупненные группы в соответствии с его естественными этапами: показатели, определяющие генерацию нефти и газа, миграцию УВ от зон генерации до участков образования первичных залежей, аккумуляцию нефти и газа в ловушках и эволюцию залежей, включая их переформирование, разрушение, изменение состава и прочее. Принципиальная схема формирования (расформирования) залежей нефти и газа показана на рисунке 1. В качестве моделей формирования залежей (месторождений) нефти и газа избраны наиболее распространенные модели, базирующиеся на положениях осадочно-миграционной теории происхождения нефти .

Показатели нефтегазоносности сгруппированы по этапам процесса формирования месторождений: миграция, аккумуляция, эволюция. Учитывая особую практическую важность показателей эволюции, характеризующих условия сохранности, выделена специальная группа, названная «сохранность» .

Нефтегазоносность характеризуют:

· крупность месторождения по запасам УВ, крупность скоплений УВ в пределах комплекса на месторождении;

· тип месторождений по фазовому составу, фазовый состав скоплений УВ в отдельных комплексах, фазовый состав залежей;

· положение верхней залежи в разрезе (этаж нефтегазоносности на месторождении);

· наличие залежей УВ или нефтегазопроявлений выше 2 –ого комплекса на структуре, наличие залежей нефти и газа в отдельных комплексах;

· завершенность цикла перераспределения УВ внутри отдельных комплексов.

Миграцию УВ характеризуют:

· проводимость комплексов на пути от зоны максимального погружения до структуры (в пределах секторов);

· положение ловушки относительно главных путей струйной миграции;

· положение структуры относительно зоны проявления ГФН в первом комплексе;

· наличие систематических нефтегазопроявлений на пути от зоны проявления ГФН в соответствующих комплексах до структуры.

Аккумуляцию характеризуют:

· морфологический тип структур первого порядка по комплексам – моноклиналь, седловина, свод;

· морфологический тип положительных структур второго порядка по комплексам - структурный нос, вал, отсутствие структур 11 порядка;

· структурный контроль ловушек – приуроченность к структурам высших порядков (региональная моноклиналь, структуры 1 порядка – свод, седловина, впадина и т.п., структуры 11 порядка – вал, структурный нос и т.п, локальные поднятия);

· время образования положительных структур первого и второго порядков;

· время образования ловушек и локальных структур замкнутого контура;

· основные типы коллекторов в проницаемой части комплексов терригенные, карбонатные, терригенно-карбонатные, карбонатно-терригенные;

· распределение коллекторов в проницаемой части комплексов (равномерное, преимущественно в верхней, в нижней, средней частях);

· литологический состав продуктивных пластов под региональными покрышками и в горизонтах с максимальными запасами (песчаники, алевролиты, карбонаты);

· выдержанность проницаемых пластов в продуктивных горизонтах на месторождениях.

Сохранность залежей УВ характеризуют:

· литологический состав покрышек (глинистые, карбонатные, эвапоритовые, прослои песчаников, прослои алевролитов, прослои углей;

· распределение проницаемых прослоев в покрышках (равномерное, преимущественно в средней, верхней и нижней частях);

· тип покрышки над залежью с максимальными запасами в комплексе (локальная, региональная – полная, неполная);

· наличие нарушений на локальной структуре;

· положение нарушений на локальной структуре;

· вид нарушений на локальной структуре;

· наличие нефтегазопроявлений в покрышках;

· выходы нефти и газа на поверхность в районе месторождения.

Эволюцию характеризуют:

· типы локальных структур (седиментационные, седиментационно-тектонические, тектонические);

· типы локальных структур тектонического происхождения (унаследованные, комбинированные, новообразованные).

Полученные корреляционные связи подразделены на:

1) вызванные прямым воздействием геологических показателей на параметры нефтегазоносности, то есть генетически обусловленные;

2) вызванные косвенным (опосредованным) воздействием геологических показателей на параметры нефтегазоносности, то есть прямо не обусловленные генетическими причинами;

3) случайные, то есть полностью лишенные генетической обусловленности;

4) вызванные прямым воздействием геологических показателей на параметры нефтегазоносности, но противоречащие оцениваемой модели формирования месторождения.

Суть анализа состоит в проверке соответствия выявленных корреляционных связей принципиальным положениям, лежащим в основе моделей формирования месторождений. Для этого потребовалось определение главных положений, отражающих важнейшие этапы формирования (место и время образования нефти и газа, масштабы и форма латеральной миграции, условия аккумуляции и вертикального перераспределения УВ по разрезу и др.)

Таковы основы методического подхода к изучению условий формирования месторождений нефти и газа .

Процесс образования скоплений нефти и газа в земной коре имеет многоступенчатые генетические связи и контролируется совокупностью комплекса факторов :

1) определенным режимом тектонических движений;

2) палеогеографическими и литолого-фациальными, в т.ч. геохимическими условиями накопления осадков;

3) геотермодинамическими условиями вмещающей геологической среды во времени и пространстве;

4) гидрогеологическими и палеогидродинамическими условиями района нахождения скоплений нефти и газа в течение отдельных отрезков времени геологической истории;

5) условиями, обеспечивающими сохранность образовавшихся скоплений нефти и газа

Приведенный комплекс факторов определяет основные показатели и критерии прогноза нефтегазоносности недр.

Тектонические показатели

Рассматривая критерии нефтегазоносности, особое внимание уделяется тектоническим условиям, так как они играют важную роль в совокупности факторов, создающих геологическую среду, которая способствует возникновению и развитию процессов формирования скоплений УВ, а также их пространственному размещению в земных недрах. При этом роль тектонического фактора как в современных, так и в палеоусловиях двойственна: с одной стороны тектонический режим создает структуру территории и контролирует размещение УВ в разрезе и по площади, с другой – интенсивность и направленность структуроформирующих движений прямо или опосредованно воздействует на обстановку и масштабы осадконакопления, степень изменения пород, тип и характер преобразования ОВ, области питания и разгрузки пластовых вод, изменение во времени геотермического градиента, региональные направления перетока флюидов и на другие процессы, сопровождающие или определяющие нефтегазоносность. Поэтому выявление роли тектоники в прогнозе региона на нефть и газ представляется наиболее целесообразным.

Вместе с тем из-за недостаточной и неравномерной изученности ОПБ для ряда показателей, в том числе и тектонических, пока не определены диапазоны значений, в пределах которых они играют позитивную, а за их пределами – негативную роль. Примером такой неопределенности может служить показатель «неотектонические движения». С одной стороны новейшие неоген-четвертичные (N-Q) движения способствуют увеличению контрастности структур, усиливает процессы миграции и формирования залежей УВ, с другой – приводят к нарушению сплошности пород и интенсивному развитию трещинно-разрывной сети, выводят перспективные горизонты в зону активного дренажа и в конечном счете вызывают переформирование залежей или их полную деструкцию. «Золотая середина» этого показателя не установлена, но и не учитывать вообще его нельзя, так как известно, что активный новейший тектогенез особенно негативно сказывается на условиях сохранности газовых месторождений, весьма чутко реагирующих на любую перестройку структурного плана.

Качество прогноза возрастает вследствии использования статистически выявленных закономерностей, обеспечивающих количественную оценку перспективно нефтегазоносных объектов. Статистическому анализу подвергаются эмпирически выделенные и теоретически обоснованные фактические данные о геологическом строении объектов подобных исследуемому. При этом достоверность и точность количественной оценки зависит как от числа участвующих в выборке объектов, так и от степени их адекватности. Учитывая, что в природе нет абсолютно тождественных объектов, возникает необходимость выделения параметров, которые независимо друг от друга описывают эти объекты в наиболее обобщенном виде. Принимая во внимание, что тектонике принадлежит ведущая роль в прогнозе нефтегазоносности, в качестве основных, самых важных и универсальных, выделены параметры – «тектонотип» и «масштаб объекта». В классификации НГБ, предложенной В.С.Лазаревым и Я.А.Драновским (ВНИГРИ, 1986), все структуры земной коры разделены на четыре основных тектонотипа: платформы, краевые системы, межгорные впадины и синклинории; в каждом их них выделены подтипы и определена градация тектонических объектов по размеру. При этом субглобальные – региональные тектонические объекты обеспечивают все стадии онтогенеза УВ в недрах, субрегиональные структуры в основном создают условия для миграции, аккумуляции и консервации, а локальные – обеспечивают преимущественно аккумуляцию и консервацию УВ .

Таким образом, разделение нефтегазогеологических объектов по тектонотипам и масштабам, учитывающим особенности их строения и условий онтогенеза УВ, является необходимым требованием в прогнозе.

На региональном уровне прогноза главную роль играют тектонические показатели, обеспечивающие весьма удовлетворительное качество прогноза. Региональный уровень прогнозирования предусматривает прогноз целостных ОПБ или крупных частей очень больших бассейнов. Целью такого прогноза является количественная оценка параметров нефтегазоносности (начальные потенциальные ресурсы – НПР), удельные запасы, плотность запасов), соотношения нефть-газ, этаж нефтегазоносности.

Для регионального прогноза используются критерии и показатели (преимущественно тектонические), значимость которых установлена на материалах промышленных НГБ платформенных и складчатых областей Мира Наиболее важными критериями по методике В.С.Лазарева и Я.А.Драновского (1980, 1986, 1987) являются:

  • тектонотип;
  • масштаб объекта;
  • форма бассейна;
  • контрастность бассейна;
  • генерационный потенциал.
  • «мористость» отложений;
  • скорость осадконакопления.

Методика регионального прогнозирования сводится к нескольким последовательным операциям:

1. К выборке исходной информации для критериев и показателей со структурных карт, карт мощностей, геофизических и геологических разрезов и т.д.

2. Оценке критериев и показателей по эмпирическим графикам и таблицам с использованием принципа наислабейшего звена.

3. Анализу истории развития ОПБ с акцентом на ключевые вопросы (история движений, изолированность бассейна, время накопления осадков мощностью свыше 2 км, время образования региональных уклонов свыше 5 м/км и др.).

4. Сравнению и синтезу результатов статистического и исторического анализа.

Форма бассейна и егоконтрастность. Форма бассейна определяет литолого-фациальный характер распределения пород в пространстве и зависит от тектонического режима. Она определяет также условия онтогенеза УВ. Геометрически форма бассейна описывается такими параметрами, как максимальная и средняя мощности осадочного выполнения, отношение максимальной мощности к средней и степень асимметрии. Мощность чехла является наиболее обобщенным показателем тектонического развития бассейна и обусловливает его генерационные возможности. Через соотношение максимальной и средней мощностей раскрывается характер распределения осадков в бассейне. Степень асимметрии определяется соотношением ширины крыльев бассейна. Асимметрия влияет на типы и масштабы миграции УВ. Складчатость непосредственно воздействует не только на формирование структуры, но и в значительной степени определяет ход онтогенеза УВ. Количественным выражением меры интенсивности ее в обобщенном виде является показатель «контрастность». Контрастность – это отношение амплитуды прогибания к ширине крыла структуры. Она характеризует региональные уклоны бортов бассейна и степень их складчатости, величины которых влияют на условия миграции, а иногда на аккумуляцию и консервацию УВ. Очевидно, что по мере увеличения региональных уклонов возрастает трещиноватость пород и, следовательно, проницаемость осадочного чехла, способствующая вертикальному перетоку флюидов и уменьшающая возможности их широкой латеральной миграции. Вместе с тем увеличение крутизны крыльев бассейна ведет к уменьшению емкостного пространства и размеров ловушек, а также сказывается на величине запасов УВ.

Практический аспект оценки формы бассейна и его контрастности сводится к использованию эмпирических кривых, выражающих зависимость между их параметрами и удельными запасами нефти и газа и суммы УВ.

Генерационные возможностии НГБ достаточно информативно раскрываются через показатель « генерационный потенциал » . Этот показатель дает представление о доле объема осадков, вступивших в зоны ГФН и ГФГ. Кроме того, он позволяет косвенно судить о полезной емкости и условиях сохранности залежей УВ. На платформах современному положению зоны ГФН отвечают примерно глубины 2-4, а зоне ГФГ – 4-8 км. Это подтверждается анализом размещения зон нефте- и газонакопления в зависимости от мощности чехла. Причем около половины зон газонакопления располагается в интервале от 4 до 6 км. Подавляющее большинство нефтеносных зон (88%) имеет среднюю мощность чехла от 2 до 4 км.

Наличие в разрезе НГБ региональной покрышки (или покрышек) определяется показателем « мористость » , влияющим также и на генерацию УВ. Мористость – это доля осадков морского генезиса от общего объема отложений бассейна. В краевых системах континентальные осадки, хотя и достигают большой мощности, характеризуются пестротой литологического состава и обычно отличаются отсутствием региональных покрышек, что способствует вертикальной миграции и рассеиванию УВ по всему разрезу. Морские отложения образуют разрез, в котором, как правило, присутствуют мощные регионально выдержанные непроницаемые толщи, обеспечивающие наилучшие условия для латеральной миграции флюидов и худшие – для вертикальной. При региональном прогнозе «мористость» может учитываться и как косвенное свидетельство преобладания того или иного вида миграции УВ.

Показатель « скорость осадконакопления » учитывается при раздельном прогнозе скоплений нефти и газа. На региональном уровне он наиболее удовлетворительно обеспечивает прогноз газообразных УВ. В мобильных областях крупные скопления газа преимущественно тяготеют к молодым горизонтам, характеризующимся скоростью накопления не менее 100 м/млн.лет, а также к толщам их перекрывающим.

На ранних этапах изучения ОБ региональный прогноз позволяет определить геологические ресурсы (запасы) и удельные концентрации ресурсов (запасы) УВ. В последующем, в период зонального прогнозирования, региональный количественный прогноз сохраняет свое важное значение, так как дает исходную контрольную цифру НПР, без которой невозможно количественное прогнозирование ЗНГН.

Выявление условий размещения промышленных запасов УВ в НГБ по зонам определяет суть назначения зонального прогноза. ЗНГН представляется как преимущественно аккумуляционный объект. ЗНГН является (по В.С.Лазареву, 1986) объемным телом. Задачи зонального прогнозирования – выявление запасов УВ по зонам, стратиграфическим и гипсометрическим интервалам разреза. Качественно-количественный прогноз предусматривает оценку относительного распределения богатства НГБ по ЗНГН, а количественный – абсолютной величины запасов по ЗНГН.

Региональный прогноз может опираться на набор тектонических показателей, позволяющих дать количественную оценку масштаба нефтегазоносности бассейнов.

Другая процедура (и показатели) экспертной оценки положения и качества нефтегазоносных объектов платформенных областей и краевых систем рассматривает показатели регионального, зонального и локального уровней, которые объединены в четыре группы: тектонические, литологические, гидрогеологические и геохимические показатели. Для этих показателей даются градации (баллы) экспертной оценки от 3 (5) до 0 по степени убывания качества объекта по тому или иному конкретному показателю. Причем показатели по зональному и локальному уровням не повторяют, а лишь детализируют и дополняют показатели регионального уровня. Таким образом, экспертная оценка, например, локального объекта должна начинаться с регионального уровня и продолжаться через зональный. Процедура экспертной оценки нефтегазоносного объекта заключается в последовательном ранжировании объектов по баллам. В случае присвоения объекту балла 0, он исключается из дальнейшего рассмотрения как неперспективный (Б.М.Фролов, В.Н.Зинченко, В.Б.Арчегов, 1986-1988).

Следует отметить, что в указанной процедуре остаются неясными относительные веса показателей. Вне ее остаются также (но присутствуют в неявной форме) процессы формирования нефтегазоносных объектов, вещество их слагающее и морфология объектов, хотя в незначительной степени последняя учтена в структурных показателях. Вне процедуры оказываются представления о НГК, его подразделениях (что влияет на процедуру локализации объекта) и методы получения показателей.

В числе наиболее общих и универсальных показателей, так или иначе контролирующих стадии онтогенеза УВ, рассматриваются (В.Б.Арчегов, 1986-1988):

1). Позиция тектонического (нефтегазогеологического) объекта в региональной перспективно нефтегазоносной структуре территории. Взаимоотношения объекта и окружающих структурных форм, учет условий их развития, морфологии и строения позволяют наметить главные направления миграции флюидов и разграничить эти структурные объекты по способности к генерации или аккумуляции УВ.

2). Мощность осадочной толщи не только опосредованно отражает направленность и интенсивность тектонических движений, но и определяет генерационные возможности НГБ и контролирует размещение месторождений по фазовому состоянию УВ. Последнее обстоятельство исключительно важно при прогнозе нефтегазоносности. Анализ зон нефте- и газонакопления в зависимости от мощности осадочного чехла показывает, что зоны газонакопления встречаются в диапазоне мощностей от (до) 2 до 6 км и более. Причем около половины их располагается в интервале глубин от 4 до 6 км.

3). Соотношение структурных планов. Структурные планы формировались тектоническими движениями, характерными для определенных интервалов геологической истории, в течение которых могли создаться условия, благоприятные для образования скоплений УВ. Каждому структурному плану присущи свои морфология, размерность и ориентировка структурных форм. Учет соотношения этих планов необходим для пространственного прогнозирования районов образования и накопления нефти и газа, а также при выборе объектов нефегазопоисковых работ.

4). Контрастность структурных форм в обобщенном виде выражает интенсивность складчатых деформаций. Она характеризуется региональными уклонами крыльев структуры, величины которых влияют на условия увеличения региональных уклонов, возрастает трещиноватость и, следовательно, проницаемость осадочного чехла, способствующая вертикальному перетоку флюидов и уменьшающая возможности их широкой латеральной миграции. Анализ материалов по эпигерцинским плитам показал, что значительные градиенты уклонов особенно благоприятны для формирования крупных газовых скоплений, тогда как нефтяные залежи тяготеют к участкам с малыми градиентами уклонов. Участки с залеганием пород близким к горизонтальному вообще не содержат промышленных скоплений УВ .

5). Активность неотектонических движений оказывает порой значительное влияние на нефтегазоносность территории. Новейший тектогенез, с одной стороны, способствует формированию залежей УВ, но с другой стороны, может привести к переформированию залежей или их полную деструкцию. Особенно негативно сказывается роль активного новейшего тектогенеза на условия сохранности газовых месторождений, весьма чутко реагирующих вообще на любую перестройку структурного плана.

6). Трещино-разрывная сеть. Плотность и масштабы ее проявления, характеризуя проницаемость недр, учитываются при выяснении условий образования и сохранности залежей УВ. Кроме того, разрывные нарушения учитываются при оценке этажа нефтегазоносности. В этом случае принимается во внимание время образования и степень отражения разломов в осадочном чехле территории.

Рассмотренные методы и параметры прогноза нефтегазононости апробированы в разных областях Сибирской и Восточно-Европейской (Русской) древних платформ.

Лекции. Часть I (6 семестр)

Системный анализ в прогнозировании нефтегазоносности недр

Методологические основы системного анализа при прогнозировании нефтегазоносности недр

А.А.Бакиров выделил в процессе нефтегазообразования и нефтегазонакопления, протекающем в литосфере, шесть стадий: 1) накопления ОВ; 2) генерации УВ; 3) миграции УВ; 4) аккумуляции УВ; 5) консервации скоплений УВ; 6) разрушения или перераспределения УВ.

Каждая из перечисленных стадий протекает в определенных условиях окружающей среды и при воздействии внешних и внутренних источников энергии, тесно взаимосвязанных и взаимообусловленных.

Система нефтегазоносных формаций

К числу основных системообразующих элементов нефтегазовой геологической мегасистемы относятся нефтегазоносные формации.

Сравнительный анализ геологических условий размещения регионально нефтегазоносных территорий и зон нефтегазонакопления на всех континентах нашей планеты показывает, что формирование и пространственное распределение их в разрезе литосферы теснейшим образом связано, с одной стороны, с тектогенезом, причем лишь с определенной направленностью и режимом региональных колебательных движений, а с другой стороны, литогенезом, причем лишь с определенными формациями и фациальными условиями их образования и распространения.

По Н.М.Страхов, тектогенез и литогенез в истории земной коры – две стороны единого историко-геологического процесса.

Общепризнанного определения понятия нефтегазоносной формации не имеется. А.А.Бакировым было рекомендовано к нефтегазоносным формациям (НГФ) относить естественноисторическую ассоциацию горных пород, генетически связанных между собой во времени (геологическом) и пространстве палеотектоническими и фациальными (физико-географическими и геохимическими) условиями образования, благоприятными для возникновения и развития процессов нефтегазообразования и нефтегазонакопления.

Латерально НГФ могут распространяться на сотни, а иногда тысячи километров, охватывая нередко территории нескольких крупных геоструктурных элементов. Мощность их в разрезе литосферы колеблется от сотен до тысяч метров.

НГФ может охватывать одно или несколько крупных литолого-стратиграфических подразделений. НГФ, близкие по вещественному составу, палеогеографическим и палеотектоническим условиям образования, могут быть объединены в вертикальные и латеральные ряды .

Преимущественно они могут быть сложены из одной литологической разности пород или же представлять собой толщу чередующихся пород различного литологического состава.

Основные типы нефтегазоносных формаций

По тектоническому режиму нефтегазоносные формации подразделяются на три группы: НГФ платформенных, геосинклинальных и переходных территорий.

В составе каждой группы выделяются субформации в зависимости от приуроченности к различным тектоническим элементам первого порядка, от палеогеографических условий их накопления, преобладающего литологического состава и тектонического режима крупного структурного элемента, где развита данная нефтегазоносная формация, а также от характера содержащихся в них УВ – преимущественно в жидком или газообразном фазовом состоянии. Например , на платформах выделяются субформации областей синеклиз, характеризующиеся устойчивым прогибанием в течение рассматриваемого отрезка времени геологической истории, полнотой разреза и относительно большой их мощностью; субформации областей региональных поднятий (мегавалов, антеклиз), характеризовавшиеся в течение геологической истории неоднократным чередованием нисходящих и восходящих форм движений, относительным сокращением мощности разреза по сравнению с прилегающими впадинами и т. д.

Типы НГФ подразделяются в зависимости от палеогеографических условий образования и литологии пластов. По палеогеографическим условиям образования выделяются морские, прибрежно-морские, прибрежные, лагунные, континентальные и смешанные нефтегазоносные формации; по литологическому составу – преимущественно терригенные или карбонатные, карбонатно-терригенные, рифогенные, карбонатно-сульфатные, карбонатно-галогенные, терригенно-угленосные, терригенные сероцветные, молассовые, флишевые нефтегазоносные формации, глинистые (типа баженовской и майкопской свит).

Нефтегазоносные формации могут быть сложены преимущественно одной литологической разностью пород, например карбонатными или глинистыми породами, или же толщей чередующихся пород различного литологического состава, например терригенных и карбонатных.

Система геоструктурных, литологических и стратиграфических объектов, контролирующих нефтегазонакопление в литосфере

Геотектоническое районирование. Принципы выделения и классификация геоструктурных элементов

Нефтегазогеологическое районирование должно основываться прежде всего на геотектоническом районировании исследуемых территорий с выделением различных по геологическому строению и особенностям геологической истории геоструктурных элементов разного ранга.

Условия нефтегазонакопления в отложениях отдельных геоструктурных этажей в пределах крупных геотектонических элементов, расположенных даже в одной и той же геологической провинции, могут быть неодинаковы. Следовательно, для правильного, т.е. научно обоснованного, прогнозирования перспектив нефтегазоносности отдельных крупных элементов необходимо знать не только современные черты его строения, но и все особенности его формирования в течение отдельных отрезков времени геологической истории.

Нефтегазоносные области приурочены лишь к определенным генетическим типам геоструктурных элементов и связанных с ними формаций. При этом в формировании нефтегазоносных областей первостепенная роль принадлежит режиму геотектонического развития указанных крупных геоструктурных элементов.

Таким образом, выделение крупных геоструктурных элементов при геотектоническом районировании для целей прогнозирования нефтегазоносности недр должно производиться по генетическому принципу с учетом особенностей геотектонического режима формирования и развития каждого из выделяемых типов в течение отдельных этапов геологической истории, т.е. на палеотектонической основе.

Рассмотрим на платформенных, складчатых и переходных территориях наиболее крупные геоструктурные элементы, которые выделяются с целью нефтегеологического районирования.

Платформенные территории

Для данных территорий характерны следующие наиболее крупные геоструктурные элементы.

Щиты – обширные области поднятий крупных массивов складчатого фундамента в пределах платформ, характеризующиеся относительной устойчивостью с тенденцией к развитию преимущественно восходящих вертикальных колебательных движений в течение нескольких геологических периодов и вследствие этого отсутствием коренных осадочных образований платформенного покрова на большей части их поверхности. Типичные примеры щитов: Балтийский, Украинский.

Плиты – обширные области платформ, в пределах которых складчатый фундамент погружен на различные глубины и перекрыт нормальными осадочными образованиями платформенного покрова, характеризующиеся тенденцией к развитию преимущественно нисходящих движений в течение нескольких геологических периодов. Примеры плит: Туранская, Скифская, Западно-Сибирская.

Сегменты , являющиеся частью плит, – крупные территории, разделенные глубинными разломами, значительно отличающиеся по геотектоническому режиму развития и типу слагающих их геоструктурных элементов меньшего порядка.

Выступы складчатого фундамента – области поднятых крупных массивов складчатого кристаллического фундамента в пределах платформенной плиты, на территории которых кристаллические породы местами выходят на дневную поверхность. Геотектонический режим развития выступов характеризуется чередованием нисходящих и восходящих движений с преобладанием последних при сравнительно небольших амплитудах и скоростях этих движений. Области выступов фундамента вследствие этих особенностей характеризуются значительным сокращением (по сравнению с прилегающими впадинами) разреза и мощностей осадочных образований, сопровождающимся выпадением ряда ярусов, отделов, а иногда и целых систем.

Мегантеклизы и антеклизы – обширные территории платформ, обычно изометрических очертаний, измеряемые тысячами и сотнями километров в поперечнике, представляющие собой ассоциацию крупных структурных элементов (сводовых поднятий и впадин), в целом характеризовавшихся значительно меньшими по сравнению с прилегающими к ним территориями синеклиз амплитудами прогибания в течение платформенного этапа их развития. Вследствие указанных особенностей территории антеклиз характеризуются существенно сокращенными мощностями осадочных образований платформенного покрова, выпадением из разреза ряда ярусов и отделов, а иногда и целых систем, развитых в соседних синеклизах.

Мегасинеклизы и синеклизы (гомологи антеклиз и мегантеклиз) – обширные территории платформ обычно изометрических форм, измеряемые тысячами и сотнями километров в поперечнике, представляющие собой в целом ассоциации крупных структурных элементов (сводовых поднятий и впадин), характеризовавшихся значительно большими по сравнению с прилегающими к ним территориями антеклиз амплитудами прогибания в течение платформенного этапа развития. Вследствие этого территории синеклиз характеризуются значительно большими мощностями осадочных образований платформенного покрова и полнотой разреза.

Сводовые поднятия – крупные положительные структурные элементы антиклинального строения с приподнятым залеганием складчатого фундамента под платформенным покровом, характеризующиеся различным геотектоническим режимом в начальных и последующих этапах платформенного развития, с тенденцией к развитию преимущественно восходящих движений в начальных этапах и чередованием восходящих и нисходящих движений (с преобладанием последних) в последующих этапах тектогенеза. Вследствие этого для сводовых поднятий характерны региональное несогласие верхних и нижних структурных этажей осадочного комплекса платформенного покрова и значительное сокращение разреза и мощностей нижней его части по сравнению с прилегающими областями внутриплатформенных впадин. Для них показательно также относительно более замедленное прогибание, чем в прилегающих областях впадин, даже в фазы регионального развития движений всеобщего прогибания. Поэтому области сводовых поднятий характеризуются сокращением мощностей отдельных стратиграфических подразделений по сравнению с прилегающими впадинами.

Среди сводовых поднятий выделяются поднятия унаследованного развития и инверсионного происхождения. Значение их в процессах формирования скоплений нефти и газа в разрезе осадочных образований платформенного покрова различно.

Внутриплатформенные впадины – крупные отрицательные структурные элементы синклинального строения, в пределах которых складчатый фундамент погружен на более значительную глубину по сравнению со сводовыми поднятиями. Геотектонический режим их развития отличается тенденцией преимущественно к погружению в течение нескольких геологических периодов, а иногда и эр, а также сравнительно большими (по сравнению со сводовыми поднятиями) амплитудами нисходящих движений. Вследствие этого Внутриплатформенные впадин характеризуются большими мощностями осадочных образований платформенного покрова и полнотой их разреза.

Среди внутриплатформенных выделяются впадины унаследованного развития, инверсионного происхождения и наложенные.

Мегавалы – области развития крупных линейных форм валоподобных поднятий, простирающихся на несколько сотен километров при ширине от нескольких десятков до сотен километров. Примеры – кряж Карпинского.

Геотектонический режим областей линейно вытянутых поднятий в течение платформенного этапа развития характеризуется неоднократным чередованием восходящих и нисходящих движений с преобладанием последних. Однако общее прогибание происходит более замедленно и с меньшими амплитудами по сравнению с прилегающими областями впадин, в результате чего разрез осадочных образований платформенного покрова имеет меньшие мощности отдельных литолого-стратиграфических комплексов, чем в соседних впадинах, причем местами ряд свит, а иногда и ярусов, развитых в прилегающих впадинах, выпадает.

Выделяются линейно вытянутые поднятия унаследованного развития и инверсионного происхождения.

Линейно вытянутые грабенообразные впадины (авлакогены) – линейно вытянутые области прогибания складчатого фундамента грабенообразного происхождения протяженностью несколько сотен километров при ширине от нескольких десятков до сотен километров.

Образование этих впадин обычно связано с интенсивным прогибанием отдельных районов платформы вдоль системы крупных региональных разрывных нарушений в течение длительных отрезков времени геологической истории. Вследствие этого для территорий авлакогенов характерны значительные мощности осадочных образований платформенного покрова по сравнению с прилегающими районами.

Краевые мегасинеклизы (области перикратонных опусканий) – обширные, в несколько сотен, а иногда и тысяч километров в поперечнике, окраинные территории значительного прогибания платформ обычно" изометрических очертаний. В их пределах складчатый фундамент погружен на значительно большую глубину по сравнению с остальными областями платформы.

Краевые мегасинеклизы по геологическому строению и условиям формирования существенно отличаются от внутриплатформенных большей мобильностью, большими амплитудами и скоростями нисходящих движений, а также значительным увеличением мощностей осадочных образований платформенного покрова, развитием соляной тектоники и др. Они представляют собой промежуточные (переходные) области между платформенными и геосинклинальными территориями. От прилегающих областей платформ краевые впадины обычно отделяются системами флексур или региональных разрывных нарушений. Пример: Прикаспийская на Русской платформе.

Региональные моноклинали – области пологого моноклинального залегания слоев на платформах, обычно нарушенные дополнительными изгибами (флексурами, структурными террасами и т.п.).

Валоподобные поднятия – относительно узкие вытянутые зоны региональных весьма пологих поднятий антиклинального строения, состоящие из ряда локальных структур и осложняющие строение крупных структурных элементов платформ (сводовых поднятий, впадин, авлакогенов и др.). Размеры валоподобных поднятий колеблются в широких пределах, иногда достигая 300–350 км в длину и 30– 40 км в ширину. Среди валоподобных поднятий выделяются унаследованные и инверсионные.

Прогибы – вытянутые обычно вдоль валоподобных поднятий зоны региональных погружений. Прогибы подразделяются на унаследованные и инверсионные.

Палеотектонические критерии

Палеотектонические исследования необходимы на всех этапах нефтегазопоисковых работ, в том числе при:

1) нефтегеологическом районировании крупных территорий с целью сравнительной оценки перспектив нефтегазоносности отдельных ее частей и выборе на этой основе оптимальных направлений поисково-разведочных работ на нефть и газ;

2) прогнозировании и поисках регионально нефтегазоносных комплексов;

3) поисках и разведке различных генетических типов зон нефтегазонакопления и локальных скоплений нефти и газа в отдельных районах изучаемой территории.

В основу прогноза возможностей обнаружения регионально нефтегазоносных комплексов и зон нефтегазонакопления положен палеотектонический принцип с выделением в пределах исследуемой геологической провинции для каждого этапа ее геологической истории палеобассейнов седиментации. Последние подразделяются на отдельные части, различающиеся режимом колебательных движений (преимущественно устойчивым прогибанием; чередованием движений прогибания и воздымания при преобладании движений прогибания и, наоборот, преимущественным воздыманием и т.д.), амплитудами прогибания, т.е. распространением мощностей осадков рассматриваемого подразделения.

Структурные критерии

Для оценки перспектив обнаружения зон нефтегазонакопления исследуемой территории необходимо выяснить наличие:

Региональных геоструктурных элементов, благоприятных для размещения в их пределах различных генетических типов зон нефтегазонакопления;

Структурных условий, благоприятных для формирования зон нефтегазонакопления литологического и литолого-стратиграфического классов, связанных с выклиниванием коллекторов или замещением проницаемых пород непроницаемыми по восстанию пластов на склонах и периклинальных погружениях сводовых поднятий, мегавалов, на бортах региональных впадин и авлакогенов.

Образование зон нефтегазонакопления в пределах перечисленных структурных элементов зависит от ряда дополнительных факторов, связанных с их формированием и развитием:

1) времени заложения региональных структурных ловушек. В тех случаях, когда региональная миграция УВ в рассматриваемом районе происходила до заложения региональных ловушек, последние обычно не содержат скоплений нефти и газа;

2) условий сохранности структурной замкнутости региональных и локальных ловушек в последующие геологические эпохи. Если ловушки в отдельные отрезки времени геологической истории подвергались структурным перестройкам, то они нередко оказывались непродуктивными.

Гидрогеохимические критерии

Косвенными показателями региональной нефтегазоносности недр могут служить и некоторые гидрогеохимические параметры. К числу гидрогеохимических косвенных показателей нефтегазоносности, недр относятся:

Высокая газонасыщенность подземных вод углеводородными газами и повышенная упругость давления насыщения водорастворенных газов;

Специфические особенности химического состава высокоминерализованных подземных вод пониженной сульфатности, характерные для нефтегазоносных территорий;

Сравнительно повышенное содержание в подземных водах микроэлементов (йод, бром, аммоний, и др.) и некоторых органических соединений (нафтеновые кислоты, фенолы и др.).

Геотермические критерии

Глубина активизации процессов образования УВ нефтяного ряда из захороняемого в осадке органического вещества и первичной миграции их из нефтегазопродуцирующих толщ в коллекторы при прочих равных условиях в значительной мере контролировались палеогеотермическими параметрами бассейна седиментации в течение каждого рассматриваемого отрезка времени геологической истории. В различных частях даже единого бассейна седиментации, которые характеризовались разными показателями интенсивности теплового потока и палеогеотермического градиента, процессы нефтегазообразования и первичной миграции нефтяных УВ в коллекторы протекали на неодинаковых глубинах. Там, где тепловой поток слабый, палеогеотермические условия менее благоприятны для развития нефтеобразования и первичной миграции нефтяных УВ.

Установлено, что во многих нефтегазоносных областях геотермические условия являются одними из решающих факторов формирования вертикальной (глубинной) и площадной региональной геоструктурной зональности размещения скоплений УВ, а также изменений их физических свойств в пространстве и разрезе.

Региональный этап

Цели и задачи

Самостоятельно (положение).

Поисково-оценочныйый этап

Стадия выявления и стадия подготовки объектов к поисковому бурению.

Цели и задачи. Виды работ.

Самостоятельно (положение).

К поисковым относятся все скважины, начатые и законченные бурением на площади до получения в одной из них первого промышленного притока нефти или газа при опробовании испытателями пластов или в эксплуатационной колонне (за исключением опорных, параметрических, структурных и других скважин специального назначения). В связи с этим длительность поисков месторождений (залежей) определяется временем от даты начала бурения первой поисковой скважины до момента получения первого промышленного притока нефти и газа, устанавливающего продуктивность одного или нескольких горизонтов в изучаемом разрезе отложений. Если месторождение нефти или газа открыто структурным, параметрическим или опорным бурением до ввода площади в поиски, то длительность поискового периода рассчитывается от времени заложения скважины-открывательницы до получения промышленного притока.

В процессе поискового бурения для выделения в разрезе продуктивных горизонтов необходимо проводить глубинные геохимические исследования (газовый, битумный каротаж и др.). При опробовании горизонтов большое внимание должно уделяться гидрогеологическим исследованиям водоносных комплексов. С этой целью при опробовании поисковых скважин должны изучаться химический состав вод, дебиты, статические напоры, температура, состав и давление насыщения растворенных газов в воде.

Весьма эффективными в ряде районов могут быть детализованные скважинная и наземная (морская) сейсморазведки, а также геофизические исследования по прогнозированию разреза и оконтуриванию залежи.

Результаты поискового бурения и других исследований должны качественно и своевременно научно обрабатываться, на основе чего составляются детальные стратиграфические разрезы, корреляционные схемы, детальные структурные карты, профили, карты коллекторских свойств и мощностей по продуктивным горизонтам и другие графические материалы, необходимые для оценки результатов поисковых работ.

Задачи поисковой стадии считаются решенными полностью тогда, когда однозначно доказано наличие или отсутствие промышленных скоплений нефти и газа в пределах исследуемой локальной площади. При этом поисковое бурение считается завершенным в следующих геологических ситуациях:

а) доказано наличие залежи получением в одной из поисковых скважин промышленного притока нефти или газа. Здесь следует подчеркнуть, что величина подобного притока не является строго установленной, а может меняться в значительных пределах, поскольку определяется геолого-экономическими условиями и задачами освоения каждого конкретного нефтегазоносного региона. Другими словами одинаковые по величине дебиты нефти или газа могут рассматриваться как промышленные притоки в одном регионе (например, с хорошей обустроенностью промыслов) и не быть таковыми в другом (малоизученном);

б) установлены непромышленные скопления углеводородов, вследствие чего дальнейшее продолжение поисковых работ является нерентабельным. Экономически нецелесообразно также продолжать поиски в случае отнесения открытых залежей к забалансовым;

в) доказано отсутствие месторождения (залежи) в пределах опоисковываемой площади, что может, например, свидетельствовать, в свою очередь, об отсутствии ловушки по перспективным отложениям, пластов коллекторов в изучаемом разрезе или их обводненности и т.п. После анализа причин безуспешных поисков площадь выводится из бурения с отрицательными результатами. Следует иметь в виду, что поисковое бурение считается завершенным только по вскрытой части разреза, когда скважины бурятся на технически доступную глубину.

Задачи поискового бурения в ряде случаев могут быть решены лишь частично (например, из-за плохого качества или отсутствия опробования, низкой информативности методов ГИС, недостаточного отбора керна и т.д.). Иногда встречаются ситуации, когда задачи поисковой стадии вообще могут оказаться нерешенными. Например, если установлено несоответствие структурных построений по исходным данным сейсморазведки и последующего поискового бурения; некачественное проведение ГИС при отсутствии опробований; сложные горно-геологические условия бурения, обусловливающие появление технически неудачных скважин и необходимость применения новых средств и методов для более успешной их проводки и т.д. Решение о прекращении или продолжении поисковых работ в указанных случаях принимается после анализа причин отрицательных результатов бурения.

Поисковые работы на площади могут быть также приостановлены или законсервированы, если появляется необходимость проведения дополнительных детализационных геофизических исследований, применения новых технических средств, передислокации поискового бурения на другие, более перспективные геологические объекты.

По результатам работ на поисковой стадии в случае открытия месторождения (залежи) нефти и газа дается геолого-экономическое заключение о целесообразности проведения дальнейшего бурения для оценки выявленных скоплений углеводородов.

Заканчивается эта стадия подсчетом запасов по категориям С 2 и частично C 1 , на основе чего дается заключение о геолого-экономической оценке выявленного местоскопления или залежи и целесообразности проведения дальнейших разведочных работ. При получении положительных результатов выявленные продуктивные площади передаются в промышленную разведку. При получении отрицательных результатов и установлении бесперспективности разведанной площади дальнейшие геологоразведочные работы прекращаются. В отдельных случаях, когда в результате проведения поискового бурения установлено более сложное строение, дается заключение о необходимости проведения на ней дополнительных геолого-геофизических работ.

Пластовые сводовые залежи

Отличительной чертой всех сводовых залежей является соответствие между структурной формой поднятия и формой связанных с ним залежей. Сводовые залежи приурочены к куполам, брахиантиклиналям, антиклинальным складкам и в отдельных случаях на платформе к тектоническим сводам, например Ромашкинское месторождение, приуроченное к Татарскому своду. К куполам принято относить поднятие с отношением осей, близким к единице; к брахиантиклиналям - с отношением осей от 1 до 3; антиклиналями называются вытянутые складки, у которых длинные оси более чем в 3 раза превышают короткие.

Открытие залежи производится наиболее просто для случая, когда свод возможного пласта-коллектора определяется достаточно точно по данным геологического картирования вышележащих отложений или по данным сейсморазведки близкого по глубине горизонта. В этом случае обычно залежь открывается первой поисковой скважиной.

Для оценки размеров залежи скважины закладываются так, чтобы подсечь водонефтяной контакт. Для крупных сводовых залежей, связанных с брахиантиклиналями, эта задача решается заложением двух профилей по взаимно перпендикулярным направлениям, вдоль и поперек структуры. На крупных куполовидных структурах поисковые скважины целесообразно располагать на радиальных профилях (первая скважина - на своде, последующие три вокруг нее примерно через 120° по окружности). Поиски залежей на линейно вытянутых антиклиналях рекомендуется производить диагональным профилем из 3-4 скважин.

На структурах меньших размеров число поисковых скважин уменьшается до двух-трех. В частности, на брахиантиклинальных складках закладывается один поперечный профиль.

В общем случае скважины размещают с таким расчетом, чтобы вскрыть пласт на различных отметках, близких к предполагаемой отметке водонефтяного контакта. Выбор расстояний между поисковыми скважинами может быть более обоснованным, если имеются статистические данные о коэффициенте заполнения ловушек.

При поисках залежей, приуроченных к малоамплитудным поднятиям, на моноклинальном склоне или на склоне крупного свода следует обращать внимание на характер сочленения структуры с другими структурами, расположенными выше по региональному подъему слоев. Изучение морфологической характеристики структуры по сейсмической карте или по карте структурного бурения позволит найти так называемое «критическое направление», т. е. участок наиболее слабо выраженного замыкания («замок структуры»), который определяет возможность сохранения залежи и ее высоту. В этом случае после бурения сводовой скважины, выявляющей залежи нефти или газа, вторую скважину следует располагать в зоне «замка» с целью выяснения степени самостоятельности открытой залежи и ее высоты. В случае получения во второй скважине нефти или нефти с водой этих сведений может быть достаточно для того, чтобы судить об общих размерах открытой залежи. Если во второй скважине не будет получено притока нефти, то потребуется прорубить еще 2-3 скважины, располагая их на разных отметках.

Своды отдельных горизонтов в ряде случаев имеют смещение с глубиной, которое может быть связано с особенностью структурной формы складки. Это обстоятельство надо учитывать при заложении поисковых скважин, смещая их в сторону соответствующего крыла относительно свода, картируемого по верхним горизонтам.

Пластовые сводовые залежи нефти и газа иногда смещаются относительно свода ловушки под влиянием гидродинамических факторов и ограничиваются наклонным контактом. При этом разность отметок контакта в нефтяных залежах достигает десятков метров. В платформенных условиях такие залежи оказываются смещенными относительно свода на заметные расстояния, что необходимо учитывать при заложении поисковых скважин.

На многокупольной структуре могут быть обнаружены пластовые залежи с единым контуром. При вскрытии первой скважиной залежи нефти или газа на наиболее высоком куполе следующую скважину необходимо заложить в седловине между куполами. Если она вскроет полностью насыщенный пласт, то третья скважина должна быть заложена на участке раскрытия ловушки в пределах изогипсы, охватывающей все поднятие. Такая методика позволит быстро оценить размеры месторождения. Если вторая скважина окажется водоносной, дальнейшие поиски проводятся раздельно на каждом куполе.

Залежи пластовые, сводовые, нарушенные разрывами. Если амплитуда разрывов не связана с разделением залежи на изолированные блоки, поисковое бурение производится по методикам, аналогичным описанным выше. При наличии разрывов, разделяющих залежь на отдельные блоки, обусловливающие изменение конфигурации границ и увеличение изменчивости ее свойств по площади, задача оконтуривания этих блоков усложняется. Для ее решения необходимо определить положение и характер разрывов. Они могут носить характер сбросов или взбросов.

Наличие разрыва устанавливается по ряду признаков. Так, пропуск или повторение части разреза в скважинах указывает на наличие сброса или взброса. Если предполагается наличие сброса, разделяющего пластовую залежь на две части, то для их обнаружения закладываются две поисковые скважины по обе стороны от нарушения. В случае взброса иногда достаточно одной скважины, пересекающей его плоскость и вскрывающей обе части залежи. Оконтуривание залежей производится аналогично ненарушенным ловушкам сходной конфигурации.

Литологические залежи

Среди залежей этого типа выделяют две основные группы: залежи литологически экранированные, и залежи литологически ограниченные.

Залежи первой группы распространены довольно часто наряду с пластовыми залежами и располагаются на периклиналях или крыльях локальных структур (рис. 8). Они обнаруживаются чаще всего попутно при поисках других в основном сводовых залежей. Оконтуривание их также производится по мере изучения других залежей. Однако в некоторых случаях литологически экранированные залежи могут выходить далеко за пределы структуры, и тогда для их оконтуривания и промышленной оценки бурят специальные поисковые скважины, располагая их последовательно в направлении общего погружения пластов.

Литологические залежи, контролируемые локальными структурами, могут иметь и самостоятельное поисковое значение. Выклинивание пластов к своду поднятия приводит к образованию так называемых лысых структур. В этом случае залежь может быть кольцевой или распадаться на отдельные поля. Здесь первые поисковые скважины, располагающиеся по профилю, закладывались не в своде структуры, картируемой по подъему фундамента, а в пониженных частях ее склонов, установленных по сейсмическим картам.

В случае обнаружения залежи первоочередная задача заключается в установлении контура водонефтяного контакта и границы выклинивания пласта. Для этого закладывались профили из двух-трех скважин, приуроченных к понижениям на склонах выступа фундамента. При удачном выборе местоположения скважин первого профиля можно дать промышленную оценку открытой залежи. Последующие профили уже с целью разведки залежей располагались по обе стороны от основных на расстояниях 1,5-2,0 км. Расстояния между скважинами на профилях составляли 0,5-1,5 км.

Поиски залежей второй группы представляют более сложную задачу. Для ее решения необходимо тщательное изучение геологической обстановки, проведение палеогеографических и палеотектонических исследований, которые помогают выявить положение древних береговых зон, направление морских палеотечений и речных русел, зон интенсивного прогибания и древних погребенных поднятий, контролировавших распределение коллекторов и границы их выклинивания. Для обнаружения зон выклинивания коллекторов используются результаты сейсмических исследований в комплексе с профильным бурением.

Ловушки при выклинивании коллекторских пластов могут быть установлены путем построения структурных карт кровли продуктивного пласта, совмещенных с картами изолиний равных значений мощности. Они бывают приурочены к участкам наиболее высокого положения нулевой линии мощности коллекторов.

Поисковое бурение на литологически ограниченные залежи производится профилями, ориентированными вкрест простирания зоны распространения коллекторов и предполагаемой линии их выклинивания. Если в перспективном районе имеются локальные структуры, то первыми скважинами следует проверить их нефтегазоносность. В случае отсутствия на структуре залежей и коллекторов следующую скважину надо пробурить в пониженном участке склона, где возможно присутствие коллекторов. При их обнаружении следующую скважину закладывают для поисков залежи. Скв. 3 будет открыта залежь, а по мощности коллекторов в скв. 2 и 3 можно определить положение линии выклинивания. Скв. 4, размещенная по предполагаемому простиранию коллекторов, уточнит размеры уже открытой залежи и укажет направление увеличения мощности песчаного тела. Тогда скв. 5, вскрыв высокие значения мощности коллекторов, будет началом профиля для поисков второй заливообразной залежи и т.д.

Еще более сложным делом является обнаружение рукавообразных залежей. Для поисков таких залежей И.М. Губкиным было рекомендовано составление наклонных структурных карт с изображением рельефа русла палеореки и мощности песчаных отложений. Такие залежи открываются, как правило, при поисках и разведке залежей других типов. Их изучение и промышленная оценка могут быть произведены только после проведения разведки, при которой скважины размещаются «клином» от известного к неизвестному.

Однако при наличии перспектив открытия целого ряда таких залежей могут быть поставлены специальные работы путем бурения опорных профилей поисковых скважин вкрест регионального простирания зон песчано-алевритовых отложений.

Массивные залежи