Золотое сечение – математика - сакральная геометрия - наука - каталог статей - роза мира. Руководство по эксплуатации: Золотое сечение

1. Понятие гармонии Вот как пишет о гармонии Алексей Петрович Стахов , доктор технических наук (1972 г.), профессор (1974 г.), академик Академии инженерных наук Украины ( www . goldenmuseum . com ). "С давних пор человек стремится окружать себя красивыми вещами. Уже предметы обихода жителей древности, которые, казалось бы, преследовали чисто утилитарную цель - служить хранилищем воды, оружием на охоте и т.д., демонстрируют стремление человека к красоте. На определенном этапе своего развития человек начал задаваться вопросом: почему тот или иной предмет является красивым и что является основой прекрасного? Уже в Древней Греции изучение сущности красоты, прекрасного , сформировалось в самостоятельную ветвь науки - эстетику, которая у античных философов была неотделима от космологии. Тогда же родилось представление о том, что основой прекрасного является гармония. Красота и гармония стали важнейшими категориями познания, в определенной степени даже его целью, ибо в конечном итоге художник ищет истину в красоте, а ученый - красоту в истине. Красота скульптуры, красота храма, красота картины, симфонии, поэмы... Что между ними общего? Разве можно сравнивать красоту храма с красотой ноктюрна? Оказывается можно, если будут найдены единые критерии прекрасного, если будут открыты общие формулы красоты, объединяющие понятие прекрасного самых различных объектов - от цветка ромашки до красоты обнаженного человеческого тела?.....". Известный итальянский теоретик архитектуры Леон-Баттиста Альберти, написавший много книг о зодчестве, говорил о гармонии следующее:
"Есть нечто большее, слагающееся из сочетания и связи трех вещей (числа, ограничения и размещения), нечто, чем чудесно озаряется весь лик красоты. Это мы называем гармонией, которая, без сомнения, источник всякой прелести и красоты. Ведь назначение и цель гармонии - упорядочить части, вообще говоря, различные по природе, неким совершенным соотношением так, чтобы они одна другой соответствовали, создавая красоту... Она охватывает всю жизнь человеческую, пронизывает всю природу вещей. Ибо все, что производит природа, все это соизмеряется законом гармонии. И нет у природы большей заботы, чем та, чтобы произведенное ею было совершенным. Этого никак не достичь без гармонии, ибо без нее распадается высшее согласие частей".
В Большой Советской Энциклопедии дается следующее определение понятия "гармония":
"Гармония - соразмерность частей и целого, слияние различных компонентов объекта в единое органическое целое. В гармонии получают внешнее выявление внутренняя упорядоченность и мера бытия".
"Формул красоты" уже известно немало. Уже давно в своих творениях люди предпочитают правильные геометрические формы - квадрат, круг, равнобедренный треугольник, пирамиду и т.д. В пропорциях сооружений отдаются предпочтение целочисленным соотношениям. Из многих пропорций, которыми издавна пользовался человек при создании гармонических произведений, существует одна, единственная и неповторимая, обладающая уникальными свойствами. Эту пропорцию называли по разному - "золотой", "божественной", "золотым сечением", "золотым числом", "золотой серединой".

рис. 1 "Золотая пропорция" - это понятие математическое и ее изучение - это прежде всего задача науки. Но она же является критерием гармонии и красоты, а это уже категория искусства и эстетики. И наш Музей, который посвящен изучению этого уникального феномена, является, несомненно, научным музеем, посвященным изучению гармонии и красоты с математической точки зрения". На сайте А. П. Стахова ( www . goldenmuseum . com ) приводится много интересной и поучительной информации о замечательных свойствах золотого сечения. И это не удивительно. С понятием «золотое сечение» связывают гармонию Природы. При этом с гармонией, как правило, связывают принципы симметрии в живой и неживой Природе. Поэтому всеобщностью проявления принципа золотого сечения сегодня уже никого не удивишь. И каждое новое открытие в сфере выявления еще одной золотой пропорции уже никого не поражает, разве что самого автора такого открытия. Всеобщность этого принципа ни у кого не вызывает сомнения. В различных справочниках приводятся сотни формул, связывающих ряд Фибоначчи с золотым сечением, в том числе и ряд формул, отражающих взаимодействия в мире элементарных частиц . Среди этих формул хочется отметить одну- бином Ньютона для золотой пропорции где - число перестановок. А бином Ньютона, как известно, отражает степенную функцию двойственного отношения. Данная формула привязывает бином золотого отношения к Единице. Без этого принципа, по сути дела, нельзя рассмотреть ни одной фундаментальной проблемы. В милогии эта пропорция обоснована как принцип самодостаточности. И все же несмотря на всеобщность золотая пропорция на практике используется далеко не всегда, и не везде. 2 . МОНАДА И ЗОЛОТОЕ СЕЧЕНИЕ Принципы симметрии лежат в основе теории относительности, квантовой механики, физики твердого тела, атомной и ядерной физики, физики элементарных частиц. Выше было показано, что симметрия - это одна из форм проявления двойственности. Поэтому нет ничего удивительного в том, что эти принципы наиболее ярко выражаются в свойствах инвариантности законов природы.В показано, что симметрия и асимметрия не просто взаимосвязаны друг с другом, а они являются разными формами проявления закономерности двойственности. Закономерность двойственности является одним из основных механизмов эволюции живой и неживой материи. Действительно, способность к размножению у живых организмов можно естественно объяснить только тем, что в процессе своего развития организм полностью достраивает свою оболочку и попытка дальнейшего усложнения структуры приводит, в силу закономерности об ограниченности и замкнутости, к трансформации из организма с внутренней двойственностью в организм с внешней двойственностью, т. е. удвоению, которое осуществляется путем деления оригинала. Затем процесс повторяется. Закономерность двойственности является ответственной за создание дублирующих органов в живом организме. Это дублирование не является следствием эволюции живых организмов. В основе золотого сечения лежитпростая пропорция, которая хорошо видна на рисунке золотой спирали: Правила золотого сечения были известны еще в Вавилонии и древнем Египте. Пропорции пирамиды Хеопса, предметов из гробницы Тутанхамона, других произведений древнего искусства красноречиво об этом свидетельствуют, а сам термин “золотое сечение” принадлежит Леонардо да Винчи. С тех пор многие шедевры искусства, архитектуры и музыки выполняются при неукоснительном соблюдении золотой пропорции, несомненно отражающей строение наших сенсорных оболочек – глаз и ушей, головного мозга – анализатора геометрических, цветовых, световых, звуковых и других образов. Золотое сечение обладает еще одной тайной. Оно скрывает в себе свойство самонормирования . Академик Толкачев В.К. в своей книге "Роскошь системного мышления" так пишет об этом важном свойстве золотого сечения: «Когда-то Клавдий Птолемей разделил равномерно рост человека на 21 отрезок и выделил две основные части: большую (мажор), состоящую из 13-и отрезков, и меньшую (минор) - из 8-и. При этом оказалось, что отношение длины всей фигуры человека к длине ее большей части равно отношению большей части к меньшей.... Проиллюстрировать золотое отношение можно следующим образом. Если единичный отрезок разделить на две неравные части (мажор и минор) так, что длина всего отрезка (т.е. мажор + минор = 1) относится к мажору точно так же, как мажор относится к минору: (мажор + минор) / мажор = мажор / минор = Ф, то такая задача имеет решение в виде корней уравнения х 2 - х - 1 =0, численное значение которых: х 1 = - 0,618033989..., х 2 = 1,618033989..., Первый корень обозначается буквой " Ф ", а второй " - Ф ", но мы будем пользоваться иными обозначениями: Ф =1,618033989..., а Ф -1 = 0,618033989... Это - единственное число, которое обладает свойством быть ровно на единицу больше своего обратного отношения". Отметим, что другое уравнение х 2 - y - 1 = xy превращается в тождество при следующих значениях х 1 = + 0,618033989..., y 1 =- 1,618033989..., x 2 = -1,618033989..., y 2 = 0,618033989..., Может быть в совокупности эти корни и порождают животворящий крест - крест золотого сечения? Уравнение золотого сечения Ф 2 -Ф=1 где Ф 1 = -Ф -1 = - 0,618033989..., и Ф 2 = Ф 1 =1,618033989..., удовлетворяют свойству самонормирования , позволяющее строить более сложные "конструкции" по " образу и подобию ". Подставляя корни в уравнение х ( х-1)=1, мы получим Ф 1 (Ф 1 -1)= 1,618..*1,618..-1,618..=2,618..-1,618..=1 Ф -2 -(-Ф -1)=0,382...+0,6181=1. Таким образом, данное уравнение отражает не только принцип самонормирования , вытекающего из Единого закона эволюции двойственного отношения (монады), но и связь золотого сечения с биномом Ньютона (с монадой). Нетрудно показать, что будут справедливы следующие тождества Ф -2 =0,382...; Ф -1 =0,618...; Ф 1 =1,618...; Ф 2 =2,618...; Откуда непосредственно можно увидеть, что корни уравнения Ф 2 -Ф=1 обладают еще и другим и замечательными свойствами Ф 1 Ф -1 =Ф 0 =1 и Ф -1 (Ф 1 -1)= 1-Ф -1 ; Ф 1 (Ф -1 -1)=1-Ф 1 =1; Оно характеризует инвариантность одной математической монады в другую, путем умножения её на обратную величину, т.е. можно сказать, что корни уравнения золотого сечения сами формируют золотую, самонормированную монаду <Ф -1 ,Ф 1 > . Поэтому данное уравнение по праву можно назвать уравнением золотого сечения. Дополнительные свойства этого уравнения может узнать каждый, используя бином Ньютона и производящие функции (Преемственность ). Нетрудно понять, что процесс все более сложных "золотых монад" будет осуществляться "по образу и подобию" , т.е. этот процесс будет периодически повторяющимся, а все результаты оказываются как бы замкнутыми в рамки золотого сечения. Но, пожалуй, самые замечательные свойства золотого сечения связаны, в первую очередь, с уравнением золотого сечения, приведенным выше. Это уравнение является двойственным х 2 + х - 1 =0. Корни этого уравнения численно равны: х 1 = + 0,618033989..., х 2 = -1,618033989..., Это значит, что уравнения золотого сечения формируют крест золотого сечения с перекладинами
рис. 2
Вот он, поистине золотой крест, лежащий в основе мироздания! На правом рисунке непосредственно видно, что значения выражения в полюсах вертикальной перекладины равны 1. Из креста на левом рисунке видно также, что при каждом переходе с одной перекладины на вторую осуществляются самонормировки . Самонормировка происходит как при сложении, так и при умножении. Разница получается только в знаке. И это не случайно . При движении по перекладинам мы получаем еще четыре значения · при сложении : 0 и 0 , · при умножении : -0,382 .., и -2,618 . Нетрудно показать, что будут справедливы следующие тождества Ф -2 =0,382...; Ф -1 =0,618...; Ф 1 =1,618...; Ф 2 =2,618...; Используя ряд этих значений, и совершая обход по кресту мы получим еще один золотосеченный крест. Нетрудно показать, как из этих крестов, сформировать двойной крест, порождающий закон Куба.
рис. 3
Ниже мы покажем, что шесть полученных значений полностью вписываются в рамки сложного отношения - уникальной закономерности, известной из проективной геометрии. А сейчас мы приведем еще один рисунок, который непосредственно говорит о связи золотого сечения и Куба Закона. рис. 4 Сравните этот рисунок, нарисованный еще Леонардо да Винчи, с предыдущим. Увидели? Поэтому гимн золотому сечению можно продолжать до бесконечности. Так итальянский математик Лука Пачолли в своем труде "Божественная пропорция" приводит 13 свойств золотого сечения, снабжая каждое из них эпитетами - исключительное, несказанное, замечательнейшее, сверхъестественное, и т.д. Трудно сказать, связаны ли эти свойства с числом 13 или нет. Но вот хроматическая гамма связана и с числом 13, и с числом 8. Так, пропорцию 13/8 можно представить как 8/8+5/8. С этими пропорциями связываются и многие духовные знания (Путь к себе ). 3. РЯДЫ ЗОЛОТОГО СЕЧЕНИЯ Из вышеприведенных свойств золотого сечения следует вывод, что ряд ...; Ф -2 =0,382...; Ф -1 =0,618...; Ф 0 ; Ф 1 =1,618...; Ф 2 =2,618...; ...; может быть продолжен как вправо, так и влево. Более того, умножение это ряда на Ф + n или Ф - n порождает новый ряд, сдвинутый соответственно вправо или влево от исходного. Коэффициенты Ф + n или Ф - n можно считать коэффициентами подобия золотосеченных рядов. Золотосеченные ряды могут формировать натуральный ряд целых чисел.
Посмотрите, эти числа имеют удивительные свойства. Они формируют не только Великие Пределы двойственных"з олотых монад". Они формируют Великие Пределы триад (числа 5, 8,..). Они формируют и крест (число 9). Но существуют и другие, более фундаментальные золотосеченные ряды. В первую очередь следует привести формулу "золотого" бинома Ньютона. Бином Ньютона уже изначально свидетельствует о существовании монады (двойственного отношения) и его свойства лежат в основе биномиальных рядов (арифметический треугольник и др.). Теперь можно сказать и о том, что все биномиальные ряды могут быть выражены через золотую пропорцию. Золотая монада бинома Ньютона отражает еще одно важнейшее свойство мироздания. Она является нормированной (единичной). 4. О СВЯЗИ ЗОЛОТОГО СЕЧЕНИЯ С РЯДОМ ФИБОНАЧЧИ Природа как бы решает задачу сразу с двух сторон и складывает полученные результаты. Как только получает в сумме 1, то осуществляет переход в следующее измерение, где начинает строить все сначала. Но тогда она и должна строить это золотое сечение по определенному правилу. Природа не пользуется золотым сечением сразу. Она его получает путем последовательных итераций. Она для порождения золотогосечения пользуется другим рядом, - рядом Фибоначчи.

Рис.5

Рис. 6.Спираль золотого сечения и спираль Фибоначчи

Замечательным свойством этого ряда является то, что по мере увеличения чисел ряда отношение двух соседних членов этого ряда асимптотически приближается к точной пропорции Золотого сечения (1:1,618) основе красоты и гармонии в окружающей нас природе, в том числе и в человеческих отношениях . Отметим, что сам Фибоначчи открыл свой знаменитый ряд, размышляя над задачей о количестве кроликов, которые в течении одного года должны родиться от одной пары. У него получилось, что в каждом последующем месяце после второго число пар кроликов в точности следует цифровому ряду, которое ныне носит его имя. Поэтому не случайно, что и сам человек устроен по ряду Фибоначчи. Каждый орган устроен в соответствии с внутренней, или внешней двойственностью. Следует сказать, что спираль Фибоначчи может быть двойной. Существуют многочисленные примеры этих двойных спиралей, встречающихся повсюду. Так спирали подсолнухов всегда соотносятсяс рядом Фибоначчи. Даже в обычной сосновой шишке можно увидеть эту двойную спираль Фибоначчи. Первая спираль идет в одну сторону, вторая - в другую. Если посчитатьчисло чешуек в спирали, вращающейся в одном направлении, и число чешуек в другой спирали, можно увидеть, что это всегдадва последовательных числа ряда Фибоначчи. Может быть восемь в одном направлении и 13 в другом, или 13 в одном и 21 в другом . В чем разница между спиралями золотого сечения и спиралью Фибоначчи?Спираль золотого сечения идеальна. Она соответствуетПервоисточнику гармонии. Эта спираль не имеет ни начала, ни конца. Она бесконечна. Спираль Фибоначчи имеет начало, от которого она начинает “раскрутку”. Это очень важное свойство. Оно позволяет Природе после очередного замкнутого цикла осуществлять строительство новой спирали с“нуля”. Эти факты еще раз подтверждают, что закон о двойственности дает не только качественные, но и количественные результаты. Они заставляют задуматься о том, что окружающий нас Макромир и Микромир эволюцирует по одним и тем же законам- законам иерархии, и что эти законы едины для живой и для неживой материи. Закон двойственности является виновником того, что Иерархия, имея в своем багаже только один этот алгоритм формирования инвариантных оболочек, позволяет строить производящие функции этих оболочек, строить Единый Периодический ЗаконЭволюции Материи . Пусть мы имеемследующую производящую функцию При n=1 мы будем иметь производящуюфункцию вида и т.д.Теперь попробуем определять очередной член производящей функции по рекуррентной зависимости, полагая, чтоэтот член функции будет получаться путем суммирования ее двух последних членов. Например,при n=1, значение третьего члена ряда будет равно 2. В итоге мы получимряд (1-1х+2х2). Тогда,умножаяпроизводящую функцию на оператор (1-х) и используя рекуррентную зависимость для вычисления очередного члена ряда, мы и получимискомую производящую функцию. Обозначая через значение n-го члена ряда, а через предыдущее значение этого ряда и полагая n=1,2,3,….процесс последовательного формирования членов ряда можноизобразить следующимобразом (табл. 1).


Таблица 1.

Из таблицы видно, что после получения очередного результирующего члена ряда, этот член подставляется в исходный многочлен и производится сложение с предыдущим, затем новый результирующий член подставляется в исходный ряд и т. д. В результате мыполучаемряд Фибоначчи. Из таблицы непосредственно видно, что ряд Фибоначчи обладает свойством инвариантности относительно оператора (1-х) -онформируется какряд, получаемый в результате умножения ряда Фибоначчи на оператор (1-х), т.е.производящая функция ряда Фибоначчи при умножении на оператор (1-х) порождает саму себя. И это замечательное свойство также является следствием проявления закономерности о двойственности. Действительно в , , было показано, что многократное применение оператора вида(1+х) оставляет структурумногочлена неизменной, а ряд Фибоначчи обладает дополнительным,ещеболее замечательными свойствами: каждый член этого ряда является суммой двух его последних членов.Поэтому Природе не надо помнить сам ряд Фибоначчи. Надо только помнить последние два члена ряда и оператор видаP*(x )=(1-x), ответственного за данный алгоритмудвоения, чтобы получать без ошибки ряд Фибоначчи. Но почемув Природеименно этот ряд играет решающую роль?На этот вопрос может дать исчерпывающий ответ концепция тройственности, определяющая условия ее самосохранения. При нарушении «баланса интересов»триады одним из ее «партнеров», «мнения» двух других «партнеров» должны быть скорректированы. Особенно наглядно концепция тройственности проявляется в физике, где из кварков построили «почти» все элементарные частицы.Если вспомнить, что отношения дробных зарядов кварковых частиц составляют ряд , а это и есть первые члены ряда Фибоначчи, которые необходимы дляформирования других элементарных частиц. Возможно, что спираль Фибоначчи может играть решающую роль и в формировании закономерности ограниченности и замкнутости иерархических пространств. Действительно, представим, что на каком-то этапе эволюции спираль Фибоначчи достигла совершенства (она стала неотличима отспирали золотого сечения) и по этой причине частица должнатрансформироваться в следующую «категорию». Чудесные свойства ряда Фибоначчи проявляются и в самих числах, являющихся членами этого ряда.Расположим члены ряда Фибоначчи по вертикали., а затемвправо, в порядке убывания, запишем натуральные числа
1 2 32 543 8765 13 12 11 1 1 098 21 20 19 18 17 16 1514 13 34 33 32 31 30 29 28 27 26 25 24 23 22 21 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 ....
Каждая строчка начинается и завершается числом Фибоначчи, т. е. в каждой строчке всего два таких числа. Подчеркнутые числа - 4, 7, 6, 11, 10, 18, 16, 29, 26, 47, 42обладают особыми свойствами (второй уровень иерархии ряда Фибоначчи):
(5-4)/(4-3)= 1/1 (8-7)/(7-5) = 1/2 и(8-6)/(6-5)= 2/1 (13-11)/(11-8) = 2/3 и (13-10)/(10-8) = 3/2 (21-18)/(18-13) = 3/5 и (21-16)/(1б-13) = 5/3 (34-29)/(29-21) = 5/8 и (34-26)/(26-21) = 8/5 (55-47)/(47-34) = 8/13 и (55-42)/(42-34) = 13/8
Мы получили дробный ряд Фибоначчи, который, возможно,«исповедуют» коллективные спиныэлементарных частиц и атомов химических элементов. Следующий уровень иерархии образуется в результате дробления интервалов между числами Фибоначчи и выделенными числами. Например, на третью ступень иерархии встанут числа 52 и 50 из интервала 55-47. Процесс стр уктурирования ряда натуральных чисел может быть продолжен, т.к.свойствапериодичности и многоуровневости строения материи отражается даже в свойствах самого ряда Фибоначчи. Но у ряда Фибоначчи имеется еще одна тайна, вскрывающая сущность периодичности изменения свойств дв ойственного отношения (монады). Выше был определен диапазон изменения свойств дв ойственного отношения, характеризующего его норму самодостаточности U=<2/3, 1) Построим для данного диапазона ряд Фибоначчи L==<(-1/3), 0+(-1/3), (-1/3)+(-1/3), (-1/3)+(-2/3) >= <-1/3, -1/3, -2/3, -3/3>

Мы получим L -тетраэдр, характеризующий возрастающую спираль эволюции двойственного отношения. Продолжим этот процесс. Попытка выйти за пределы данного диапазона нормы самодостаточности приведет к его нормированию, т.е. первым элементом в D -тетраэдре будет характеризоваться нормой самодостаточности, равной 1,0 . Но, продолжая далее этот процесс, мы будем вынуждены постоянно производить перенормировку. Следовательно, эволюция не может продолжаться? Но, в самом вопросе имеется и ответ. После перенормировки эволюция должна начаться сначала, но в противоположную сторону, т.е. при формировании "параллельного" D-тетраэдра должен измениться знак числа и ряд Фибоначчи начинает обратное движение.

D==<(1/3), 0+(1/3), (1/3)+(1/3), (1/3)+(2/3) >= <1/3, 1/3, 2/3, 3/3>

Тогда общий ряд , характеризующий норму самодостаточности "звездного тетраэдра" будет характеризоваться соотношениями

U==const

Устойчивое состояние звездного тетраэдра будет зависеть от соответствующего сопряжения L- и D- тетраэдров. При U=1 будем иметь куб. При U=2/3 мы получим самодостаточный звездный тетраэдр, с самодостаточными L- и D- тетраэдрами. При меньших значениях устойчивое состояние звездного тетраэдра будет достигаться только совместными усилиями L- и D- тетраэдрами. Очевидно, что в этом случае минимальное значение нормы самодостаточности звездного тетраэдра будет равно U=1/3, т.е. два н е самодостаточных тетраэдра совместными усилиями образуют самодостаточный звездный тетраэдр U. В самом общем случае устойчивые состояния звездного тетраэдра U можно проиллюстрировать, например, следующей схемой.

Рис. 7

На последнем рисунке приведена фигура, напоминающая мальтийский крест, с восемью вершинами. т .е. эта фигура снова навевает ассоциации со звездным тетраэдром.

О чудесных свойствах ряда Фибоначчи, о его периодичности свидетельствует следующая информация ( Михайлов Владимир Дмитриевич,« Живая информационная Вселенная», 2000 г., Россия, 656008, г. Барнаул, ул. Партизанская дом. 242).

с.10. "Законы «золотой пропорции», «золотого сечения» связаны с цифровым рядом Фибоначчи, открытого в 1202 году, является направлением в теории кодирования информации. За многовековую историю познания чисел Фибоначчи, образуемый его членами отношения (числа) и их различные инварианты скрупулезно изучены и обобщены, но так полностью и не расшифрованы. Математическая последовательность ряда чисел Фибоначчи представляет из себя последовательность чисел, где каждый последующий член ряда, начиная с третьего, равен сумме двух предыдущих: 1,1,2,3,5,8,13,21,34,55,89,144,233… до бесконечности. …Цифровой код цивилизации можно определить с помощью различных методов в нумерологии. Например, с помощью приведения сложных чисел к однозначным (к примеру: 13 есть (1+3)=4, 21 есть (2+3)=5 и т.д.) Проводя подобную процедуру сложения со всеми сложными числами ряда Фибоначчи, получим следующий ряд из 24 цифр: 1 ,1 ,2 ,3 ,5 ,8 ,4 ,3 ,7 ,1 ,8 ,9 ,8 ,8 ,7 ,6 ,4 ,1 ,5 ,6 ,2 ,8 ,1 ,9 далее сколько не преобразовывай числа в цифры, через 24-ре цифры цикл будет последовательно повторяться бесконечное количество раз… …не является ли набор из 24 цифр своеобразным цифровым кодом развития цивилизации? С.17 Если Пифагорийскую Четверку в последовательности 24-х цифр Фибоначчи разделить между собой (как бы переломить) и наложить друг на друга, то возникает картина взаимоотношений 12-ти дуальностей противоположных цифр, где каждая пара цифр в сумме дает 9-ку (дуальность , рождающая троичность)....
1 1 8 =9 2 1 8 =9 3 2 7 =9 4 3 6 =9 5 5 4 =9 6 8 1 =9 7 4 5 =9 8 3 6 =9 9 7 2 =9 10 1 8 =9 11 8 1 =9 12 9 9 = 18=1+8=9 (моя редакция)

1 1 1 1 75025

2 1 1 1 75025 3 2 2 2 150050 4 3 3 3 225075 5 5 5 5 375125 6 8 8 8 600200 7 4 1+3 13 4 975325 8 3 2+1 21 3 1575525 9 7 3+4 34 7 2550850 10 1 5+5=10=1 55 1 4126375 11 8 8+9=17=1+7 89 8 6677225

12 9 1+4+4 144 9 10803600

13 8 2+3+3 233 8 17480825 14 8 3+7+7=17=1+7=8 377 8 28284425 15 7 6+1+0=7 610 7 45765250 16 6 9+8+7=24=2+4=6 987 6 74049675 17 4 1+5+9+7=22=2+2=4 1597 4 119814925 18 1 2+5+8+4=19+1+9=10=1 2584 1 193864600 19 5 4+1+8+1=14=1+4=5 4181 5 313679525 20 6 6+7+6+5=24=2+4=6 6765 6 507544125 21 2 1+0+9+4+6=20=2 10946 2 821223650 22 8 1+7+7+1+1=17=1+7=8 17711 8 1328767775 23 1 2+8+6+5+7=28=2+8=10=1 28657 1 2149991425

24 9 4+6+3+6+8=27+2+7=9 46368 9 3478759200"

Данная информация свидетельствует о том, что все "дороги ведут в Рим", т.е. множество периодически повторяющихся случайностей, совпадений. м истификаций и т.д., сливаясь в единый поток, с неизбежностью приводят к выводу о существовании периодической закономерности, отражаемой в ряде Фибоначчи. А теперь рассмотрим еще одно, быть может, самое замечательное свойства ряда Фибоначчи. На странице "Монадные формы " мы отмечали, что существует всего пять уникальных форм, имеющих первостепенное значение. Они называются Платановыми телами. Любое Платоново тело имеет некоторые особые характеристики. Во-первых , все грани такого тела равны по размеру. Во-вторых , ребра Платонова тела - одной длины. В-третьих , внутренние углы между его смежными гранями равны. И, в-четвертых, будучи вписанным в сферу, Платоново тело каждой своей вершиной касается поверхности этой сферы. Рис. 8 Есть только четыре формы помимо куба (D), имеющие все эти характеристики. Второе тело (В) - это тетраэдр (тетра означает «четыре»), имеющий четыре грани в виде равносторонних треугольников и четыре вершины. Еще одно тело (C) - это октаэдр (окта означает «восемь»), восемь граней которого - это равносторонние треугольники одинакового размера. Октаэдр содержит 6 вершин. Куб имеет 6 граней и восемь вершин. Два других Платоновых тела несколько сложнее. Одно (E) называется икосаэдр, что означает «имеющий 20 граней», представленных равносторонними треугольниками. Икосаэдр имеет 12 вершин. Другое (F) называется додекаэдр (додека - это «двенадцать»). Его гранями являются 12 правильных пятиугольников. Додекаэдр имеет двадцать вершин. Эти тела обладают замечательными свойствами быть вписанными все всего в две фигуры - сферу и куб. Подобная взаимосвязь с Платоновыми телами прослеживается во всех сферах. Так, например, системe орбит планет солнечной системы можно представить в виде вложенных друг в друга Платоновых тел, вписанных в соответствующие сферы, которые и определяют радиусы орбит соответствующих планет солнечной системы. Фаза А (рис. 8) характеризует начало эволюции монадной формы. А потому эта форма является как бы самой простой (сферой). Затем рождается тетраэдр, и т.д. Куб, расположен в этой гексаде напротив сферы и потому он обладает сходными свойствами. Тогда свойствами, сходными с тетраэдром должны обладать монадная форма, расположенная в гексаде напротив тетраэдра. Это икосаэдр. Формы додекаэдра должны быть «родственны» октаэдру. И, наконец, последняя форма снова становится сферой. Последняя становится первой! Кроме того, в гексаде должна наблюдаться преемственность эволюции двух соседних Платоновых тел. И, действительно, октаэдр и куб, икосаэдр и додекаэдр взаимны. Если у одного из этих многогранников соединить отрезками прямых центры граней, имеющих общее ребро, то получится другой многогранник. В этих свойствах кроется их эволюционное происхождение друг от друга. В Платоновой гексаде можно выделить две триады: «сфера-октаэдр-икосаэдр» и «тетраэдр-куб-додекаэдр», наделяющие соседние вершины собственных триад свойствами взаимности. Эти фигуры обладают еще одним замечательным качеством. Они связаны крепкими узами с рядом Фибоначчи -<1:1:2:3:5:8:13:21:...>, в котором каждый последующий член равен сумме двух предыдущих. Вычислим разности между членами ряда Фиббоначи и числом вершин в Платоновых телах :
· 2=2-А=2-2=0 (нулевой "заряд"), · 3=3-В=3-4=-1 (отрицательный "заряд"), · 4=5-С=5-6=-1 (отрицательный "заряд"), · 5=8-D=8-8=0 (нулевой "заряд"), · 6=13-Е=13-12=1 (положительный "заряд"), · 7=21-F=21-20=1 (положительный "заряд"), Рис. 9
На первый взгляд может показаться, что "монадные заряды" Платоновых тел отражают как бы несоответствие идеальных форм от ряда Фибоначи . Однако, полагая, что начиная с куба, Платоновы тела могут формировать ВЕЛИКИЕ ПРЕДЕЛЫ (Великий Предел), то становится ясным, что додекаэдр и икосаэдр, отражая взаимодополнительное соответствие между число граней и числом вершин, характеризуемых числами 12 и 20, фактически выражают собой соотношения 13 и 21 ряда Фибоначчи. Посмотрите, как происходит нормирование ряда Фибоначчи. 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,... 12, 20, ..... 1, 1, 2, 3, 5, 8, 13 Первая строка отражает "нормальный" алгоритм формирования ряда Фибоначчи. Вторая строка начинается с икосаэдра, в котором 13 вершина оказалась центром структуры, отражая свойства ВЕЛИКОГО ПРЕДЕЛА. Аналогичный ВЕЛИКИЙ ПРЕДЕЛ имеется и у додекаэдра. Эти два кристалла порождают новое измерение - нормированную монаду "икосаэдр-додекаэдр", которая и начинает формировать новый виток ряда Фибоначчи (третья строка). Первые Платоновы тела как бы отражают фазу анализа, когда происходит разворачивание ВЕЛИКОГО ПРЕДЕЛА из монады (1,1). Вторая фаза -с интез новой монады и сворачивание ее в ВЕЛИКИЙ ПРЕДЕЛ. Так ряд Фибоначи порождает "золотую пропорцию", ответственную за рождение гармонии всего сущего, поэтому и Платоновы тела также будут характеризовать свойства всех материальных структур. Так, атомы всегда соотносятся с пятью Платоновыми телами. Даже если разбирать на части очень сложную молекулу, в ней можно найти более простые формы, и они всегда могут быть прослежены до одного из пяти Платоновых тел - независимо от того, какова ее структура. Не имеет значения, что это - металл, кристалл или что-то еще, - структура всегда восходит к одной из пяти первоначальных форм. Следовательно, мы приходим к выводу, что число используемых природой первозданных монадных форм является ограниченным и замкнутым. К такому же выводу пришел еще много веков назад Платон, который считал, что сложные частицы элементов имеют форму многогранников, при дроблении эти многогранники дают треугольники, которые и являются истинными элементами мира. Достигнув самой совершенной формы, природа берет эту форму в качестве элементарной и начинает строить следующие формы, используя последние в качестве «единичных» элементов. Поэтому все высшие формы неорганических, органических, биологических и полевых форм материи обязательно должны будут связаны с более простыми монадными кристаллами. Из этих форм должны строиться и самые сложные - высшие формы Высшего разума. И эти свойства монадных кристаллов должны проявляться на всех уровнях иерархии: в структуре элементарных частиц, в структуре Периодической системы элементарных частиц, в структуре атомов, в структуре Периодической системы химических элементов, и т.д. Так, в химических элементах, все подоболочки и оболочки могут быть представлены в форме монадных кристаллов. Естественно, что внутренняя структура атомов химических элементов должна отражаться в структуре кристаллов и клетках живых организмов. «Любая форма есть производное одного из пяти Платоновых тел. Без исключений. И не имеет значения, какова структура кристалла, она всегда основана на одном из Платоновых тел...» . Так в свойствах Платоновых тел отражается гармония золотого сечения и механизмы его порождения рядом Фибоначчи. И снова мы приходим к самому фундаментальному свойству ЕДИНОГО ЗАКОНА - ПЕРИОДИЧНОСТИ. Библейское "И ПОСЛЕДНИЙ СТАНОВИТСЯ ПЕРВЫМ" отражается во всех творениях мироздания. На следующем рисунке приводится схема хроматической гаммы, в которой 13-я нота находится за "границей осознанного мира", а любая соседняя пара может порождать новую хроматическую гамму (Законы Абсолюта ).
рис. 10 Данный рисунок отражает принципы, в соответствии с которыми формируется ЕДИНОЕ САМОСОГЛАСОВАННОЕ ПОЛЕ ГАРМОНИИ ВСЕЛЕННОЙ.

5. ЗОЛОТОЕ СЕЧЕНИЕ И ПРИНЦИПЫ САМООРГАНИЗАЦИИ

5.1. САМОДОСТАТОЧНОСТЬ

Принципы саморганизации (самодостаточность, саморегулирование, самовоспроизведение, саморазвитие и самонормирование ) очень тесно связаны с золотым сечением. Рассматривая принципы самоорганизации и принципы нового мышления (О новом мышлении , О глобалистике ) был обоснован вывод о том, что понятие самодостаточность определяет долю вклада собственных целевых функций в общую целевую функцию того или иного объекта окружающего мира. Если собственная доля вклада в общую целевую функцию объект будет не ниже 2/3, то такой объект будет иметь "контрольный пакет акций" целевой функции объекта и, следовательно, будет являться самодостаточным , не "марионеточным" объектом. Но 2/3=0,66..., а золотая пропорция равна 0,618... Очень близкое совпадение, или..? Вот именно ИЛИ! Поэтому более точной количественное оценкой самодостаточности можно считать пропорцию золотого сечения. Однако для практического использования мерой самодостаточности, определяющей качественное состояние объекта, живет он в гармонии с окружающим миром, или нет, оценка 2/3 является даже предпочтительнее. Глубокая взаимосвязь этого принципа с золотым сечением показана на рис. 4, на котором рукой великого мастера -Л еонардо да Винчи были приведены самые замечательные свойства золотого сечения и их взаимосвязь с ЕДИНЫМ ЗАКОНОМ. И очень жаль, что ЭТОГО НЕ ПОНИМАЮТ ЕЩЕ МНОГИЕ УЧЕНЫЕ ДАЖЕ СЕГОДНЯ. ПОЗОР!!!

5.2. САМОВОСПРОИЗВЕДЕНИЕ. САМОРАЗВИТИЕ.

Из принципов построения универсальной логики ( ) следует, что бесконечномерная логика в рамках эволюции одного и того же семейства, формирует бинарную спираль.

рис. 11

В этой схеме узловые точки характеризует нисходящую спираль эволюции логического семейства бинарной спирали (правый винт). По индукции можно определить, что левый винт будет определять восходящую спираль этого семейства. Эта эволюционная бинарная спираль характеризует самовоспроизведение и саморазвитие логического семейства. Пусть мы имеем начальную логику < - i ,-1 >. Тогда, изображая оси комплексной системы отсчета в соответствии с правилом обхода тетраэдра по кресту, эволюцию логик можно отразить так, как показано на рис.12 рис. 12 Из схемы видно, что при каждом переходе от одной логики к другой, по направлению стрелок, происходит зеркальное самокопирование логики. И когда мы завершим "круг эволюции", то последняя и первая логики окажутся противоположными друг к другу. Следующая попытка приводит уже к логике бинарного удвоения, т.к. клетка оказывается занятой. В результате рождается логика, отличающаяся от первой масштабностью, вместо < -i,-1 > рождается пара < -2 i ,-2 >. Отметим, что последовательное зеркальное копирование логик приводит к их зеркальной инверсии по диагоналям. Так, по диагонали - i ,+1 мы имеем логики <- i ,-1> <+1,+ i >. Из правил обхода вершин тетраэдра по кресту мы получаем, что эти логики образуют крест в тетраэдре, если соответствующие ребра спроектировать на плоскость. П о диагонали -1,+ i мы получили взаимодополнительную пару логик <-1,- i > <+ i ,+1> , также образующую крест. На рис. 11, стороны квадратов ориентированы по направлению крещения. Поэтому противоположные стороны этого квадрата являются перекладинами креста. Отметим, что в тетраэдре существует еще и третий крест, образованной ребрами <+ i ,- i > и <-1,+1> . Но этот крест несет другие функции , о которых будет сказано в другом месте. Но схема на рис. 6 обосновывает только простое самовоспризводство логик. Оно может порождать многомерный мир "черно-белых" копий, которые могут характеризоваться только разными "оттенками". В соответствии с принципами самоорганизации логики должны иметь возможность к саморазвитию . И такая возможность реализуется (рис. 13). рис. 13 Здесь в квадрате II вначале происходит самокопирование исходной логики, а в третьем квадрате, происходит процесс саморазвития . Здесь вначале первый и второй квадрат складываются со сдвигом, а затем воспроизводятся в квадрате III . Затем полученная цепочка зеркально копируется в квадрат IV , где происходит "замыкание" цепочки. В результате рождается тетраэдр, с четырьмя вершинами, т.е. рождается комплексная логика. Так из пары <1,1> рождается пара <2,2>. Так рождается П ервый период Периодической системы логических элементов. Возьмем теперь вторую пару, состоящую из двух логических соседних подоболочек -<1,2>. расписывая эволюцию этой пары по квадратам в соответствии с вышеприведенными правилами, мы получим пару <3,3>. Присоединяя ее к начальной цепочке <1,1,2>, мы получим <1,1,2,3>/ Тогда эволюция пары <2,3> произведет пару <5,5> и, соответственно, цепочку <1,1,3,5,>. Нетрудно увидеть, что рождается ряд Фибоначчи , являющийся основой золотого сечения. И этот ряд рождается естественным образом, в основе его лежит Единый Периодический закон эволюции и вытекающие из него принципы самоорганизации (самодостаточность, саморегуляция , самовоспроизведение, саморазвитие, самонормирование ).

5.3. РЯД ФИБОНАЧЧИ И БИНАРНЫЙ РЯД

Возьмем теперь, в качестве логических пар целостную пару <2,2>. Эта пара будет характеризовать количественный состав первой логической оболочки. Тогда, в процессе ее "крещения" у нас произведется следующая бинарная пара <4,4>. Эта пара по своей структуре будет характеризовать звездный тетраэдр (или куб), имеющий восемь вершин. Мы получили первую подоболочку второго периода. Удвоение этих подоболочек даст пару <8,8>, эволюция которой приведет к паре <16,16>, а далее к паре <32,32>. Соединяя полученные бинарные пары в единую цепочку, мы получаем ряд <2, 8,16,32>. Именно такая последовательность характеризует количественный состав оболочек Периодической системы химических элементов. Таким образом, единство ряда Фибоначчи и бинарного ряда является неоспоримым фактом. Периодическая система химических элементов, бинарный ряд, ряд Фибоначчи и золотое сечение оказываются тесно взаимосвязанными.
Рис. 14 Из последней схемы видно, что производящие функции этих рядов еще и тесно взаимосвязаны с биномом Ньютона (1-х) - n .

Между рядом Фибоначчи и бинарным рядом также существует прямая связь (рис. 4)

Рис. 15

На этом рисунке видно, как из исходного соотношения (1-1-2), используя бинарный ряд, выстраивается весь ряд Фибоначчи. Эту схему приводит в своей книге Д. Мельхиседек ("Древняя тайна Цветка Жизни", том. 2, стр.283). Этот рисунок показывает семейное дерево трутня пчелы. Мельхиседек подчеркивает, что ряд Фибоначчи (1-1-2-3-5-8-13-...) является женским рядом, в то время как бинарный ряд (1-2-4-8-16-32-...) является мужским. И это правильно (Генная память , Информация , О времени ) . На указанных страницах приводится обоснование того, что генная память, возрождая Прошлое , или синтезируя Будущее, формирует именно бинарный ряд и именно по закону, приведенному на рисунке 4.

6. О ДРУГИХ СВОЙСТВАХ РЯДА ФИБОНАЧЧИ

Всем известно, что ритмы (волны) пронизывают всю нашу жизнь. Поэтому всеобщность пропорции золотого сечения необходимо проиллюстрировать и на примере волновых колебаний. Рассмотрим гармонический процесс колебаний струны (http://ftp.decsy.ru/nanoworld/index.htm ). На струне могут создаваться стоячие волны основной и высших гармоник (обертонов). Длины полуволн гармонического ряда соответствуют функции 1/ n , где n – натуральное число. Длины полуволн могут быть выражены в процентах от длины полуволны основной гармоники: 100%, 50%, 33%, 25%, 20%... В случае воздействия на произвольный участок струны будут возбуждаться все гармоники с различными амплитудными коэффициентами, которые зависят от координаты участка, от ширины участка и от частотно-временных характеристик воздействия. Учитывая разные знаки фаз четных и нечетных гармоник, можно получить знакопеременную функцию, которая выглядит приблизительно следующим образом: Если точку закрепления принять за начало отсчета, а середину струны за 100%, то максимум восприимчивости по 1-ой гармонике будет соответствовать 100%, по 2-й – 50%, по 3-ей – 33% и т.д. Посмотрим, где будет наша функция пересекать ось абсцисс. 62%, 38%, 23.6%, 14.6%, 9%, 5.6%, 3.44%, 2.13%,1.31%, 0.81%, 0.5%, 0.31%, 0.19%, 0.12%, ... Это пропорция золотого вурфа , под которым понимают последовательный ряд отрезков, когда смежные отрезки находятся в отношении золотого сечения. Каждое следующее число в 0.618 раз отличается от предыдущего. Получилось следующее: Возбуждение струны в точке, делящей ее в отношении золотого сечения на частоте близкой к основной гармонике, не вызовет колебаний струны, т.е. точка золотого сечения – это точка компенсации, демпфирования. Для демпфирования на более высоких частотах, к примеру, на 4-ой гармонике, точку компенсации нужно выбрать в 4-ом пересечении функции с осью абсцисс. Таким образом, периодичность изменения свойств двойственного отношения оказывается связана с нормой самодостаточности, рядом Фибоначчи, а также и со свойствами звездного тетраэдра, отражающего принцип восходящей и нисходящей спирали. Поэтому можно сказать, что тайны Золотого сечения, тайны ряда Фибоначчи, тайны их всеобщности в мире живой и неживой Природы больше не существует. Золотое сечение и ряд Фибоначчи отражают самую фундаментальную закономерность Иерархии - закономерность двойственности, а сам ряд Фибоначчиотражает не только одну из главных форм проявления этой закономерности -т риединство, но и характеризует нормы самодостаточности двойственного отношения в процессе его эволюции. 7. О СЛОЖНОМ ОТНОШЕНИИ Рассмотренные выше свойства золотого сечения и ряда Фибоначчи и их взаимосвязь, позволяют высказать предположение о связи с Единым законом эволюции двойственного отношения еще одного замечательного отношения, которое в проективной геометрии известно как сложное отношение точек ABCD . Рис. 16 Это число обладает тем свойством, что оно в точности одно и то же как. д ля изображения, так и для оригинала. Если вам нужно вычислить х , то не играет роли, измеряете ли вы расстояние на изображении или на самом участке. Фотокамера может обмануть. Она обманывает, когда выдает равные длины за неравные и прямые углы за непрямые. Единственное, что она не искажает,- это выражение Зн ачение этого выражения может быть найдено прямо из фотографии. И все, что можно с уверенностью утверждать, пользуясь свидетельством фотографии, может быть выражено в терминах таких величин. Обычно, в качестве сокращенной записи сложного отношения используется символ ABCD . Перерисуем теперь схему сложного отношения в пространственном виде Рис. 17 Известно, что золотое сечение выражается пропорцией где числитель является меньшим числом, а знаменатель-большим . Применительно к рисунку 17 золотая пропорция будет отражаться в треугольнике ABC , например, векторной суммой AB = BC + CA . Если углы между катетами будут равны нулю, то получим деление отрезка пополам. Если угол равен π / 2, то получим прямоугольный треугольник со сторонами 1, Ф , Ф 0,5 ; Следовательно, мы имеем исходное уравнение Ф 2 -Ф=1, записанное в векторной форме -г ипотенуза является единицей, а катеты являются ортогональными друг к другу, что и отражается в уравнении золотого сечения. При любом другом угле описываются некие замкнутые пространства. Сравнение рисунков 16 и 17 показывает также, что прямая линия (рис.16), порождающая сложное отношение, трансформируется в ломаную , и сложное отношение порождается процессом " обхода по кресту ". При этом Последняя вершина ломаной линии замыкается на П ервую . В результате мы получаем уже известное из животворящего креста
Рис. 18
правило рычага- "выигрываешь в силе, проигрываешь в расстоянии": - умножение перекладин креста и деление на длину плеч, определяющих переход с одной перекладины на другую. При построении этих более сложных отношений необходимо учитывать, что в формировании сложного отношения, точно также, как и в ряде Фибоначчи, участвуют только две соседних вершины ломаной линии. Это правило рычага, с использованием золотого сечения можно записать в следующем виде . А теперь мы можем построить сложное отношение на тетраэдре, учитывая, что расстояния от всех вершин пирамиды до точки О одинаково.
Рис. 19
Из рисунков 14-19 можно понять и принципы построения более сложных отношений, для пространств с большей мерностью, т.е. можно сказать, что n -мерное сложное отношение отражает процесс формирования монадного кристалла n -мерности и потому "упражнения" по формированию более сложных отношений могут иметь самостоятельный интерес (Сложное отношение ). Но все значения сложного отношения х , (1/х ), (х-1)/х , х /(х-1), 1/(1-х), (1-х), х ,... являются частями уравнения золотого сечения х 2 - х - 1 =0 или х (х -1) =1. 7. ЗАКОН СОХРАНЕНИЯ ЗОЛОТОГО СЕЧЕНИЯ Рассмотренные выше свойства золотого сечения и, в первую очередь, свойства сложного отношения позволяют говорить о том, что золотое сечение формирует главный закон мироздания, отражающий в себе главный закон сохранения- закон сохранения золотого сечения . Соотношения x =0,618..., 1 / x =1,618, 1-1/ x =-0,618..., 1/(1-1/ x )=-1,618,.... образуют бесконечный ряд, в котором первые четыре значения образуют крест золотого сечения. При этом всякий раз, когда получается величина, большая значения золотого сечения, то происходит нормировка ОБЪЕКТа . От него вычленяется единица и процесс эволюции продолжается! Однако для пятого и шестого значений мы получаем значения " -2,616 " и " -0,382 ", после чего процесс начинается с начала. Полученный бесконечный ряд значений 0,618 и 1,618 является причиной, по которой золотое сечение лежит в основе гармонии мира. Закон сохранения (Законы сохранения) золотого сечения можно продемонстировать во вращающемся кресте (свастике). Ниже, на странице, вскрывающей тайны информации (Информация , О времени) будут показано, что золотое сечение, генная память лежат в основе самого понятия информации, о природных механизмах эволюции монады "ОБРАЗ-ПОДОБИЕ" во ВРЕМЕНИ. Таким образом, сущность нормирования сводится к получению пропорций золотого сечения, т.е. все чудесные свойства сложного отношения четырех точек определяются свойствами животворящего креста, что сложное отношение тесно взаимосвязано с золотым сечением, формируя закон сохранения золотого сечения. РЕЗЮМЕ 1. Ни у кого уже не возникает сомнений, что золотое сечение лежит в основе гармонии мироздания, а ряд Фибоначчи порождает эту замечательную пропорцию. Дополнительную информацию о свойствах золотого сечения любознательные читатели могут получить на сайте www. goldenmuseum . com . Эта поистине золотая пропорция имеет такое множество замечательных свойств, что открытие новых свойств уже ни у кого не вызывает удивления.

Золотое сечение – это такое пропорциональное деление отрезка на неравные части, при котором меньший отрезок так относится к большему, как больший ко всему.

a: b = b: c или с: b = b: а.

Эта пропорция равна:

К примеру, в правильной пятиконечной звезде, каждый сегмент делится пересекающим его сегментом в золотом сечении (т. е. отношение синего отрезка к зелёному, красного к синему, зелёного к к фиолетовому, равны 1.618

Принято считать, что понятие о золотом сечении ввел в научный обиход Пифагор. Есть предположение, что Пифагор свое знание позаимствовал у египтян и вавилонян. И действительно, пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании.

В 1855 г. немецкий исследователь золотого сечения профессор Цейзинг опубликовал свой труд «Эстетические исследования» .
Цейзинг измерил около двух тысяч человеческих тел и пришел к выводу, что золотое сечение выражает средний статистический закон.

Золотые пропорции в частях тела человека

Деление тела точкой пупа – важнейший показатель золотого сечения. Пропорции мужского тела колеблются в пределах среднего отношения 13: 8 = 1,625 и несколько ближе подходят к золотому сечению, чем пропорции женского тела, в отношении которого среднее значение пропорции выражается в соотношении 8: 5 = 1,6.

У новорожденного пропорция составляет отношение 1: 1, к 13 годам она равна 1,6, а к 21 году равняется мужской.
Пропорции золотого сечения проявляются и в отношении других частей тела – длина плеча, предплечья и кисти, кисти и пальцев и т.д.
Справедливость своей теории Цейзинг проверял на греческих статуях. Наиболее подробно он разработал пропорции Аполлона Бельведерского. Подверглись исследованию греческие вазы, архитектурные сооружения различных эпох, растения, животные, птичьи яйца, музыкальные тона, стихотворные размеры.

Цейзинг дал определение золотому сечению, показал, как оно выражается в отрезках прямой и в цифрах. Когда цифры, выражающие длины отрезков, были получены, Цейзинг увидел, что они составляют ряд Фибоначчи .

Ряд чисел 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 и т.д. известен как ряд Фибоначчи. Особенность последовательности чисел состоит в том, что каждый ее член, начиная с третьего, равен сумме двух предыдущих 2 + 3 = 5; 3 + 5 = 8; 5 + 8 = 13, 8 + 13 = 21; 13 + 21 = 34 и т.д., а отношение смежных чисел ряда приближается к отношению золотого деления.

Так, 21: 34 = 0,617, а 34: 55 = 0,618. (или 1.618 , если делить большее число на меньшее).

Ряд Фибоначчи мог бы остаться только математическим казусом, если бы не то обстоятельство, что все исследователи золотого деления в растительном и в животном мире, не говоря уже об искусстве, неизменно приходили к этому ряду как арифметическому выражению закона золотого сечения.

Золотое сечение в искусстве

Еще в 1925 году искусствовед Л.Л.Сабанеев, проанализировав 1770 музыкальных произведений 42 авторов, показал, что подавляющее большинство выдающихся сочинений можно легко разделить на части или по теме, или по интонационному строю, или по ладовому строю, которые находятся между собой в отношении золотого сечения.

Причем, чем талантливее композитор, тем в большем количестве его произведений найдено золотых сечений. У Аренского, Бетховена, Бородина, Гайдна, Моцарта, Скрябина, Шопена и Шуберта золотые сечения найдены в 90% всех произведений. По мнению Сабанеева, золотое сечение приводит к впечатлению особой стройности музыкального сочинения.

В кино С. Эйзенштейн искусственно построил фильм Броненосец Потёмкин по правилам «золотого сечения». Он разбил ленту на пять частей. В первых трёх действие разворачивается на корабле. В двух последних - в Одессе, где разворачивается восстание. Этот переход в город происходит точно в точке золотого сечения. Да и в каждой части есть свой перелом, происходящий по закону золотого сечения.

Золотое сечение в архитектуре, скульптуре, живописи

Одним из красивейших произведений древнегреческой архитектуры является Парфенон (V в. до н. э.).


На рисунках виден целый ряд закономерностей, связанных с золотым сечением. Пропорции здания можно выразить через различные степени числа Ф=0,618...

На плане пола Парфенона также можно заметить "золотые прямоугольники":

Золотое соотношение мы можем увидеть и в здании собора Парижской Богоматери (Нотр-дам де Пари), и в пирамиде Хеопса:

Не только египетские пиpамиды постpоены в соответствии с совеpшенными пpопоpциями золотого сечения; то же самое явление обнаpужено и у мексиканских пиpамид.

Золотая пропорция применялась многими античными скульпторами. Известна золотая пропорция статуи Аполлона Бельведерского: рост изображенного человека делится пупочной линией в золотом сечении.

Переходя к примерам “золотого сечения” в живописи, нельзя не остановить своего внимания на творчестве Леонардо да Винчи. Посмотрим внимательно на картину "Джоконда". Композиция портрета построена на"золотых треугольниках".

Золотое сечение в шрифтах и бытовых предметах


Золотое сечение в живой природе

В биологических исследованиях было показано, что, начиная с вирусов и растений и кончая организмом человека, всюду выявляется золотая пропорция, характеризующая соразмерность и гармоничность их строения. Золотое сечение признано универсальным законом живых систем.

Было установлено, что числовой ряд чисел Фибоначчи характеризует структурную организацию многих живых систем. Например, винтовое листорасположение на ветке составляет дробь (число оборотов на стебле/число листьев в цикле, напр. 2/5; 3/8; 5/13), соответствующую рядам Фибоначчи.

Хорошо известна "золотая" пропорция пятилепестковых цветков яблони, груши и многих других растений. Носители генетического кода - молекулы ДНК и РНК - имеют структуру двойной спирали; ее размеры почти полностью соответствуют числам ряда Фибоначчи.

Гете подчеркивал тенденцию природы к спиральности.

Паук плетет паутину спиралеобразно. Спиралью закручивается ураган. Испуганное стадо северных оленей разбегается по спирали.

Гете называл спираль "кривой жизни". Спираль увидели в расположении семян подсолнечника, в шишках сосны, ананасах, кактусах и т.д.

Цветки и семена подсолнуха, ромашки, чешуйки в плодах ананаса, хвойных шишках "упакованы" по логарифмическим ("золотым") спиралям, завивающимся навстречу друг другу, причем числа "правых "и "левых" спиралей всегда относятся друг к другу, как соседние числа Фибоначчи.

Рассмотрим побег цикория. От основного стебля образовался отросток. Тут же расположился первый листок. Отросток делает сильный выброс в пространство, останавливается, выпускает листок, но уже короче первого, снова делает выброс в пространство, но уже меньшей силы, выпускает листок еще меньшего размера и снова выброс.


Если первый выброс принять за 100 единиц, то второй равен 62 единицам, третий – 38, четвертый – 24 и т.д. Длина лепестков тоже подчинена золотой пропорции. В росте, завоевании пространства растение сохраняло определенные пропорции. Импульсы его роста постепенно уменьшались в пропорции золотого сечения.

У многих бабочек соотношение размеров грудной и брюшной части тела отвечает золотой пропорции. Сложив крылья, ночная бабочка образует правильный равносторонний треугольник. Но стоит развести крылья, и вы увидите тот же принцип членения тела на 2,3,5,8. Стрекоза также создана по законам золотой пропорции: отношение длин хвоста и корпуса равно отношению общей длины к длине хвоста.

В ящерице длина ее хвоста так относится к длине остального тела, как 62 к 38. Можно заметить золотые пропорции, если внимательно посмотреть на яйцо птицы.

Во вселенной еще много неразгаданных тайн, некоторые из которых ученые уже смогли определить и описать. Числа Фибоначчи и золотое сечение составляют основу разгадки окружающего мира, построения его формы и оптимального зрительного восприятия человеком, с помощью которых он может ощущать красоту и гармонию.

Золотое сечение

Принцип определения размеров золотого сечения лежит в основе совершенства целого мира и его частей в своей структуре и функциях, его проявление можно видеть в природе, искусстве и технике. Учение о золотой пропорции было заложено в результате исследований древними учеными природы чисел.

В основе его лежит теория о пропорциях и соотношениях делений отрезков, которое было сделано еще древним философом и математиком Пифагором. Он доказал, что при разделении отрезка на две части: X (меньшую) и Y (большую), отношение большего к меньшему будет равно отношению их суммы (всего отрезка):

В результате получается уравнение: х 2 - х - 1=0, которое решается как х=(1±√5)/2.

Если рассмотреть соотношение 1/х, то оно равно 1,618…

Свидетельства использования древними мыслителями золотой пропорции приведены в книге Эвклида «Начала», написанной еще в 3 в. до н.э., который применял это правило для построения правильных 5-угольников. У пифагорейцев эта фигура считается священной, поскольку является одновременно симметричной и асимметричной. Пентаграмма символизировала жизнь и здоровье.

Числа Фибоначчи

Знаменитая книга Liber abaci математика из Италии Леонардо Пизанского, который в последующем стал известен, как Фибоначчи, увидела свет в 1202 г. В ней ученый впервые приводит закономерность чисел, в ряду которых каждое число является суммой 2-х предыдущих цифр. Последовательность чисел Фибоначчи заключается в следующем:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377 и т.д.

Также ученый привел ряд закономерностей:

  • Любое число из ряда, разделенное на последующее, будет равно значению, которое стремится к 0,618. Причем первые числа Фибоначчи не дают такого числа, но по мере продвижения от начала последовательности это соотношение будет все более точным.
  • Если же поделить число из ряда на предыдущее, то результат устремится к 1,618.
  • Одно число, поделенное на следующее через одно, покажет значение, стремящееся к 0,382.

Применение связи и закономерностей золотого сечения, числа Фибоначчи (0,618) можно найти не только в математике, но и в природе, в истории, в архитектуре и строительстве и во многих других науках.

Спираль Архимеда и золотой прямоугольник

Спирали, очень распространенные в природе, были исследованы Архимедом, который даже вывел ее уравнение. Форма спирали основана на законах о золотом сечении. При ее раскручивании получается длина, к которой можно применить пропорции и числа Фибоначчи, увеличение шага происходит равномерно.

Параллель между числами Фибоначчи и золотым сечением можно увидеть и построив «золотой прямоугольник», у которого стороны пропорциональны, как 1,618:1. Он строится, переходя от большего прямоугольника к малым так, что длины сторон будут равны числам из ряда. Построение его можно сделать и в обратном порядке, начиная с квадратика «1». При соединении линиями углов этого прямоугольника в центре их пересечения получается спираль Фибоначчи или логарифмическая.

История применения золотых пропорций

Многие древние памятники архитектуры Египта возведены с использованием золотых пропорций: знаменитые пирамиды Хеопса и др. Архитекторы Древней Греции широко использовалиих их при возведении архитектурных объектов, таких как храмы, амфитеатры, стадионы. Например, были применены такие пропорции при строительстве античного храма Парфенон, (Афины) и других объектов, которые стали шедеврами древнего зодчества, демонстрирующими гармонию, основанную на математической закономерности.

В более поздние века интерес к золотому сечению поутих, и закономерности были забыты, однако опять возобновился в эпоху Ренессанса вместе с книгой францисканского монаха Л. Пачоли ди Борго «Божественная пропорция» (1509 г.). В ней были приведены иллюстрации Леонардо да Винчи, который и закрепил новое название «золотое сечение». Также были научно доказаны 12 свойств золотой пропорции, причем автор рассказывал о том, как проявляется она в природе, в искусстве и называл ее «принципом построения мира и природы».

Витрувианский человек Леонардо

Рисунок, которым Леонардо да Винчи в 1492 г. проиллюстрировал книгу Витрувия, изображает фигуру человека в 2-х позициях с руками, разведенными в стороны. Фигура вписана в круг и квадрат. Этот рисунок принято считать каноническими пропорциями человеческого тела (мужского), описанными Леонардо на основе изучения их в трактатах римского архитектора Витрувия.

Центром тела как равноудаленной точкой от конца рук и ног считается пупок, длина рук приравнивается к росту человека, максимальная ширина плеч = 1/8 роста, расстояние от верха груди до волос = 1/7, от верха груди до верха головы =1/6 и т.д.

С тех пор рисунок используется в виде символа, показывающего внутреннюю симметрию тела человека.

Термин «Золотое сечение» Леонардо использовал для обозначения пропорциональных отношений в фигуре человека. Например, расстояние от пояса до ступней ног соотносится к аналогичному расстоянию от пупка до макушки так же, как рост к первой длине (от пояса вниз). Эти вычисление делается аналогично соотношению отрезков при вычислении золотой пропорции и стремится к 1,618.

Все эти гармоничные пропорции часто используются деятелями искусства для создания красивых и впечатляющих произведений.

Исследования золотого сечения в 16-19 веках

Используя золотое сечение и числа Фибоначчи, исследовательскую работу по вопросу о пропорциях продолжают уже не одно столетие. Параллельно с Леонардо да Винчи немецкий художник Альбрехт Дюрер также занимался разработкой теории правильных пропорций тела человека. Для этого им даже был создан специальный циркуль.

В 16 в. вопросу о связи числа Фибоначчи и золотого сечения были посвящены работы астронома И. Кеплера, который впервые применил эти правила для ботаники.

Новое «открытие» ожидало золотое сечение в 19 в. с опубликованием «Эстетического исследования» немецкого ученого профессора Цейзига. Он возвел эти пропорции в абсолют и объявил о том, что они универсальны для всех природных явлений. Им были проведены исследования огромного количества людей, вернее их телесных пропорций (около 2 тыс.), по итогам которых сделаны выводы о статистических подтвержденных закономерностях в соотношениях различных частей тела: длины плеч, предплечий, кистей, пальцев и т.д.

Были исследованы также предметы искусства (вазы, архитектурные сооружения), музыкальные тона, размеры при написании стихотворений — все это Цейзиг отобразил через длины отрезков и цифры, он же ввел термин «математическая эстетика». После получения результатов выяснилось, что получается ряд Фибоначчи.

Число Фибоначчи и золотое сечение в природе

В растительном и животном мире существует тенденция к формообразованию в виде симметрии, которая наблюдается в направлении роста и движения. Деление на симметричные части, в которых соблюдаются золотые пропорции, — такая закономерность присуща многим растениям и животным.

Природа вокруг нас может быть описана с помощью чисел Фибоначчи, например:

  • расположение листьев или веток любых растений, а также расстояния соотносятся с рядом приведенных чисел 1, 1, 2, 3, 5, 8, 13 и далее;
  • семена подсолнуха (чешуя на шишках, ячейки ананаса), располагаясь двумя рядами по закрученным спиралям в разные стороны;
  • соотношение длины хвоста и всего тела ящерицы;
  • форма яйца, если провести линию условно через широкую его часть;
  • соотношение размеров пальцев на руке человека.

И, конечно, самые интересные формы представляют закручивающиеся по спирали раковины улиток, узоры на паутине, движение ветра внутри урагана, двойная спираль в ДНК и структура галактик — все они включают в себя последовательность чисел Фибоначчи.

Использование золотого сечения в искусстве

Исследователи, занимающиеся поиском в искусстве примеров использования золотого сечения, подробно исследуют различные архитектурные объекты и произведения живописи. Известны знаменитые скульптурные работы, создатели которых придерживались золотых пропорций, — статуи Зевса Олимпийского, Аполлона Бельведерского и

Одно из творений Леонардо да Винчи — «Портрет Моны Лизы» — уже многие годы является предметом исследований ученых. Ими было обнаружено, что композиция работы целиком состоит из «золотых треугольников», объединенных вместе в правильный пятиугольник-звезду. Все работы да Винчи являются свидетельством того, насколько глубоки были его познания в строении и пропорциях тела человека, благодаря чему он и смог уловить невероятно загадочную улыбку Джоконды.

Золотое сечение в архитектуре

В качестве примера ученые исследовали шедевры архитектуры, созданные по правилам «золотого сечения»: египетские пирамиды, Пантеон, Парфенон, Собор Нотр-Дам де Пари, храм Василия Блаженного и др.

Парфенон — одно из красивейших зданий в Древней Греции (5 в. до н.э.) — имеет 8 колонн и 17 по разным сторонам, отношение его высоты к длине сторон равно 0,618. Выступы на его фасадах сделаны по «золотому сечению» (фото ниже).

Одним из ученых, который придумал и успешно применял усовершенствование модульной системы пропорций для архитектурных объектов (так называемый «модулор»), — был французский архитектор Ле Корбюзье. В основу модулора положена измерительная система, связанная с условным делением на части человеческого тела.

Русский архитектор М. Казаков, построивший несколько жилых домов в Москве, а также здания сената в Кремле и Голицынской больницы (сейчас 1-я Клиническая им. Н. И. Пирогова), — был одним из архитекторов, которые использовали при проектировании и строительстве законы о золотом сечении.

Применение пропорций в дизайне

В дизайне одежды все модельеры делают новые образы и модели с учетом пропорций человеческого тела и правил золотого сечения, хотя от природы не все люди имеют идеальные пропорции.

При планировании ландшафтного дизайна и создании объемных парковых композиций с помощью растений (деревьев и кустарников), фонтанов и малых архитектурных объектов также могут применяться закономерности «божественных пропорций». Ведь композиция парка должна быть ориентирована на создание впечатления на посетителя, который свободно сможет ориентироваться в нем и находить композиционный центр.

Все элементы парка находятся в таких соотношениях, чтобы с помощью геометрического строения, взаиморасположения, освещения и света, произвести на человека впечатление гармонии и совершенства.

Применение золотого сечения в кибернетике и технике

Закономерности золотого сечения и чисел Фибоначчи проявляются также в переходах энергии, в процессах, происходящих с элементарными частицами, составляющих химические соединения, в космических системах, в генной структуре ДНК.

Аналогичные процессы происходят и в организме человека, проявляясь в биоритмах его жизни, в действии органов, например, головного мозга или зрения.

Алгоритмы и закономерности золотых пропорций широко используются в современной кибернетике и информатике. Одна из несложных задач, которую дают решать начинающим программистам, — написать формулу и определить, сумму чисел Фибоначчи до определенного числа, используя языки программирования.

Современные исследования теории о золотой пропорции

Начиная с середины 20 века, интерес к проблемам и влиянию закономерностей золотых пропорций на жизнь человека, резко возрастает, причем со стороны многих ученых различных профессий: математиков, исследователей этноса, биологов, философов, медицинских работников, экономистов, музыкантов и др.

В США с 1970-хгодов начинает выпускаться журнал The Fibonacci Quarterly, где публикуются работы на эту тему. В прессе появляются работы, в которых обобщенные правила золотого сечения и ряда Фибоначчи используют в различных отраслях знаний. Например, для кодирования информации, химических исследований, биологических и т.д.

Все это подтверждает выводы древних и современных ученых о том, что золотая пропорция многосторонне связана с фундаментальными вопросами науки и проявляется в симметрии многих творений и явлений окружающего нас мира.

Что общего у египетских пирамид, картины «Мона Лиза» Леонардо да Винчи и логотипов Twitter и Pepsi?

Не будем тянуть с ответом – все они созданы с использованием правила золотого сечения. Золотое сечение – это соотношение двух величин а и b, которые не равны между собой. Данная пропорция часто встречается в природе, также правило золотого сечения активно используется в изобразительном искусстве и дизайне – композиции, созданные с использованием «божественной пропорции», хорошо сбалансированы и, что называется, приятны для глаз. Но что именно представляет собой золотое сечение и можно ли использовать его в современных дисциплинах, к примеру, в веб-дизайне? Давайте разберемся.

НЕМНОГО МАТЕМАТИКИ

Допустим, у нас есть некий отрезок АБ, разделенный надвое точкой С. Соотношение длин отрезков: AC/BC = BC/AB. То есть, отрезок разделен на неравные части таким образом, что большая часть отрезка составляет такую же долю в целом, неразделенном отрезке, какую меньший отрезок составляет в большем.


Такое неравное разделение и называется золотым сечением. Обозначается золотое сечение символом φ. Значение φ составляет 1,618 или 1,62. В общем, если говорить совсем просто, это деление отрезка или любой другой величины в отношении 62% и 38%.

«Божественная пропорция» была известна людям с древнейших времен, этим правилом пользовались при возведении египетских пирамид и Парфенона, золотое сечение можно обнаружить в росписи Сикстинской капеллы и на картинах Ван Гога. Широко используется золотое сечение и в наши дни – примеры, которые постоянно у нас перед глазами – это логотипы Twitter и Pepsi.

Человеческий мозг устроен таким образом, что он считает красивыми те изображения или объекты, в которых можно обнаружить неравное соотношение частей. Когда мы говорим о ком-то, что «он пропорционально сложен», мы, сами того не ведая, имеем в виду золотое сечение.

Золотое сечение можно применять к различным геометрическим фигурам. Если взять квадрат и умножить одну его сторону на 1,618, то мы получим прямоугольник.

Теперь, если наложить квадрат на этот прямоугольник, мы сможем увидеть линию золотого сечения:

Если продолжать использовать эту пропорцию и разбивать прямоугольник на более мелкие части, мы получим вот такую картину:

Пока еще не понятно, куда нас заведет это дробление геометрических фигур. Еще чуть-чуть и все станет ясно. Если в каждом из квадратов схемы провести плавную линию, равную четвертинке окружности, то мы получим Золотую спираль.

Это необычная спираль. Ее еще иногда называют спиралью Фибоначчи, в честь ученого, который исследовал последовательность, в которой каждое число рано сумме двух предыдущих. Суть в том, что это математическое соотношение, визуально воспринимаемое нами как спираль, встречается буквально повсюду – подсолнухи, морские раковины, спиральные галактики и тайфуны – везде есть золотая спираль.

КАК МОЖНО ИСПОЛЬЗОВАТЬ ЗОЛОТОЕ СЕЧЕНИЕ В ДИЗАЙНЕ?

Итак, теоретическая часть окончена, переходим к практике. Неужели золотое сечение можно использовать в дизайне? Да, можно. К примеру, в веб-дизайне. Учитывая данное правило, можно получить правильное соотношение композиционных элементов макета. В результате все части дизайна, вплоть до самых маленьких, будут гармонично сочетаться между собой.

Если взять типичный макет с шириной 960 пикселей и применить к нему правило золотого сечения, то мы получим вот такую картину. Соотношение между частями составляет уже известное 1:1,618. В результате мы имеем двухколоночный макет, с гармоничным сочетанием двух элементов.

Сайты с двумя колонками встречаются очень часто и это далеко не случайно. Вот, к примеру, сайт National Geographic. Две колонки, правило золотого сечения. Хороший дизайн, упорядоченный, сбалансированный и учитывающий требования визуальной иерархии.

Еще один пример. Дизайн-студия Moodley разработала фирменный стиль для фестиваля исполнительского искусства в Брегенце. Когда дизайнеры работали над афишей мероприятия, они однозначно пользовались правилом золотого сечения для того, чтобы верно определить размер и расположения всех элементов и в результате получить идеальную композицию.

Агентство Lemon Graphic, создавшее визуальный образ для компании Terkaya Wealth Management, также использовала соотношение 1:1,618 и золотую спираль. Три элемента дизайна визитной карточки прекрасно вписываются в схему, в результате чего все части очень хорошо сочетаются между собой

А вот еще интересное использование золотой спирали. Перед нами опять сайт National Geographic. Если взглянуть на дизайн повнимательнее, то можно увидеть, что на странице есть еще один логотип NG, только поменьше, который расположен ближе к центру спирали.

Разумеется, это не случайно – дизайнеры прекрасно знали, что они делают. Это отличное место, чтобы продублировать логотип, так как наш глаз, рассматривая сайт, естественным образом смещается к центру композиции. Так работает подсознание и это необходимо учитывать при работе над дизайном.

ЗОЛОТЫЕ КРУГИ

«Божественная пропорция» может применяться к любым геометрическим фигурам, в том числе и к кругам. Если вписать окружность в квадраты, соотношение между которыми составляет 1:1,618, то мы получим золотые круги.

Вот логотип Pepsi. Все ясно без слов. И соотношение, и то, как была получена плавная дуга белого элемента логотипа.

С логотипом Twitter все немного сложнее, но и здесь видно, что его дизайн основан на использовании золотых кругов. Он немного не соответствует правилу «божественной пропорции», но по большей части все его элементы вписываются в схему.

ВЫВОД

Как видно, несмотря на то, что правило золотого сечения известно с незапамятных времен, оно нисколько не устарело. Следовательно, его можно использовать в дизайне. Не обязательно изо всех сил стараться уложиться в схему – дизайн дисциплина неточная. Но если нужно добиться гармоничного сочетания элементов, то попробовать применить принципы золотого сечения не помешает.