Сочетания без повторений: Комбинаторика в MS EXCEL. Перестановки, размещения и сочетания. Формулы

Комбинаторика - это раздел математики, в котором изучаются вопросы о том, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить из заданных объектов. Основы комбинаторики очень важны для оценки вероятностей случайных событий, т.к. именно они позволяют подсчитать принципиальновозможное количество различных вариантов развития событий.

Основная формула комбинаторики

Пусть имеется k групп элементов, причем i-я группа состоит из n i элементов. Выберем по одному элементу из каждой группы. Тогда общее число N способов, которыми можно произвести такой выбор, определяется соотношением N=n 1 *n 2 *n 3 *...*n k .

Пример 1. Поясним это правило на простом примере. Пусть имеется две группы элементов, причем первая группа состоит из n 1 элементов, а вторая - из n 2 элементов. Сколько различных пар элементов можно составить из этих двух групп, таким образом, чтобы в паре было по одному элементу от каждой группы? Допустим, мы взяли первый элемент из первой группы и, не меняя его, перебрали все возможные пары, меняя только элементы из второй группы. Таких пар для этого элемента можно составить n 2 . Затем мы берем второй элемент из первой группы и также составляем для него все возможные пары. Таких пар тоже будет n 2 . Так как в первой группе всего n 1 элемент, всего возможных вариантов будет n 1 *n 2 .

Пример 2. Сколько трехзначных четных чисел можно составить из цифр 0, 1, 2, 3, 4, 5, 6, если цифры могут повторяться?
Решение: n 1 =6 (т.к. в качестве первой цифры можно взять любую цифру из 1, 2, 3, 4, 5, 6), n 2 =7 (т.к. в качестве второй цифры можно взять любую цифру из 0, 1, 2, 3, 4, 5, 6), n 3 =4 (т.к. в качестве третьей цифры можно взять любую цифру из 0, 2, 4, 6).
Итак, N=n 1 *n 2 *n 3 =6*7*4=168.

В том случае, когда все группы состоят из одинакового числа элементов, т.е. n 1 =n 2 =...n k =n можно считать, что каждый выбор производится из одной и той же группы, причем элемент после выбора снова возвращается в группу. Тогда число всех способов выбора равно n k . Такой способ выбора в комбинаторики носит название выборки с возвращением.

Пример 3. Сколько всех четырехзначных чисел можно составить из цифр 1, 5, 6, 7, 8?
Решение. Для каждого разряда четырехзначного числа имеется пять возможностей, значит N=5*5*5*5=5 4 =625.

Рассмотрим множество, состоящие из n элементов. Это множество в комбинаторике называется генеральной совокупностью .

Число размещений из n элементов по m

Определение 1. Размещением из n элементов по m в комбинаторике называется любой упорядоченный набор из m различных элементов, выбранных из генеральной совокупности в n элементов.

Пример 4. Различными размещениями из трех элементов {1, 2, 3} по два будут наборы (1, 2), (2, 1), (1, 3), (3, 1), (2, 3),(3, 2). Размещения могут отличаться друг от друга как элементами, так и их порядком.

Число размещений в комбинаторике обозначается A n m и вычисляется по формуле:

Замечание: n!=1*2*3*...*n (читается: "эн факториал"), кроме того полагают, что 0!=1.

Пример 5 . Сколько существует двузначных чисел, в которых цифра десятков и цифра единиц различные и нечетные?
Решение: т.к. нечетных цифр пять, а именно 1, 3, 5, 7, 9, то эта задача сводится к выбору и размещению на две разные позиции двух из пяти различных цифр, т.е. указанных чисел будет:

Определение 2. Сочетанием из n элементов по m в комбинаторике называется любой неупорядоченный набор из m различных элементов, выбранных из генеральной совокупности в n элементов.

Пример 6 . Для множества {1, 2, 3}сочетаниями являются {1, 2}, {1, 3}, {2, 3}.

Число сочетаний из n элементов по m

Число сочетаний обозначается C n m и вычисляется по формуле:

Пример 7. Сколькими способами читатель может выбрать две книжки из шести имеющихся?

Решение: Число способов равно числу сочетаний из шести книжек по две, т.е. равно:

Перестановки из n элементов

Определение 3. Перестановкой из n элементов называется любой упорядоченный набор этих элементов.

Пример 7a. Всевозможными перестановками множества, состоящего из трех элементов {1, 2, 3} являются: (1, 2, 3), (1, 3, 2), (2, 3, 1), (2, 1, 3), (3, 2, 1), (3, 1, 2).

Число различных перестановок из n элементов обозначается P n и вычисляется по формуле P n =n!.

Пример 8. Сколькими способами семь книг разных авторов можно расставить на полке в один ряд?

Решение: эта задача о числе перестановок семи разных книг. Имеется P 7 =7!=1*2*3*4*5*6*7=5040 способов осуществить расстановку книг.

Обсуждение. Мы видим, что число возможных комбинаций можно посчитать по разным правилам (перестановки, сочетания, размещения) причем результат получится различный, т.к. принцип подсчета и сами формулы отличаются. Внимательно посмотрев на определения, можно заметить, что результат зависит от нескольких факторов одновременно.

Во-первых, от того, из какого количества элементов мы можем комбинировать их наборы (насколько велика генеральная совокупность элементов).

Во-вторых, результат зависит от того, какой величины наборы элементов нам нужны.

И последнее, важно знать, является ли для нас существенным порядок элементов в наборе. Поясним последний фактор на следующем примере.

Пример 9. На родительском собрании присутствует 20 человек. Сколько существует различных вариантов состава родительского комитета, если в него должны войти 5 человек?
Решение: В этом примере нас не интересует порядок фамилий в списке комитета. Если в результате в его составе окажутся одни и те же люди, то по смыслу для нас это один и тот же вариант. Поэтому мы можем воспользоваться формулой для подсчета числа сочетаний из 20 элементов по 5.

Иначе будут обстоять дела, если каждый член комитета изначально отвечает за определенное направление работы. Тогда при одном и том же списочном составе комитета, внутри него возможно 5! вариантов перестановок , которые имеют значение. Количество разных (и по составу, и по сфере ответственности) вариантов определяется в этом случае числом размещений из 20 элементов по 5.

Задачи для самопроверки
1. Сколько трехзначных четных чисел можно составить из цифр 0, 1, 2, 3, 4, 5, 6, если цифры могут повторяться?

2. Сколько существует пятизначных чисел, которые одинаково читаются слева направо и справа налево?

3. В классе десять предметов и пять уроков в день. Сколькими способами можно составить расписание на один день?

4. Сколькими способами можно выбрать 4 делегата на конференцию, если в группе 20 человек?

5. Сколькими способами можно разложить восемь различных писем по восьми различным конвертам, если в каждый конверт кладется только одно письмо?

6. Из трех математиков и десяти экономистов надо составить комиссию, состоящую из двух математиков и шести экономистов. Сколькими способами это можно сделать?

Подсчитаем в MS EXCEL количество сочетаний из n элементов по k. С помощью формул выведем на лист все варианты сочетаний (английский перевод термина: Combinations without repetition).

Сочетаниями из n различных элементов по k элементов называются комбинации, которые отличаются хотя бы одним элементом. Например, ниже перечислены ВСЕ 3-х элементные сочетания, взятые из множества, состоящего из 5 элементов {1; 2; 3; 4; 5}:

(1; 2; 3); (1; 2; 4); (1; 2; 5); (1; 3; 4); (1; 3; 5); (1; 4; 5); (2; 3; 4); (2; 3; 5); (2; 4; 5); (3; 4; 5)

Примечание : Это статья о подсчете количества сочетаний с использованием MS EXCEL. Теоретические основы советуем прочитать в специализированном учебнике. Изучать сочетания по этой статье - плохая идея.

Отличие Сочетаний от Размещений

Вывод всех комбинаций Сочетаний

В файле примера созданы формулы для вывода всех Сочетаний для заданных n и k.

Задавая с помощью количество элементов множества (n) и количество элементов, которое мы из него выбираем (k), с помощью формул можно вывести все Сочетания.

Задача

Автовоз может перевозить по 4 легковые машины. Необходимо перевезти 7 разных машин (LADA Granta, Hyundai Solaris, KIA Rio, Renault Duster, Lada Kalina, Volkswagen Polo, Lada Largus). Сколькими различными способами можно заполнить первый автовоз? Конкретное место машины в автовозе не важно.

Нам нужно определить число Сочетаний 7 машин на 4-х местах автовоза. Т.е. n=7, а k=4. Оказывается, что таких вариантов =ЧИСЛКОМБ(7;4) равно 35.

Мы иногда делаем выбор из множества без учета порядка . Такой выбор называется комбинацией . Если вы играете в карты, например, вы знаете, что в большинстве ситуаций порядок, в котором вы держите карты, не имеет значения.

Пример 1 Найдите все комбинации 3-х букв, взятых из набора в 5 букв {A, B, C, D, E}.

Решение Эти комбинации следующие:
{A, B, C}, {A, B, D},
{A, B, E}, {A, C, D},
{A, C, E}, {A, D, E},
{B, C, D}, {B, C, E},
{B, D, E}, {C, D, E}.
Существует 10 комбинаций из трех букв, выбранных из пяти букв.

Когда мы находим все комбинации из набора с 5 объектами, если мы берем 3 объекта за один раз, мы находим все 3-элементные подмножества. В таком случае порядок объектов не рассматривается. Тогда,
{A, C, B} называется одним и тем же набором как и {A, B, C}.

Подмножество
Множество A есть подмножеством B, и означает что A это подмножество и/или совпадает с B если каждый элемент A является элементом B.

Элементы подмножество не упорядочены. Когда рассматриваются комбинации, не рассматривается порядок!

Комбинация
Комбинация, содержащая k объектов является подмножеством, состоящим из k объектов.

Мы хотим записать формулу для вычисления число сочетаний из n объектов, если взято к объектов одновременно.

Обозначения комбинации
Число сочетаний из n объектов, если взято к объектов одновременно, обозначается n C k .

Мы называем n C k число сочетаний . Мы хотим записать общую формулу для n C k для любого k ≤ n. Во-первых, это верно, что n C n = 1, потому что множество с n элементами имеет только одно подмножестов с n элементами, есть само множество. Во-вторых, n C 1 = n, потому что множество с n элементами имеет только n подмножеств с 1 элементом в каждом. Наконец, n C 0 = 1, потому что множество с n элементами имеет только одно подмножество с 0 элементами, то есть пустое множество ∅. Чтобы рассмотреть другие сочетания, давайте вернемся к примеру 1 и сравним число комбинаций с числом перестановок.

Обратите внимание, что каждая комбинация из 3-х элементов имеет 6, или 3!, перестановок.
3! . 5 C 3 = 60 = 5 P 3 = 5 . 4 . 3,
so
.
В общем, число сочетаний из k элементов, выбранных из n объектов, n C k раз перестановок этих элементов k!, должно быть равно числу перестановок n элементов по k элементов:
k!. n C k = n P k
n C k = n P k /k!
n C k = (1/k!). n P k
n C k =

Комбинации k объектов из n объектов
Общее число комбинаций к элементов из n объектов обозначается n C k , определяется
(1) n C k = ,
или
(2) n C k =

Другой тип обозначения для n C k это биноминальный коэффициент . Причина для такой терминологии будет понятна ниже.

Биноминальный коэффициент

Пример 2 Вычислите , используя формулы (1) и (2).

Решение
a) Согласно (1),
.
b) Согласно (2),


Имейте в виду, что не означает n/k.

Пример 3 Вычислите и .

Решение Мы используем формулу (1) для первого выражения и формулу (2) для второго. Тогда
,
используя (1), и
,
испоьлзуя формулу (2).

Обратите внимание, что
,
и используя результат примера 2 дает нам
.
Отсюда вытекает, что число 5-ти элементного подмножества из множества 7 элементов то же самое, что и число 2-элементного подмножества множества из 7 элементов. Когда 5 элементов выбираются из набора, они не включают в себя 2 элемента. Чтобы увидеть это, рассмотрим множество {A, B, C, D, E, F, G}:


В целом, мы имеем следующее. Этот результат дает альтернативный способ вычисления комбинации.

Подмножества размера k и размера
и n C k = n C n-k
Число подмножеств размера к множества с n объектами такое же, как и число подмножеств размера n - к. Число сочетаний k объектов из множества n объектов, такое же как и число сочетаний из n объектов, взятых одновременно.

Теперь мы будем решать задачи с комбинациями.

Пример 4 Мичиганская лотерея. Проводящаяся в штате Мичиган два раза в неделю лотерея WINFALL имеет джек-пот, который, по крайней мере, равен 2 млн. долларов США. За один доллар игрок может зачеркнуть любые 6 чисел от 1 до 49. Если эти числа совпадают с теми, которые выпадают при проведении лотереи, игрок выигрывает. (

Рассмотрим задачу подсчета числа выборок из данного множества в общем виде. Пусть имеется некоторое множество N , состоящее из n элементов. Любое подмножество, состоящее из m элементов можно рассматривать без учета их порядка, так и с его учетом, т.е. при изменении порядка переходим к другой m – выборке.

Сформулируем следующие определения:

Размещения без повторения

Размещением без повторения из n элементов по m N , содержащее m различных элементов .

Из определения следует, что два размещения отличаются друг от друга, как элементами, так и их порядком, даже если элементы одинаковы.

Теорема 3 . Число размещений без повторения равно произведению m сомножителей, наибольшим из которых является число n . Записывают:

Перестановки без повторений

Перестановками из n элементов называются различные упорядочения множества N .

Из этого определения следует, что две перестановки отличаются только порядком элементов и их можно рассматривать как частный случай размещений.

Теорема 4 . Число различных перестановок без повторений вычисляется по формуле

Сочетания без повторений

Сочетанием без повторения из n элементов по m называется любое неупорядоченное подмножество множества N , содержащее m различных элементов.

Из определения следует, что два сочетания различаются только элементами, порядок не важен.

Теорема 5 . Число сочетаний без повторений вычисляют по одной из следующих формул:

Пример 1 . В комнате 5 стульев. Сколькими способами можно разместить на них

а) 7 человек; б) 5 человек; в) 3 человека?

Решение: а) Прежде всего надо выбрать 5 человек из 7 для посадки на стулья. Это можно сделать
способом. С каждым выбором конкретной пятерки можно произвести
перестановок местами. Согласно теореме умножения искомое число способов посадки равно.

Замечание: Задачу можно решать, используя только теорему произведения, рассуждая следующим образом: для посадки на 1-й стул имеется 7 вариантов, на 2-й стул-6 вариантов, на 3-й -5, на 4-й -4 и на 5-й -3. Тогда число способов посадки 7 человек на 5 стульев равно . Решения обоими способами согласуются, так как

б) Решение очевидно -

в) - число выборов занимаемых стульев.

- число размещений трех человек на трех выбранных стульях.

Общее число выборов равно .

Не трудно проверить формулы
;

;

Число всех подмножеств множества, состоящего из n элементов.

Размещения с повторением

Размещением с повторением из n элементов по m называется всякое упорядоченное подмножество множества N , состоящее из m элементов так, что любой элемент ожжет входить в это подмножество от 1 до m раз, либо вообще в нем отсутствовать .

Число размещений с повторением обозначают и вычисляют по формуле, представляющей собой следствие из теоремы умножения:

Пример 2 . Пусть дано множество из трех букв N = {a, b, c}. Назовем словом любой набор из букв, входящих в это множество. Найдем количество слов длиной 2, которые можно составить из этих букв:
.

Замечание: Очевидно, размещения с повторением можно рассматривать и при
.

Пример 3 . Требуется из букв {a, b}, составить всевозможные слова длиной 3. Сколькими способами это можно сделать?

Ответ :

На первом месте в ряду может стоять любой из N элементов, следовательно, получается N вариантов. На втором месте - любой, кроме того, который уже был использован для первого места. Следовательно, для каждого из N уже найденных вариантов есть (N - 1) вариантов второго места, и общее количество комбинаций становится N*(N - 1).
Это же можно повторить для остальных элементов ряда. Для самого последнего места остается только один вариант - последний оставшийся элемент. Для предпоследнего - два варианта, и так далее.
Следовательно, для ряда из N неповторяющихся элементов возможных перестановок равно произведению всех целых от 1 до N. Это произведение называется N и N! (читается «эн факториал»).

В предыдущем случае количество возможных элементов и количество мест ряда совпадали, и их число было равно N. Но возможна ситуация, когда в ряду меньше мест, чем имеется возможных элементов. Иными словами, количество элементов в выборке равно некоторому числу M, причем M < N. В этом случае задача определения возможных комбинаций может иметь два различных варианта.
Во-первых, может потребоваться сосчитать общее количество возможных способов, которыми можно выстроить в ряд M элементов из N. Такие способы размещениями.
Во-вторых, исследователя может интересовать число способов, которыми можно выбрать M элементов из N. При этом порядок расположения элементов уже не важен, но любые два варианта должны различаться между собой хотя бы одним элементом. Такие способы называются сочетаниями.

Чтобы найти количество размещений по M элементов из N, можно прибегнуть к такому же способу рассуждений, как и в случае с перестановками. На первом месте здесь по-прежнему может стоять N элементов, на втором (N - 1), и так далее. Но для последнего места количество возможных вариантов равняется не единице, а (N - M + 1), поскольку, когда размещение будет закончено, останется еще (N - M) неиспользованных элементов.
Таким образом, число размещений по M элементов из N равняется произведению всех целых чисел от (N - M + 1) до N, или, что то же самое, частному N!/(N - M)!.

Очевидно, что количество сочетаний по M элементов из N будет меньше количества размещений. Для каждого возможного сочетания есть M! возможных размещений, зависящих от порядка элементов этого сочетания. Следовательно, чтобы найти это количество, нужно разделить число размещений по M элементов из N на N!. Иными словами, количество сочетаний по M элементов из N равно N!/(M!*(N - M)!).

Источники:

  • количество сочетаний

Факториал натурального числа – это произведение всех предыдущих натуральных чисел, включая само число. Факториал нуля равен единице. Кажется, что посчитать факториал числа очень просто – достаточно перемножить все натуральные числа, не превышающие заданное. Однако, значение факториала настолько быстро возрастает, что некоторые калькуляторы не справляются с этой задачей.

Вам понадобится

  • калькулятор, компьютер

Инструкция

Чтобы посчитать факториал натурального числа перемножьте все , не превосходящие данное. Каждое число учитывается только один раз. В виде формулы это можно записать следующим образом:n! = 1*2*3*4*5*…*(n-2)*(n-1)*n, гдеn – натуральное число, факториал которого требуется посчитать.
0! принимается равным единице (0!=1).При возрастании аргумента значение факториала очень быстро увеличивается, поэтому обычный (бухгалтерский) уже для факториала 15-ти вместо результата может выдать об ошибке.

Чтобы посчитать факториал большого натурального числа, возьмите инженерный калькулятор. То есть, такой калькулятор на клавиатуре которого имеются обозначения математических функций (cos, sin, √). Наберите на калькуляторе исходное число, а затем нажмите кнопку вычисления факториала. Обычно такая кнопка как «n!» или аналогично (вместо «n» может стоять «N» или «х», но восклицательный знак «!» в обозначении факториала должен присутствовать в любом случае).
При больших значениях аргумента результаты вычислений начинают отображаться в «экспоненциальном» (показательном) виде. Так, например, факториал 50 будет представлен в форме: 3,0414093201713378043612608166065e+64 (или похожем). Чтобы получить результат вычислений в обычном виде, припишите к числу, показанному до символа «е», столько нулей, сколько указано после «е+» (если, конечно, хватит места).