Средняя плотность вещества земли составляет г см2. Плотность земли. Принципы периодизации геологической истории Земли

Химический состав земной коры был определен по результатам анализа многочисленных образцов горных пород и минералов, выходящих на поверхность земли при горообразовательных процессах, а также взятых из горных выработок и глубоких буровых скважин.

В настоящее время земная кора изучена на глубину до 15-20 км. Она состоит из химических элементов, которые входят в состав горных пород.

Наибольшее распространение в земной коре имеют 46 элементов, из них 8 составляют 97,2-98,8 % ее массы, 2 (кислород и кремний) -75 % массы Земли.

Первые 13 элементов (за исключением титана), наиболее часто встречающиеся в земной коре, входят в состав органического вещества растений, участвуют во всех жизненно необходимых процессах и играют важную роль в плодородии почв. Большое количество элементов, участвующих в химических реакциях в недрах Земли, приводит к образованию самых разнообразных соединений. Химические элементы, которых больше всего в литосфере, входят в состав многих минералов (из них в основном состоят разные породы).

Отдельные химические элементы распределяются в геосферах следующим образом: кислород и водород заполняют гидросферу; кислород, водород и углерод составляют основу биосферы; кислород, водород, кремний и алюминий являются основными компонентами глин и песчаных пород или продуктов выветривания (они в основном составляют верхнюю часть коры Земли).

Химические элементы в природе находятся в самых различных соединениях, называемых минералами.

7.Минералы в земной коре – определение, классификация, свойства.

Земная кора состоит в основном из веществ, называемых минералами - от редких и чрезвычайно ценных алмазов до различных руд, из которых получают металлы для наших повседневных нужд.

Определение минералов

Часто встречающиеся минералы, такие как полевые шпаты, кварц и слюда, называются породообразующими. Это отличает их от минералов, которые находят только в небольших количествах. Кальцит - еще один породообразующий минерал. Он формирует известняковые породы.

В природе существует так много минералов, что минералогам пришлось выработать целую систему их определения, основанную на физических и химических свойствах. Иногда распознать минерал помогают очень простые свойства, например, цвет или твердость, а порой для этого требуются сложные тесты в лабораторных условиях с применением реагентов.

Некоторые минералы, такие как лазурит (синий) и малахит (зеленый), можно распознать по цвету. Но цвет часто обманчив, потому что у многих минералов он довольно широко варьируется. Различия в цвете зависят от примесей, температуры, освещения, радиации и эрозии.


Классификация минералов

1. Самородные элементы

Около 90 минералов - 0,1% массы земной коры

Золото, платина, серебро - драгоценные металлы, медь - цветной металл, алмаз - драгоценный камень, графит, сера, мышьяк

2 . Сульфиды

Около 200 минералов - 0,25 % массы земной коры

Сфалерит - цинковая руда, галенит - свинцовая руда, халькопирит - медная руда, пирит - сырье для химической промышленности, киноварь - ртутная руда

3 . Сульфаты

Около 260 минералов, 0,1% массы земной коры

Гипс, ангидрит, барит - цементное сырье, поделочный камень и др.

4 . Галлоиды

Около 100 минералов

Галит - каменная соль, сильвин - калийное удобрение, флюорит - фторид

5 . Фосфаты

Около 350 минералов - 0,7% массы земной коры

Фосфорит - удобрение

6 . Карбонаты

Около 80 минералов, 1,8% массы земной коры

Кальцит, арагонит, доломит - строительный камень; сидерит, родохрозит - руды железа и марганца

7. Окислы

Около 200 минералов, 17% массы земной коры

Вода, лед; кварц, халцедон, яшма, опал, кремень, корунд -драгоценные и полудрагоценные камни; бокситовые минералы - руды алюминия, минералы руд железа, олова, марганца, хрома и др.

8. Силикаты

Около 800 минералов, 80% земной коры

Пироксены, амфиболы, полевые шпаты, слюды, серпентин, глинистые минералы - основные породообразующие минералы; гранаты, оливин, топаз, адуляр, амазонит - драгоценные и полудрагоценные камни.

Свойства

Блеск - весьма характерный признак многих минералов. В одних случаях он очень похож на блеск металлов (галенит, пирит, арсенопирит), в других - на блеск стекла (кварц), перламутра (мусковит). Немало и таких минералов, которые даже в свежем изломе выглядят матовыми, т. е. не имеют блеска.

Замечательной особенностью многих природных соединений служит их окраска. Для ряда минералов она постоянна и весьма характерна. Например: киноварь (сернистая ртуть) всегда обладает карминно-красным цветом; для малахита характерна яркозеленая окраска; кубические кристаллики пирита легко узнаются по металлически-золотистому цвету и т. д. Наряду с этим окраска большого количества минералов изменчива. Таковы, например, разновидности кварца: бесцветные (прозрачные), молочно-белые, желтовато-бурые, почти черные, фиолетовые, розовые.

Минералы различаются и по другим физическим свойствам. Одни из них настолько тверды, что легко оставляют царапины на стекле (кварц, гранат, пирит); другие сами царапаются обломками стекла или острием ножа (кальцит, малахит); третьи обладают настолько низкой твердостью, что легко чертятся ногтем (гипс, графит). Одни минералы при раскалывании легко расщепляются по определенным плоскостям, образуя обломки правильной формы, похожие на кристаллы (каменная соль, галенит, кальцит); другие дают в изломе кривые, "раковистые" поверхности (кварц). Широко варьируют и такие свойства, как удельный вес, плавкость и др.

Столь же различны и химические свойства минералов. Одни легко растворяются в воде (каменная соль), другие растворимы лишь в кислотах (кальцит), третьи устойчивы даже по отношению к крепким кислотам (кварц). Большинство минералов хорошо сохраняется в воздушной среде. Однако известен ряд природных соединений, легко подвергающихся окислению или разложению за счет кислорода, углекислоты и влаги, содержащихся в воздухе. Давно установлено также, что некоторые минералы под воздействием света постепенно меняют свою окраску.

Все эти свойства минералов находятся в причинной зависимости от особенностей химического состава минералов, от кристаллической структуры вещества и от строения атомов или ионов, входящих в состав соединений.

Планета Земля - это уникальное творение Вселенной, хранящее множество загадок. На протяжении всех веков люди пытались узнать ее тайны и загадки: размеры, плотность Земли.

Разные народы мира называют планету по-разному: Земля, Гайя, Терра, Мир, голубая планета. Человечеству известно, что на планете обитает огромное множество самых разных удивительных форм жизни, но то, как она стала такой, не знает никто.

Размеры Земли

На снимках из космоса видно, что Земля имеет форму шара. Для того чтобы узнать плотность Земли, ее размер, применяют специальные формулы. Еще в третьем веке до нашей эры Эратосфен вывел формулу, по которой можно определить массу планеты. Наиболее точные данные дают градусные измерения. Для этого берутся две точки, расположенные на одной меридиане. Астрономически определяются их географические широты. Длина оконечностей дуги меридианы между этими точками в градусах будет равняться географической широте этих же точек. Обычно расстояние между ними составляет несколько сотен километров. Проведя все необходимые измерения, вычисляют, чему равен один градус в километрах. Однако такой метод применим только на ровной поверхности. Ввиду того что расстояние от одной точки до второй не видно, применяют метод триангуляции. Он заключается в построении треугольников, которые покрывают сетью вершин определенное пространство. С такой вершины видны другие сигнальные точки.

В современном мире для определения координат используют различные космические методы исследований. Их проводят искусственные спутники Земли, на которых установлена специальная аппаратура.

Для определения плотности Земли необходимо знать ее массу и объем. Этот показатель равен 5,5 х 10 3 кг/м 3 . С глубиной, плотность растет. По расчетам ученых, в центре планеты плотность равна 1,1 х 10 4 кг/м 3 . Такое увеличение отмечается из-за содержания тяжелых элементов и большого давления.

Ученые рассчитали, что масса планеты равна 5,972Е24 кг или 6,6 секстиллион тонн. По массе наша планета в три раза тяжелее Юпитера.

Плотность

Впервые плотность Земли была выявлена И. Ньютоном в 1736 году. Он доказал, что этот показатель находится в пределах от 5 до 6 г/см 3 . Последующие измерения позволили выявить более точные данные, которые получили название средней плотности планеты Земля. Эта величина превышает плотность верхних горизонтов земной коры, которая на основе многочисленных измерений выходит на поверхность горных пород и может быть определена более точно.

Вычислить плотность поверхности Земли ученым еще как-то удалось, а вот решить, каким будет это значение на глубине свыше 16 километров, невозможно. Для определения этих показателей учитывается скорость сейсмических волн, сила тяжести и ряд других параметров.

Средняя плотность

Средняя плотность Земли - это отношение массы земли к массе такого же объема дистиллированной воды при температуре 4 градуса. По этому принципу учеными доказано, что средняя плотность планеты Земля равна 5,52 г/см 3 .

Есть мнения, что Земля - это единственная планета во всей Вселенной со сложной формой жизни, хотя это утверждение пока не доказано. Почему-то ученые считают, что формы жизни могут развиваться только такими, которые привычно видеть людям на нашей планете, и никто не допускает, что есть формы, способные расти и развиваться при совершенно других условиях. Это утверждение полностью никто не опроверг, а значит, оно имеет право на существование. Хотя ученые мира выяснили много интересного о планете:

  1. Средняя плотность планеты Земля выше, чем у других планет.
  2. Среди планет земной группы только она имеет наибольшую гравитацию и наисильнейшее магнитное поле.
  3. Хотя все люди и представляют планету в форме ровного шара, на самом деле это не совсем так. Она больше похожа на два приплюснутых полукруга, имеющих выпуклости в зоне экватора. Эту особую форму связывают с вращением планеты.
  4. Изначально существовал один континент под названием Пангея. По мере движения земной коры образовались известные сегодня континенты.
  5. В защитном слое имеются озоновые дыры: самая крупная располагается над Антарктидой. Ее обнаружили в 2006 году.

Еще факты

  1. Стоя на одном месте, человек считает, что он стоит. На самом деле он двигается, но вместе с Землей. Это происходит из-за вращения планеты вокруг Солнца и вокруг своей оси. В зависимости от места, где стоит объект, скорость его движения в пространстве может составлять 1600 км/ч. На экваторе люди двигаются быстрее, а вот те, кто живет в северных и южный районах планеты, практически стоят на месте.
  2. Земля движется вокруг Солнца со скоростью 107826 км/ч.
  3. Считается, что возраст Земли около 4,5 млн лет.
  4. В центре планеты располагается магма.
  5. На планете происходят водные приливы и отливы. Это явление возникает из-за воздействия Луны - естественного спутника Земли.
  6. Самая холодная точка на планете - Антарктида. Здесь температура может опускаться до -80 и более градусов Цельсия.
  7. Некоторые ученые предполагают, что когда-то у Земли было два спутника.

На планете есть множество загадочных мест, где происходят странные явления. Ученые пытались их объяснить: что-то им раскрыть удалось, а что-то все так же остается тайной. Одной из таких тайн являются движущиеся камни на плато Плайя в США. На этом участке горные породы совершают перемещения по пескам, оставляя следы в виде борозд. Это уникальное явление не имеет аналогов, и нет другого места, где происходило бы подобное.

Есть мнения, что когда-то, планета была фиолетовой. Этот окрас ей придавали бактерии, проживающие на всей территории Земли. Позже планета стала зелено-голубой.

Факты: Земля-космос

От Солнца до Земли 150 млн км. Свет от нашего светила до поверхности планеты идет чуть больше восьми минут. И чем дальше звезда или планета от нас, тем больше света до нас доходит. К примеру, есть звезды, свет которых достигает до нас за тысячи лет. В результате этого мы видим «прошлое» звезд и планет. Даже солнце мы видим не в реальном времени, а такое, каким оно было восемь минут назад.

В космосе движется множество комет, космического мусора. Защитный слой Земли защищает нас от них: кометы и космическая пыль сгорают в верхних слоях атмосферы.

Немного размышлений

Как известно, средняя плотность планеты равна средней плотности Земли, т. е. эти показатели находятся в соотношении 1:1. Чтобы выяснить точные размеры: массу, вес и другие габариты, используют самые разные формулы.

Земля - это уникальная планета. Здесь есть множество неразгаданных тайн. Одной из загадок является то, что находится под поверхностью земли, в глубинах океанов, и какова плотность на глубине свыше семнадцати километров под поверхностью.

Ученых всего мира интересуют вопросы о возникновении Вселенной и ее истинном устройстве. Изучение космоса не дает ответы на все возникающие вопросы, но на некоторые уже нашлись ответы.

Самая верхняя из твёрдых оболочек нашей планеты носит название земной коры; вместе с верхней мантией она образует литосферу. Граница между корой и верхней мантией, называемая поверхностью Мохоровичича, лежит под континентами на глубине в среднем ~ 50 км, тогда как под океанами толщина коры составляет всего 5-10 км. Верхнюю часть континентальной земной коры составляет осадочный чехол (педосфера), а вся остальная её толща разделяется на два слоя - гранитный и базальтовый (поверхность раздела между ними называют поверхностью Конрада).

Состав земной коры образовался, в основном, в результате высвобождения веществ из верхней мантии Земли. Состав этой оболочки эволюционировал во времени, прежде всего, за счет возгонки элементов из мантии в результате частичного плавления на глубине около 100 км. Глубина Земли составляет 6371 км; земной коры ~ 40 км, верхняя мантия ~ 40-70 км, нижняя мантия: 700-2900 км; внешнее ядро ~ 2900-5150 км; внутреннее ядро ~ 5150-6371 км. Более 92 % массы литосферы приходится на долю только 4-х элементов - железа, кислорода, кремния и магния. Земная кора по своему составу оказывается более обогащённой кислородом и кремнием. Эти элементы вместе с алюминием образуют самые распространённые в коре соединения - силикаты и алюмосиликаты. Примерно на 90 % масса земной коры образована силикатами алюминия, железа, кальция, магния, калия и натрия, а также оксидом кремния. Земная оболочка имеет толщину < 0,0001 % от объема планеты. Средний химический состав современной коры имеет следующий вид:

О - 46,6 %; Si - 27,7 %; Аl - 8,1 %; Fе - 5,0%; Са- 3,6 %; Nа - 2,8 %; К - 2,6 %; Мg - 2,1 %; прочие 1,4%.

Для характеристики распространённости химических элементов в земной коре известный геохимик А.Е. Ферсман предложил ввести понятие кларка - среднего значения относительного содержания химического элемента. Эта величина названа в честь американского учёного-химика, который в последние десятилетия XIX века наметил пути статистического изучения распространённости элементов. В более широком понимании кларк относят не только к земной коре, но и к другим глобальным (например, растительность континентов) и космическим системам. Различия в кларках химических элементов очень велики. Условно элементы делят на 2 группы: главные, с содержанием не менее 0,1 %, и рассеянные. К главным элементам (по мере убывания) в земной коре можно отнести следующие 10 химических элементов: О, Si, Al, Fe, К, Са, Na, Mg, Ti, Н. Они образуют самостоятельные химические соединения (минералы), а входящие во вторую группу преимущественно рассеяны в природных минералах. Особенность распределения рассеянных элементов в земной коре заключается в их способности образовывать скопления (месторождения), в которых их содержание в сотни и тысячи раз превышает кларковые. Среднее содержание рассеянного химического элемента в данном регионе формирует его геохимический фон. Участки с повышенной концентрацией элемента (по сравнению с региональной) называют геохимическими аномалиями или геохимическими провинциями.

Важной составляющей литосферы являются подземные воды. Вода присутствует в земной толще как в свободном виде, так и в связанной форме, а также различных агрегатных состояниях: в виде паров, жидкости и льда. Подземные воды представляют собой сложную физико-химическую систему, находящуюся в динамическом равновесии с вмещающими породами.

Свободные воды подземной гидросферы в той или иной степени минерализованы, и наиболее редкими (~ 2 %) оказываются пресные воды. В основном это грунтовые воды, непосредственно связанные с поверхностными источниками (реки, озёра, водохранилища). Общая минерализация их не превышает 1 г/л (1 ‰), а по составу они относятся к гидрокарбонатным. Как правило, грунтовые воды отличаются высоким (до 35 мг/л и более) содержанием растворённого органического вещества. Основной объём подземной гидросферы приходится на долю солёных (до 35 г/л) и рассольных (с минерализацией до 500-600 г/л) вод. Их формирование протекает в глубинных слоях осадочных пород в зонах медленного водообмена в течение сотен тысяч и миллионов лет. По составу они относятся главным образом к хлоридным. Промежуточное положение между пресными (грунтовыми и артезианскими) и солёными обычно занимают солоноватые воды с минерализацией до 10 г/л. Они образуют все основные классы - гидрокарбонатные, хлоридные и сульфатные. В сравнении с пресными грунтовыми, солоноватые воды содержат меньше растворённых газов атмосферного происхождения. По мере увеличения глубины залегания в подземных водах увеличивается концентрация газов глубинного генезиса (СО 2 , Не, СН 4 и др.)

Земная кора постоянно подвергается различного рода воздействиям как внутреннего (эндогенного), так и внешнего (экзогенного) характера. Движущей силой эндогенных процессов является внутренняя энергия Земли. Например, микробиологическое выщелачивание рассеянных элементов происходит не только путём окисления, но и при восстановлении окисленных руд. В нём принимают участие различные микроорганизмы. В частности, восстановление Fe 3+ до Fe 2+ и Мn 4+ до Мn 2+ осуществляется бактериями родов Bacillus и Pseudomonas. Экзогенные процессы протекают на поверхности Земли или на небольшой глубине в земной коре и обусловлены внешними силами: энергией солнечного излучения, силами гравитации, движущихся воды и льда, жизнедеятельностью организмов. Мощным экзогенным фактором, воздействующим на земную кору, стала в настоящее время деятельность человека. Если до 2-ой половины XX в. недра использовались почти исключительно для добычи полезных ископаемых и питьевого водоснабжения, то сейчас в них создают хранилища нефти и газа, ведут захоронение отходы химической и ядерной промышленности. Особенно сильное влияние на геодинамические и гидрологические процессы оказывают подземные ядерные взрывы.

Наиболее достоверные сведения о химическом составе земной коры относятся к ее континентальной части. При расчете химического состава земной коры принимают определенную пропорцию кислого (гранитного) и основного (базальтового) материала. А.П. Виноградов в 1962 г. считал, что, вероятнее всего земная кора представляет собой смесь кислых и основных пород в пропорции 2:1. А.Б. Ронов и А.А. Ярошевский расчетным путем определили это соотношение как примерно 4:1, А.А. Полдерват в 1955 г. допускал это соотношение как 1:1. Из приведенных данных следует, что расчеты состава земной коры носят приближенный характер. Средний химический состав земной коры является ее важной химической характеристикой, необходимой для выяснения ряда глобальных геохимических процессов. Вещество земной коры выделилось из мантии в результате выплавления, дегазации и выноса этих продуктов в верхние горизонты планеты (табл. 1).

Таблица 1. Химический состав земной коры по А.Б. Ронову и А.А. Ярошевскому, 1976 г.(в среднем, %)

Краткая характеристика горных пород

По своему происхождению горные породы разделяют на 3 большие группы:

1. Магматические (изверженные), возникшие при застывании на поверхности или в недрах земной коры магмы - особого силикатного расплава, насыщенного газами.

2. Осадочные, образовавшиеся путем осаждения неорганических и органических веществ на дне различных водоемов и на поверхности континентов.

3. Метаморфические, появившиеся в процессе изменения (перекристаллизации) осадочных и изверженных пород под влиянием повышенных температур и давлений.

Изверженные породы включают в состав (%): гранит (SiO 2 ~ 71, Al 2 O 3 ~ 14-15, Na 2 O ~ 3.3, K 2 O ~ 4.0, Fe 2 O 3 + Fe ~ 3.5, остальное: Н 2 О, СаО, ТiО 2 , МgО);

Базальт (SiO 2 ~ 49, Al 2 O 3 ~ 18, Fe 2 O 3 + Fe ~ 9, СаО ~ 11, МgО ~ 8, остальное: Н 2 О, ТiО 2 , Na 2 O, K 2 O).

Осадочные породы включают (%): а) глина (SiO 2 ~ 62; Al 2 O 3 ~ 17; Н 2 О ~ 5; Fe 2 O 3 + Fe ~ 5, остальное: СаО, ТiО 2 , МgО, K 2 O, Na 2 O, СО 2);

б) песчаник (SiO 2 ~ 94; Al 2 O 3 ~ 1,1; СаО ~ 1,1; остальное: Na 2 O 3 ; K 2 O; Fe 2 O 3 + Fe; Н 2 О, ТiО 2 , МgО).

в) известняк (SiO 2 ~ 5; СаО ~ 43; СО 2 ~ 42; остальное: до 100 %.

Метаморфические породы (%): а) амфиболиты (SiO 2 ~ 50; Al 2 O 3 ~ 17; МgО ~ 7; СаО ~ 9; Fe 2 O 3 + Fe ~ 10; все остальные соединения - до 100 %);

б) сланец (SiO 2 ~ 63; Al 2 O 3 ~ 18; Fe 2 O 3 + Fe ~ 6; СаО ~ 2; Fe 2 O 3 + Fe ~ 6; К 2 О ~ 3; Н 2 О ~ 2,5; все остальные соединения - до 100 %).

Горные породы как естественные ассоциации минералов обладают целым рядом физических свойств, знание которых необходимо для решения многих вопросов: плотность, теплопроводность, естественная радиоактивность*, электрические свойства (удельное электрическое сопротивление, поляризуемость, диэлектрическая проницаемость, электрохимическая активность), магнитные свойства (магнитная восприимчивость, индуцированная намагниченность, остаточная намагниченность, естественная остаточная намагниченность), упругие и физико-механические свойства (скорость распространения продольных и поперечных сейсмических волн, динамическим модулям упругости, модулям деформации и сдвига).

* -естественная радиоактивность горных пород определяется спонтанным распадом (неуправляемым) сосредоточенных в них радиоактивных изотопов. Главными и наиболее распространенными являются: 232 Тh, 235 U, 238 U, 40 К. Радиоактивность проявляется в испускании б-, в-частиц, г-фотонов.

В биосфере нашей планеты существуют различные формы движения материи, взаимосвязанные друг с другом. В ней совершается массовый перенос твердых, жидких и газообразных масс под влиянием энергии солнечных лучей и внутренней энергии планеты, связанной, главным образом, с радиоактивным распадом и выделяемой атомной энергией.

Представление о большом круговороте вещества в верхних горизонтах Земли, как учение о крупных геологических циклах, было разработано в целостном виде В.И. Вернадским и названы эти циклы геохимическими. Наиболее крупный по масштабам круговорот - это процесс формирования магматических горных пород, которые возникают при застывании магмы, поступившей в литосферу из глубин Земли. На поверхности земной коры материал изверженных горных пород подвергается разрушению - выветриванию и естественно переходит в подвижное состояние. Продукты разрушения сносятся геологическими агентами (водой, ветром) в пониженные части рельефа (денудация), а затем в водоемы. Таким образом, осадочные породы в ходе геологического времени погружаются на большие глубины, где подвергаются метаморфизму и переплавлению снова в магму. Последняя в благоприятных геологических условиях может снова попасть в верхние слои литосферы, где застывает в форме различных горных пород. Таким образом, в течение огромных интервалов геологического времени происходит глобальный круговорот вещества: магматическая порода - осадочная порода - метаморфическая порода - магма. Различные участки земной коры, наблюдаемые нами на поверхности земного шара, по существу являются звеньями этого круговорота.


Введение

Три наружные оболочки Земли, различающиеся фазовым состоянием, – твердая земная кора, жидкая гидросфера и газовая атмосфера – тесно связаны между собой, а вещество каждой из них проникает в пределы других. Подземные воды пронизывают верхнюю часть земной коры, значительный объем газов находится не в атмосфере, а растворен в гидросфере и заполняет пустоты в почве и горных породах. В свою очередь, вода и мелкие твердые минеральные частицы насыщают нижние слои атмосферы.

Наружные оболочки связаны не только пространственно, но и генетически. Происхождение оболочек, формирование их состава и его дальнейшая эволюция взаимосвязаны. В настоящее время эта связь в значительной мере обусловлена тем, что наружная часть планеты охвачена геохимической деятельностью живого вещества.

Массы оболочек сильно различаются. Масса земной коры оценивается в 28,46×10 18 т, Мирового океана – 1,47×10 18 т, атмосферы – 0,005×10 18 т. Следовательно, в земной коре находится основной резерв химических элементов, которые вовлекаются в миграционные процессы под воздействием живого вещества. Концентрации и распределение химических элементов в земной коре оказывают сильное влияние на состав живых организмов суши и всего живого вещества Земли.

Рассматривая проблему состава живого вещества, В.И. Вернадский отмечал: «…химический состав организмов теснейшим образом связан с химическим составом земной коры; организмы приноравливаются к нему».


Химики и петрографы начиная со второй половины XIX в. изучали химический состав горных пород методами весового и объемного химического анализа. Суммируя результаты многочисленных анализов горных пород, Ф. Кларк показал, что в земной коре преобладают восемь химических элементов: кислород, кремний, алюминий, железо, магний, кальций, калий и натрий. Этот основной вывод неоднократно подтвержден результатами последующих исследований. Методами химического анализа, которыми пользовались в XIX в., определение низких концентраций элементов было невозможно. Требовались принципиально иные подходы.

Мощный импульс изучению химических элементов с очень низкой концентрацией в веществе земной коры дало применение более чувствительного метода – спектроскопического анализа. Новые факты позволили В.И. Вернадскому сформулировать принцип «всюдности» всех химических элементов. В докладе на XII съезде российских естествоиспытателей и врачей в декабре 1909 г. он заявил: «В каждой капле и пылинке вещества на земной поверхности, по мере увеличения тонкости наших исследований, мы открываем все новые и новые элементы… В песчинке или в капле, как в микрокосмосе, отражается общий состав космоса».

Идея «всюдности» химических элементов долгое время вызывала настороженность даже со стороны крупных ученых. Это было связано с тем, что элементы, содержащиеся в количестве ниже уровня чувствительности метода, при анализе не обнаруживались. Создавалась иллюзия их полного отсутствия, что отразилось на терминологии. В геохимии возникли термины редкие элементы (dieselteneElementen– нем.; rareelements– англ.), частота (dieHaufigkeit– нем.) обнаружения. В действительности имеет место не реальная редкость или малая частота встречаемости элемента при анализах, а его низкая концентрация в изучаемых пробах, которая не может быть определена недостаточно чувствительными методами анализа.

Низкая чувствительность метода часто не позволяла определять количество элемента, а лишь констатировать присутствие его «следов». С тех пор в геохимической литературе широко используется термин? применявшийся В.М. Гольдшмидтом и его коллегами в 1930-х гг.: элементы-следы (dieSpurelemente– нем.; traceelements– англ.; deselementstraces– фр.).

В итоге усилий ученых разных стран в 20-х гг. XX в. сложилось общее представление о составе земной коры. Средние значения относительного содержания химических элементов в земной коре и других глобальных и космических системах известный геохимик А.Е. Ферсман предложил называть кларками в честь ученого, который наметил путь к количественной оценке распространения химических элементов.

Кларк – весьма важная величина в геохимии. Анализ значений кларков позволяет понять многие закономерности распределения химических элементов на Земле, в Солнечной системе и доступной нашим наблюдениям части Вселенной. Кларки химических элементов земной коры различаются более чем на десять математических порядков. Столь существенное количественное различие должно отразиться на качественно неодинаковой роли двух групп элементов в земной коре. Наиболее ярко это проявляется в том, что элементы первой группы, содержащиеся в относительно большом количестве, образуют самостоятельные химические соединения, а элементы второй группы с малыми кларками преимущественно распылены, рассеяны среди химических соединений других элементов. Элементы первой группы называют главными, элементы второй – рассеянными. Их синонимами в английском языке являются minorelements, rareelements, наиболее употребляемый синоним traceelements. Условной границей между группами главных и рассеянных элементов в земной коре может служить величина 0,1%, хотя кларки большей части рассеянных элементов значительно меньше и измеряются тысячными и меньшими долями процента. Понятие о состоянии рассеяния химических элементов, так же как и о их «всюдности», было введено в науку В.И. Вернадским.

Полный химический состав верхнего, так называемого гранитного, слоя континентального блока земной коры приведен в табл. 1.1.

Таблица 1.1 Кларки химических элементов гранитного слоя коры континентов

Химический элемент Атомный номер Среднее содержание, 1 × 10 -4 % Химический элемент Атомный номер Среднее содержание, 1 × 10 -4 %
О 8 481 000 Mg 12 12000
Si 14 399 000 Ti 22 3300
А1 13 80 000 H 1 1000
Fe 26 36000 P 15 800
К 19 27000 F 9 700
Са 20 25000 Мn 25 700
Na 11 22000 Ва 56 680
S 16 400 Ег 68 3,6
С 6 300 Yb 70 3,6
Sr 38 230 Hf 72 3,5
Rb 37 180 Sn 50 2,7
Cl 17 170 и 92 2,6
Zr 40 170 Be 4 2,5
Се 58 83 Br 35 2,2
V 23 76 Та 73 2,1
Zn 30 51 As 33 1,9
La 57 46 W 74 1,9
Yr 39 38 Ho 67 1,8
Cl 24 34 Tl 81 1,8
Nd 60 33 Eu 63 1,4
Li 3 30 Tb 65 1,4
N 7 26 Ge 32 1,3
Ni 28 26 Mo 42 1,3
Cu 29 22 Lu 71 1,1
Nb 41 20 I 53 0,5
Ga 31 18 Tu 69 0,3
Pb 82 16 In 49 0,25
Th 90 16 Sb 51 0,20
Sc 21 11 Cd 48 0,16
В 5 10 Se 34 0,14
Sm 62 9 Ag 47 0,088
Gd 64 9 Hg 80 0,033
Pr 59 7,9 Bi 83 0,010
Co 27 7,3 Au 79 0,0012
Dy 66 6,5 Те 52 0,0010
Cs 55 3,8 Re 75 0,0007

Для образования любого химического соединения требуется концентрация исходных компонентов не меньше минимальной, ниже которой реакция невозможна. Поэтому в земной коре преобладают химические соединения главных элементов с высокими кларками. Несмотря на то, что общее количество природных химических соединений – минералов – составляет 2-3 тыс. видов, число минералов, образующих распространенные горные породы, невелико. Более 80% массы земной коры представлено силикатами алюминия, железа, кальция, магния, калия и натрия; около 12% составляет оксид кремния. Все эти минералы имеют кристаллическое строение, которое и определяет общие особенности кристаллохимии земной коры.

В.М. Гольдшмидт показал, что силикатный состав и кристаллическое строение земной коры весьма важны для распределения не главных, рассеянных элементов. Согласно концепции Гольдшмидта в кристаллохимических структурах ионы ведут себя как жесткие сферы (твердые шары). Поэтому радиус каждого иона рассматривается как постоянная величина.

Главная особенность ионов в кристаллохимических структурах заключается в том, что радиусы отрицательно заряженных ионов (анионов) значительно больше радиусов положительно заряженных ионов (катионов). Представим анионы в виде крупных шаров, а катионы – в виде мелких. Тогда моделью кристаллического вещества с ионным типом связи будет пространство, заполненное плотно прилегающими большими шарами – анионами, между которыми должны размещаться мелкие шарики – катионы. Согласно представлениям Гольдшмидта этот каркас играет роль своеобразного геохимического фильтра, способствующего дифференциации химических элементов по величине их ионов. В конкретную кристаллохимическую структуру могут войти не любые элементы, обладающие необходимой валентностью, а лишь те, ионы которых имеют соответствующий размер радиусов.

Образование распространенных минералов сопровождается своего рода сортировкой рассеянных элементов. Для пояснения этого процесса обратимся к распространенному минералу – полевому шпату. Его кристаллохимическая структура образована группировками, состоящими из трех катионов кремния и одного алюминия, каждый из которых связан с четырьмя анионами кислорода. Группировка в целом представляет собой комплексный анион, где восемь ионов кислорода, три кремния и один алюминия. Это создает один отрицательный заряд, который уравновешивается одновалентным катионом калия. В итоге существует трехкамерная структура, состав которой отвечает формуле K.

Величина радиуса иона калия составляет 0,133 нм. Его место в структуре может занять только катион с близкой величиной радиуса. Таковым является двухвалентный катион бария, радиус которого равен 0,134 нм. Барий менее распространен, чем калий. Обычно он присутствует в виде незначительной примеси в полевых шпатах. Только в особых случаях создается его значительная концентрация и образуется редкий минерал цельзиан (бариевый полевой шпат).

Аналогичным образом в распространенных минералах и горных породах избирательно задерживаются химические элементы, концентрация которых не так велика для образования самостоятельных минералов. Взаимное замещение ионов в кристаллической структуре благодаря близости их радиусов называется изоморфизмом. Это явление было обнаружено еще в начале XIX в., но его значение для глобальной дифференциации рассеянных химических элементов установлено только спустя столетие.

В результате изоморфизма рассеянные элементы закономерно концентрируются в определенных минералах. Полевые шпаты служат носителями бария, стронция, свинца; оливины – никеля и кобальта; цирконы – гафния и т.д. Такие элементы, как рубидий, рений, гафний, не образуют самостоятельных соединений в литосфере и полностью рассеяны в кристаллохимических структурах минералов-хозяев.

Изоморфные замещения – не единственная форма нахождения рассеянных элементов. Феномен рассеяния в земной коре проявляется в разных формах на разном уровне дисперсности.

Наиболее грубодисперсной формой рассеяния являются хорошо окристаллизованные, очень мелкие (обычно менее 0,01 – 0,02 мм в поперечнике) акцессорные минералы. Они образуют механические включения в породообразующих минералах (рис. 1.1).

Рис. 1.1 Включение акцессорных апатита (1) и циркона (2) в зерне полевого шпата. Прозрачный шлиф, увеличение 160 ´

Содержание акцессориев весьма незначительное, но концентрация рассеянных элементов в них настолько высокая, что эти элементы образуют самостоятельные соединения. В кристаллических породах в качестве акцессориев присутствуют циркон Zr, рутил, реже анатаз и брукит, имеющие однотипный состав ТiO 2 , апатит Са 5 [РО 4 ] 3 F, магнетит Fe 2+ Fe 2 3+ O 4 , ильменит FeTiO 3 , монацит СеРО 4 , ксенотим YPO 4 , касситерит SnO 2 , хромит ЕеСг 2 О 4 и другие сорных апатита (7) и минералы группы шпинели, минералы группы колумбита (Fe, Mg) (Nb, Та) 2 О 6 и др. Содержание акцессориев в некоторых породообразующих минералах, особенно в слюдах, довольно заметно.

В некоторых минералах, преимущественно среди сульфидов и им подобных соединений, широко распространены так называемые структуры распада твердого раствора – мелкие выделения минерала-примеси в веществе минерала-хозяина. Их примером могут служить «эмульсионная вкрапленность» халькопирита CuFeS 2 и станина Cu 2 FeSnS 4 в сфалерите ZnS, тонкие пластинчатые выделения ильменита FeTiO 3 в магнетите Fe 2+ Fe 2 3+ O 4 , мелкие выделения минералов серебра в галените PbS. В результате в сульфиде свинца присутствует ощутимая примесь серебра, в сульфиде меди – примесь олова, в магнетите – примесь титана.

Применение поляризационного микроскопа и прозрачных шлифов позволило обнаружить в минералах не только твердые включения, но и микро-пустоты, заполненные остатками растворов, из которых осуществлялась кристаллизация (рис. 1.2).

Рис. 1.2. Микрополости в кварце: 1 – кристалл сильвина; 2 – кристалл галита; 3 – пузырек газа; 4 – жидкая фаза. Прозрачный шлиф, увеличение 900 ´


Это явление, впервые специально рассмотренное в 1858 г. основателем оптической петрографии Г. Сорби, к настоящему времени всесторонне изучено. Микрополости в минералах обычно содержат жидкую и газовую фазы, иногда к ним добавляются мелкие кристаллы. Проблема жидких включений была основательно проанализирована У. Ньюхаузом, который отметил присутствие в жидкостях тяжелых металлов (до нескольких процентов).

Некоторая часть примеси рассеянных элементов, легко экстрагируемая из тонко растертых мономинеральных проб, связана именно с жидкими включениями. Н.П. Ермаков (1972), изучив микровключения из флюорита, обнаружил в них n×10 -1 % цинка, марганца, n×10 -2% бария, хрома, меди, никеля и свинца, n× 10 -3% титана. В дальнейшем в жидких включениях были обнаружены и другие рассеянные элементы.

Вместе с тем тщательный анализ мономинеральных проб и использование электронного зондирования показали, что все без исключения породообразующие минералы содержат рассеянные элементы в настолько высокодисперсной форме, что они не могут быть обнаружены не только при помощи оптической, но и электронной микроскопии. В этом случае имеет место рассеяние элементов на уровне ионов и молекул. Формы такого рассеяния не ограничиваются рассмотренными ранее явлениями изоморфизма. Известны многочисленные случаи присутствия химических элементов в минералах, не имеющих никакой связи с изоморфизмом.

Результаты многих тысяч анализов, выполненных в разных странах за последние 50 лет, позволяют утверждать, что все породообразующие минералы являются носителями рассеянных элементов. Именно в них сосредоточена основная масса рассеянных элементов, содержащаяся в земной коре. Зная содержание минералов-носителей и концентрацию в них рассеянных элементов, можно рассчитать баланс внутри конкретной горной породы.

При изучении гранитов Тянь-Шаня было обнаружено, что в кварце, несмотря на ничтожную концентрацию свинца, заключено более 5% всей массы этого металла, содержащегося в породе (табл. 1.2).

Таблица 1.2. Распределение свинца в минералах, слагающих граниты хребта Джумгол

Невозможно предположить изоморфное вхождение свинца, цинка или другого металла в структуру кварца, образованную комбинацией ионов кремния и кислорода. Между тем кварц служит носителем многих рассеянных элементов. Разработан особый метод оценки потенциальной рудоносности горных пород и жил по содержанию в кварце лития, рубидия, бора.

При экспериментальном изучении прочности закрепления рассеянных металлов в породообразующих минералах было обнаружено, что при обработке тонко измельченной минеральной массы последовательными порциями слабых кислотно-щелочных растворителей значительная часть металлов легко извлекается при первой же экстракции, причем это извлечение не сопровождается разрушением кристаллохимической структуры минералов. При дальнейших обработках количество экстрагируемых металлов резко сокращается или прекращается совсем. Это позволило высказать предположение, что часть рассеянных элементов не входит в собственно кристаллохимическую структуру, а приурочена к дефектам реальных кристаллов. Дефекты представляют собой разного рода трещины, причем настолько мелкие, что не обнаруживаются оптическим микроскопом. Легкость извлечения рассеянных металлов объясняется тем, что они связаны с поверхностью минерала-носителя сорбционными силами. В породообразующих силикатах эта форма нахождения рассеянных металлов составляет 10 – 20% от всей массы рассеянных металлов. В частности, непрочно связанная форма свинца в гранитах Тянь-Шаня составляет от 12 до 18% всей массы рассеянного элемента.

Можно выделить следующие формы нахождения рассеянных элементов в кристаллическом веществе земной коры:

I. Микроминералогические формы:

1. Элементы, входящие в акцессорные минералы.

2. Элементы, содержащиеся в микроскопических выделениях в результате распада твердых растворов.

3. Элементы, находящиеся во включениях остаточных растворов. П. Неминералогические формы:

4. Элементы, сорбированные поверхностью дефектов реальных кристаллов.

5. Элементы, входящие в структуру минерала-носителя по законам изоморфизма.

6. Элементы, находящиеся в структуре минерала-носителя в неупорядоченном состоянии.

Сочетание рассмотренных форм нахождения рассеянных элементов сильно меняется в зависимости от многих факторов. Соответственно меняется и суммарное содержание рассеянного элемента в разных участках земной коры.

3. Особенности распределения химических элементов в земной коре

Варьирование содержания элемента в разных пробах обусловлено многими независимыми причинами. Когда распределение величины определяется достаточно большим числом примерно равнодействующих и взаимно независимых причин, то оно подчиняется так называемому нормальному закону Гаусса. Его графическим выражением является кривая с симметричными ветвями по обе стороны максимальной ординаты. При нормальном распределении наиболее вероятным значением служит среднее арифметическое х, которое совпадает с наиболее часто встречающимися значениями – модой. Растянутость симметричной кривой по оси абсцисс, т.е. разброс значений в большую и меньшую стороны от моды, характеризуется средним квадратичным отклонением а.

Нормальное распределение может также проявляться не для самой величины, а для ее логарифма (логарифмически нормальный, или логнормальный, закон распределения). В этом случае мода совпадает со средним геометрическим, а разброс значений характеризуется логарифмом а.

В 1940 г. Н.К. Разумовский эмпирическим путем обнаружил, что содержание металлов в рудах соответствует логарифмически нормальному распределению. Л.X. Арене в 1954 г., обработав обширный материал, независимо от Разумовского установил, что распределение рассеянных элементов в магматических породах аппроксимируется логарифмически нормальным законом. Многочисленные факты указывают на то, что распределение элементов с высокими кларками обычно подчиняется нормальному закону, а рассеянных – логнормальному. Это еще раз подтверждает принципиальное различие главных и рассеянных элементов.

С высокой вариабельностью низкокларковых элементов связана их способность к высокой степени концентрации. Максимальная степень концентрации главных элементов составляет 10 – 20 раз по отношению к их кларку, а для рассеянных элементов – в сотни и тысячи раз больше. Например, в рудах промышленных месторождений степень концентрации свинца, никеля, олова, хрома составляет 1000×п.

Говоря об огромных массах тяжелых металлов, сосредоточенных в месторождениях руд, следует помнить, что эти массы – ничтожная часть общего количества металлов, рассеянных в земной коре. В частности, общемировые запасы руд цинка, меди, свинца, никеля составляют всего лишь тысячные доли процента от масс этих металлов, рассеянных в верхнем километровом слое земной коры континентов.

Залежи руд связаны с окружающими горными породами постепенными переходами. Рудные тела находятся как бы в чехле постепенно убывающей концентрации металлов. Такие образования получили название ореолов рассеяния Первичные, сингенетичные рудные ореолы возникают одновременно с рудными телами и в результате одних и тех же процессов. Они имеют разнообразную конфигурацию, зависящую от геологического строения, состава вмещающих пород и условий рудообразования.

В рудах наряду с одним или несколькими главными рудообразующими элементами присутствуют сопутствующие элементы, концентрация которых также повышена, но не настолько, как главных. Элементы-спутники часто образуют изоморфные замещения главных. Например, в цинковых рудах постоянно содержится кадмий, в меньшем количестве – индий, галлий, германий. В медно-никелевых рудах присутствует значительная примесь кобальта, в меньшем количестве – селена и теллура. Все сопутствующие элементы также рассеиваются вокруг рудных тел. Обладая неодинаковой геохимической подвижностью, они образуют переходные зоны разной протяженности. В итоге состав и строение ореолов рассеяния очень сложны.

Среднее содержание химического элемента представляет собой норму – геохимический фон – для данного типа пород в определенном районе. На геохимическом фоне выделяются геохимические аномалии – участки горных пород с повышенной концентрацией рассеянных элементов. Если они связаны с залежами руд, то это ореолы рассеяния. Если же концентрации металлов не достигают кондиции руды, то такие аномалии называют ложными. Используя статистическую обработку массовых аналитических данных, можно обнаружить закономерные изменения величины геохимического фона в пространстве и выявить геохимические провинции. В пределах провинций горные породы одного типа обладают выдержанными статистическими параметрами, в первую очередь значениями среднего содержания одного или нескольких рассеянных элементов. Среднее содержание некоторых элементов в однотипных породах разных геохимических провинций может сильно различаться (в несколько раз). При этом химический состав этих пород, определяемый содержанием главных элементов, остается одинаковым или имеет очень слабые отличия. Например, в гранитах разных провинций, имеющих практически одинаковое количество кремния, алюминия, железа, калия, содержание олова, свинца, молибдена, урана может различаться в 2–3 раза.

Изложенный материал свидетельствует о неравномерности распределения рассеянных элементов в земной коре. Поэтому наряду с определением кларков, т.е. величины средней концентрации элементов в земной коре в целом, необходимо учитывать их способность концентрироваться или рассеиваться в различных объектах – разных типах горных пород или в однотипных породах, но находящихся в разных геохимических провинциях, в рудах и др. Чтобы количественно оценить неоднородность химических элементов в земной коре, В.И. Вернадский ввел специальный показатель – кларк концентрации К к. Его числовое значение характеризует отклонение содержания элемента в данном объеме от кларка:

К К = А/К,

где А – содержание химического элемента в горной породе, руде, минерале и др.;

К – кларк этого элемента в земной коре. Если кларк концентрации больше единицы, это указывает на обогащение элементом, если меньше – означает снижение его содержания по сравнению с данными для земной коры в целом.

Изменение концентрации химических элементов в пространстве, отклонение от глобальной или местной геохимической нор МЬ1 __ не отдельные случаи, а характерная черта геохимической структуры земной коры. Это имеет очень важное значение для состава фотосинтезирующих организмов суши, которые образуют основную часть массы живого вещества Земли.


Литература

1. Алексеенко В.А. Экологическая геохимия. – М.: Логос, 2000. – 627 с.

2. Арене Л. X. Распределение элементов в изверженных породах // Химия земной коры. – М.: Наука, 1964. – Т. 2. – С. 293–300.

3. Вернадский В.И. Очерки геохимии // Избр. соч.: В 5 т. – М.: Изд-во АН СССР, 1954. – Т. 1. – С. 7–391.

4. Войткевич Г.В., Мирошников А.Е., Повареных А.С., Прохоров В.Г. Краткий справочник по геохимии. – М.: Недра, 1977. – 183 с.

5. Гольдшмит В.М. Принципы распределения химических элементов в минералах и горных породах // Сб. ст. по геохимии редких элементов. – М. – Л.: ГОНТИ НКТП СССР, 1930. – С. 215–242.

6. Добровольский В.В. География микроэлементов. Глобальное рассеяние. – М.: Мысль, 1983. – 269 с.

7. ПерельманА.И. Геохимия. – М.: Высш. шк., 1989. – 528 с.

8. Ронов А.Б., Ярошевский А.А. Новая модель химического состава земной коры // Геохимия. – 1976. – №12. – С. 1763–1795.

Земная кора имеет огромное значение для нашей жизни, для исследований нашей планеты.

Это понятие тесно связано с другими, характеризующими процессы, происходящие внутри и на поверхности Земли.

Что такое земная кора и где она находится

Земля имеет целостную и непрерывную оболочку, в которую входят: земная кора, тропосфера и стратосфера, являющиеся нижней частью атмосферы, гидросфера, биосфера и антропосфера.

Они тесно взаимодействуют, проникая друг в друга и постоянно обмениваясь энергией и веществом. Земной корой принято называть внешнюю часть литосферы - твердой оболочки планеты. Большую часть ее внешней стороны покрывает гидросфера. На остальную, меньшую часть воздействует атмосфера.

Под корой Земли находится более плотная и тугоплавкая мантия. Их разделяет условная граница, названная именем хорватского ученого Мохоровича. Ее особенность - в резком увеличении скорости сейсмических колебаний.

Чтобы получить представление о земной коре, используются различные научные методы. Однако получение конкретных сведений возможно лишь способами бурения на большую глубину.

Одной из задач такого исследования было установление природы границы между верхней и нижней континентальной корой. Обсуждались возможности проникновения в верхнюю мантию с помощью самонагревающихся капсул из тугоплавких металлов.

Строение земной коры

Под континентами выделяются ее осадочный, гранитный и базальтовый слои, толщина которых в совокупности составляет до 80 км. Горные породы, называемые осадочными, образовались в результате осаждения веществ на суше и в воде. Располагаются преимущественно пластами.

  • глины
  • глинистые сланцы
  • песчаники
  • карбонатные породы
  • породы вулканического происхождения
  • каменный уголь и другие породы.

Осадочный слой помогает глубже узнать о природных условиях на земле, которые были на планете в незапамятные времена. У такого слоя может быть различная толщина. В некоторых местах его может не быть вообще, в других, преимущественно больших углублениях, может составлять 20-25 км.

Температура земной коры

Важным энергетическим источником для обитателей Земли является тепло ее коры. Температура увеличивается по мере углубления в нее. Самый близкий к поверхности 30-метровый слой, именуемый гелиометрическим, связан с теплом солнца и колеблется в зависимости от сезона.

В следующем, более тонком слое, который увеличивается в континентальном климате, температура постоянна и соответствует показателям конкретного места измерения. В геотермическом слое коры температура связана с внутренним теплом планеты и растет по мере углубления в нее. Она в разных местах разная и зависит от состава элементов, глубины и условий их расположения.

Считается, что температура в среднем повышается на три градуса по мере углубления на каждые 100 метров. В отличие от континентальной части температура под океанами растет быстрее. После литосферы располагается пластичная высокотемпературная оболочка, температура, которой составляет 1200 градусов. Называется она астеносферой. В ней есть места с расплавленной магмой.

Проникая в земную кору, астеносфера может изливать расплавленную магму, вызывая явления вулканизма.

Характеристика Земной коры

Земная кора обладает массой менее пол-процента всей массы планеты. Она является наружной оболочкой каменного слоя, в котором происходит движения вещества. Этот слой, который имеет плотность вдвое меньшую, чем у Земли. Его толщина меняется в пределах 50-200 км.

Уникальность земной коры в том, что она может быть континентального и океанического типов. У континентальной коры три слоя, верхний из которых сформирован за счет осадочных пород. Океаническая кора сравнительно молода и ее толщина меняется незначительно. Образуется она за счет веществ мантии из океанических хребтов.

земная кора характеристика фото

Толщина слоя коры под океанами составляет 5-10 км. Ее особенность в постоянных горизонтальных и колебательных движениях. Большую часть коры представляют базальты.

Внешняя часть земной коры является твердой оболочкой планеты. Ее cтроение отличается наличием подвижных областей и относительно стабильных платформ. Литосферные плиты двигаются относительно друг друга. Движение этих плит может вызывать землетрясения и другие катаклизмы. Закономерности таких движений исследуются тектонической наукой.

Функции земной коры

К основным функциям земной коры принято относить:

  • ресурсную;
  • геофизическую;
  • геохимическую.

Первая из них обозначает наличие ресурсного потенциала Земли. Он представляет собой в первую очередь совокупность запасов полезных ископаемых, находящихся в литосфере. Кроме того, ресурсная функция включает в себя ряд факторов среды обитания, обеспечивающих жизнь человека и других биологических объектов. Одним из них является тенденция образования дефицита твердой поверхности.

так делать нельзя. спасем нашу Землю фото

Тепловые, шумовые и радиационные эффекты реализуют геофизическую функцию. Например, возникает проблема естественного радиационного фона, который на земной поверхности в основном безопасен. Однако в таких странах как Бразилия и Индия он в сотни раз может превышать допустимый. Считается, что его источником является радон и продукты его распада, а также некоторые виды человеческой деятельности.

Геохимическая функция связана с проблемами химического загрязнения, вредного для человека и других представителей животного мира. В литосферу попадают различные вещества, обладающие токсическими, канцерогенными и мутагенными свойствами.

Они безопасны, когда находятся в недрах планеты. Извлеченные из них цинк, свинец, ртуть, кадмий и другие тяжелые металлы могут представлять большую опасность. В переработанном твердом, жидком и газообразном виде они попадают в окружающую среду.

Из чего состоит Земная кора

В сравнении с мантией и ядром кора Земли является хрупким, жестким и тонким слоем. Она состоит из сравнительно легкого вещества, включающего в свой состав порядка 90 природных элементов. Они содержатся в разных местах литосферы и с разной степенью концентрации.

Основными являются: кислород кремний алюминий, железо, калий, кальций, натрий магний. 98 процентов земной коры состоит из них. В том числе около половины составляет кислород, свыше четверти - кремний. Благодаря их комбинациям образуются такие минералы как алмаз, гипс, кварц и пр. Нескольких минералов могут образовать горную породу.

  • Сверхглубокая скважина на Кольском полуострове дала возможность познакомиться с образцами минералов с 12-километровой глубины, где были обнаружены породы, близкие к гранитам и глинистым сланцам.
  • Самая большая толщина коры (около 70 км) выявлена под горными системами. Под равнинными участками она 30-40 км, а под океанами - лишь 5-10 км.
  • Значительная часть коры образует древний низкоплотный верхний слой, состоящий преимущественно из гранитов и глинистых сланцев.
  • Структура земной коры напоминает кору многих планет, в том числе на Луне и их спутниках.