Виды защиты от радиации. Что такое радиация? Уровень радиации. Защита от радиации. Действие радиации на человека

Горение – это химическая реакция окисления горючего с кислородом, протекающая сравнительно быстро во времени с выделением большого количества теплоты.

В процессе горения продукты сгорания нагреваются до высоких температур.

Общее уравнение горения любого углеводородного газа с кислородом имеет следующий вид:

где m и n – соответственно количество атомов углерода и водорода в молекуле

Q – тепловой эффект реакции окисления.

В таблице 3.1приведены реакции горения основных горючих газов с кислородом.

Реакции горения горючих газов с кислородом

Таблица 3.1

В таблице 3.1приведены реакции окисления наиболее известных горючих газов с кислородом. Однако в реальных условиях окислитель (кислород) подается в зону горения не чистом виде, а в составе воздуха. Известно, что воздух, в основном состоит из двух частей: кислорода и азота. В состав воздуха входит также в незначительном количестве двуокись углерода СО 2 , а также редкие газы. Учитывая их незначительное количество в составе воздуха, то ими пренебрегаем.

Таким образом, если мы примем объем воздуха за 100%, то содержание кислорода составит 21%, а азота 79%. Следовательно, на 1 м 3 кислорода воздуха приходиться 79/21 = 3.76 м 3 азота, или 1 м 3 кислорода содержится в 100/21 = 4.76 м 3 воздуха.

Учитывая выше изложенные соотношения, мы можем записать общее уравнение горения углеводородов с воздухом:

В таблице 3.2 приведены уравнения реакции горения горючих газов с воздухом.

Следует отметить, что приведенные в таблицах 3.1 и 3.2 уравнения являются стехиометрическими, т.е. такое соотношение горючего газа и окислителя (кислорода, воздуха), при котором горючему газу подается теоретически необходимое количество окислителя. Однако в практике сжигания газа в реальных условиях приходится подавать в зону несколько больше окислителя, чем это следует из стехиометрических уравнений. Это связано, главным образом с несовершенством качества перемешивания горючего газа и окислителя.

Уравнения реакций горения горючих газов с воздухом

Таблица 3.2

Отношение действительного расхода окислителя (кислорода или воздуха) к теоретически необходимому называется коэффициентом избытка воздуха и обозначается α , т.е.:

где V д – действительный расход воздуха;

V т – теоретически необходимое количество воздуха.

В таблице 3.3 приведены значения теоретически необходимого количества окислителя (кислорода и воздуха), а также объема продуктов сгорания при сжигании 1 м 3 газа и коэффициенте избытка воздуха равном 1 (a = 1).

Теоретически необходимое количество окислителя и объем продуктов сгорания при сжигании 1м 3 при α = 1


Таблица 3.3

В практических расчетах иногда нам не известен химический состав газов, а известна лишь теплота сгорания. Необходимо определить теоретически необходимое количество воздуха, необходимое для полного сжигания 1 м 3 газа.

Для этого случая имеется эмпирическая формула Д.И. Менделеева:

где Q н – низшая теплота сгорания газа, кДж /м 3 .

Уравнения реакций горения различных газов с кислородом и воздухом отражает лишь соотношение между горючим и окислителем, а не объясняют механизма протекания этих реакций. В реальных условиях процесс горения значительно сложнее.

Разработал современную теорию механизма кинетики реакции горения газов советский ученый, академик Н.Н. Семенов . Согласно его теории в пламени газовоздушной смеси протекают цепные реакции горения газов. В результате чего образуются промежуточные нестойкие продукты в виде свободных атомов радикалов. В соответствии с теорией Н.Н. Семенова реакция горения водорода с кислородом не сводится просто к соединению двух молекул водорода и одной кислорода с образованием двух молекул воды. В ходе взаимодействия этих двух газов сначала происходит образование промежуточных веществ в виде атомов водорода и кислорода, а также происходит образование свободных гидроксильных радикалов ОН.

Для начала процесса горения необходимо каким-то образом активизировать горючую смесь. Иными словами необходимо создать такие условия, при которых реагенты будут обладать большим запасом энергии. Этот запас энергии необходим для реализации процесса горения. Указанный выше запас энергии может быть создан подогревом газовоздушной смеси до температуры ее воспламенения. Эта энергия, называемая энергией активации, необходима главным образом для того, чтобы разрушить имеющиеся межмолекулярные связи в реагентах.

В процессе горения происходит непрерывное образование новых связей наряду с разрушением старых. При образовании новых связей происходит значительное выделение энергии, в то время как разрыв старых связей сопровождается всегда затратами энергии. Благодаря тому, что в процессе горения энергия, которая выделяется при образовании новых связей, имеет большое значение, по сравнению с энергией, затраченной на разрыв старых связей, суммарный тепловой эффект остается положительным.

Реакция водорода с кислородом является наиболее простой и изученной. Поэтому рассмотрим эту разветвленную реакцию на примере.

В соответствии с теорией Н.Н. Семенова в начальный момент реакции, в результате энергии активации и столкновения молекул водорода и кислорода, происходит образование двух гидроксильных радикалов ОН:

. (3.5)

Свободный же атом водорода Н, в свою очередь, вступает в реакцию с молекулой кислорода. В результате чего образуется гидроксильный радикал ОН и свободный атом кислорода т.е.:

. (3.7)

Радикал может опять вступить в химическую реакцию с водородом и опять, в результате реакции, образовать воду и свободный водород, а атом кислорода, в свою очередь, может вступить в реакцию с молекулой водорода, что приведет к образованию еще одного радикала ОН и атома водород Н, т.е.:

. (3.8)

Указанный выше механизм цепной реакции горения водорода с кислородом показывает возможность многократного взаимодействия одного радикала ОН с атомами водорода. В результате этого взаимодействия образуются молекулы воды.

Следовательно, свободные атомы и радикалы являются активными центрами при создании цепной реакции.

Реакцию горения водорода с кислородом, объясняющую механизм цепной реакции, можно записать так:

H 2 O O + (H 2)…

OH + (H 2) ® H +(O 2) ® OH + (H 2)…

O + (H 2) ® OH +(H 2) ® H 2 O

H +(O 2) ® OH +H 2 …

Механизм горения окиси углерода с кислородом отличается большей сложностью. По данным ученых Института Химической физики АН СССР окись углерода не вступает в реакцию с сухим кислородом. Ими было установлено также, что добавление в смесь небольшого количества водорода или влаги приводит к началу реакции окисления. В результате происходит следующая последовательность химических реакций:

H 2 O ® OH + H; (3.10)

OH + CO ® CO 2 + H; (3.11)

H + O 2 ® OH + O; (3.12)

CO + OH ® CO 2 + H; (3.13)

CO + O ® CO 2 ; (3.14)

H + O 2 = OH + O (3.15)

Как следует из приведенных химических реакций, наличие небольшого количества влаги приводит к образованию в зоне горения гидроксилов и свободных атомов. Как было отмечено ранее и гидроксильные радикалы, и свободные атомы являются инициаторами создания и носителями цепной реакции.

Еще более сложный механизм окисления углеводородов. Наряду с некоторым сходством с механизмом горения водорода и окиси углерода, механизм горения углеводородов имеет и ряд существенных отличий. Анализируя продукты сгорания, было установлено, что в них присутствуют альдегиды и главным образом формальдегид (НСНО).

Рассмотрим механизм окисления углеводородов на примере самого простого из них – метана. Механизм окисления метана проходит четыре стадии, на каждой из которых протекают следующие химические реакции:

На первой стадии:

H + O 2 ® OH + O; (3.16)

CH 4 + OH ® CH 3 + H 2 O; (3.17)

CH 4 + O ® CH 2 + H 2 O. (3.18)

На второй стадии:

CH 3 + O 2 ® HCHO + OH; (3.19)

CH 2 + O 2 ® HCHO + O; (3.20)

На третьей стадии:

HCHO + OH ® HCO + H 2 O (3.21)

HCHO + O ®СО + H 2 O; (3.22)

HCO+ O 2 ® CO + O + OH (3.23).

На четвертой стадии:

CO + O ® CO 2 (3.24)

В наше время погибнуть от радиационного излучения представляется маловероятным, и все же, такая опасность существует. Защита от радиации требует соблюдения определенных мер предосторожности. Разрушение клеток организма, которое происходит при взаимодействии с радиоактивным предметом, способствует развитию множества опасных заболеваний.

Человек подвергается фоновому излучению довольно часто. Солнце, мрамор, гранит, радоновые газы – все они служат источниками, однако их воздействие на организм незначительно. К сожалению, бывают ситуации, в которых риск подвергнуться облучению довольно велик и знание правил защиты от радиации может спасти жизнь. Превентивные меры состоят из соблюдения 3 постулатов, которые помогут свести к минимуму вредное воздействие радиоактивного облучения : время, преграды и расстояние.

Опасность радиоактивного облучения

Процесс распространения энергии называется радиацией. Инфракрасное, ультрафиолетовое, световое, ионизирующее излучение – все они подпадают под эту категорию. С позиции охраны жизни и средств защиты от радиации вызывает живой интерес ионизирующий тип. При больших дозах облучения процесс ионизации вещества способствует образованию в клетках свободных радикалов, разрушающих целостность клеточной мембраны.

Излучение невозможно различить без нужного оборудования, что делает его очень опасным врагом. Его проникновение происходит через органы дыхательной и пищеварительной систем и через кожный покров. Наиболее активно оно влияет на клетки, находящиеся в процессе деления. Эта особенность делает его воздействие особенно вредоносным для растущего детского организма и требует бережной защиты от радиации.

Помимо развития раковых опухолей, она вызывает следующие заболевания :

  • бесплодие;
  • мутации на клеточном уровне;
  • лейкоз;
  • катаракта;
  • понос;
  • повреждения различных органов;
  • болезни крови;
  • лучевая болезнь.

Следует различать понятия радиация и радиоактивность. Второе – это свойство веществ источать ионизирующее излучение, именно оно требует применения средств защиты от радиации. Первое – это само ионизирующее излучение, блуждающее в открытом пространстве и существующее до поглощения другим веществом.

Допустимые дозы облучения

Внутренняя доза облучения, проникающая в организм вместе с водой и пищей, является самой опасной. К сожалению, способы дезактивации, к которым прибегают при наружном облучении, здесь не работают.

Радиационное излучение окружает человека практически повсюду. Например, газ радон, который в маленьких объемах просачивается из земных недр и оседает в подвальных помещениях и первых этажах зданий. Некоторые бытовые предметы – часы, стрелки которых обработаны радиевой солью или телевизор, также являются источником излучения и требуют защиты от радиации. Классический пример соприкосновения с дозой облучения – процедура ФЛГ, которую в идеале надо проходить ежегодно. Продукты, выращенные в радиоактивной зоне, также являются опаснейшим источником заражения.

Любой предмет наделен возможностью поглощать радиацию, и человеческое тело не является исключением. В связи с этим установлена годовая доза облучения для большей части населения – 1 мЗв. Уровень радиации является безопасным, если он достигает не более 0,5 мЗв/ч (микрозиверт в час). Допустимое облучение при усредненном показателе составляет 0,2 мЗв/ч.

Способы защиты от радиации

При взаимодействии с радиоактивными предметами все способы охраны делятся на 3 типа:

  • профессиональный – для работников, находящихся в очаге поражения;
  • медицинский – применяемый в лечебных учреждениях;
  • общественный – созданный с целью уберечь население.

В социальном аспекте средства защиты от радиации подразумевают использование преград и соблюдение правил времени и расстояния в случае превышения допустимой дозы облучения.

Исходя из названия, не сложно догадаться, что защита от облучения радиацией заключается в уменьшении времени нахождения рядом с предметом, излучающим радиацию. Необходимо минимизировать время пребывания. Именно этот метод применялся во время ликвидации последствий аварии на Чернобыльской АЭС. Для обеспечения защиты от радиации специалистам давалось лишь несколько минут для выполнения своего задания в зоне поражения. Уровень радиации в течение первых часов после взрыва стремительно снижается благодаря распаду изотопов с маленьким жизненным циклом. Затем он падает довольно медленно, поскольку приходит время частиц с большим периодом полураспада.

Во время контакта с предметом, излучающим радиоактивное облучение и представляющим опасность для здоровья, следует немедленно от него отойти. Мощность воздействия снижается при увеличении дистанции между человеком и источником излучения.

Облучение радиацией ослабляется тяжелыми веществами, которые выступают в качестве своеобразного защитного экрана. Воздействие излучения задерживают следующие вещества :

  • сталь, 13 см;
  • вода, 100 мл;
  • кирпич, 40 см;
  • свинец, 8 см;
  • рыхлый грунт, 90 см;
  • плотный грунт, 60 см.

Людям, работающим в помещениях с высоким радиационным фоном, небезопасно присутствовать без соответствующей «амуниции». В качестве способов защиты от радиации существуют специально сконструированные экраны, блокирующие ионизирующее излучение, и радиационный костюм.

Например, альфа-излучение имеет свойство поражать только кожный покров при внешнем воздействии. Чтобы обеспечить защиту от облучения следует использовать респиратор, перчатки, сделанные из резины, плащ из полиэтилена и хлопчатобумажную одежду.

Уберечь себя от бета-излучения немного труднее. Если допустимая доза облучения превышена, экран из стекла или алюминиевого листа и противогаз сослужат хорошую службу. Нет надобности штудировать энциклопедии, чтобы понять, как соорудить убежище: достаточно укрыться в подвале кирпичного или бетонного здания.

Самый сложный способ защиты от радиации – при воздействии гамма-излучения. Материалы, применяемые для изготовления необходимого обмундирования – свинец, вольфрам, чугун и сталь, достаточно дорогостоящие и имеют высокую массу. Как сделать укрытие, если нет возможности определить вид частиц? Кирпичные стены, с внутренней отделкой из металлических листов и полиэтилена помогут укрыться от воздействия любой дозы облучения.

Пищевые добавки против радиации

Нейтрализовать последствия от дозы радиоактивного облучения поможет прием препаратов и продуктов, уменьшающих токсическое воздействие радионуклидов. Природными защитниками являются:

  • белый хлеб;
  • орехи;
  • редиска;
  • пшеница;
  • ламинария (морская капуста);
  • чеснок.

Среди наиболее распространенных средств, помогающих уменьшить годовую дозу облучения, фармацевтика предлагает «Корень женьшеня». Его необходимо принимать по 40 капель два раз в день перед приемом пищи. Элеутерококк, левзея, медуница и заманиха также могут помочь в снижении радиационного воздействия.

Каждый житель планеты Земля получает различные дозы радиоактивного излучения как от естественных источников (космические лучи, месторождения радиоактивных элементов), так и от искусственных источников.

При долгом облучении или больших дозах радиация может разрушать клетки, повреждать ткани органов, может стать причиной злокачественных новообразований и гибели организма.

Что такое радиация?

Радиоактивностью называют неустойчивость ядер атомов, что проявляется в их способности к самопроизвольному распаду, который сопровождается выходом ионизирующего излучения, то есть радиации. Энергия этого излучения настолько велика, что воздействует на вещество, создавая новые ионы разных знаков.

Источники радиации

Существует два способа облучения. Первый, если радиоактивные вещества находятся вне организма и облучают его снаружи – это внешнее облучение. Второй способ – внутренний: радионуклиды попадают внутрь организма с воздухом, пищей и водой.

Источники радиоактивного излучения объединяются в две большие группы: естественные и искусственные, то есть созданные человеком. Ученые заявляют – именно земные источники радиации ответственны за большую часть облучения, которому подвергается человек.

Естественные виды излучения попадают на поверхность Земли либо из космоса, либо от радиоактивных веществ, находящихся в земной коре. Интенсивность влияния космического излучения зависит от высоты над уровнем моря и широты, поэтому люди, живущие в горных районах, и те, кто постоянно пользуется воздушным транспортом, подвергаются дополнительному риску облучения.

Излучение земной коры в основном представляет опасность только вблизи месторождений. Но радиоактивные частицы могут попасть к человеку в виде стройматериалов, фосфорных удобрений, а затем и на стол в виде продуктов питания. Причиной радиоактивности строительных материалов становится радон - радиоактивный инертный газ без цвета, вкуса и запаха. Радон скапливается под землей, а на поверхность же он выходит при добыче полезных ископаемых или через трещины в земной коре.

Открытие радиоактивности послужило толчком для прикладного использования этого явления, в результате чего были созданы искусственные источники радиоактивного излучения, которые применяются в медицине, для производства энергии и атомного оружия, для поиска полезных ископаемых и обнаружения пожаров, в сельском хозяйстве и археологии. Опасность представляют и предметы, вывезенные из «запретных» зон после аварий АЭС, и некоторые драгоценные камни.

В медицине человек подвергается радиации при прохождении рентгеновских обследований, при использовании радиоактивных веществ для диагностики или лечения различных заболеваний. Также ионизирующие излучения используют для борьбы со злокачественными болезнями. Лучевая терапия воздействует на клетки биологической ткани с целью устранения их способности к делению и размножению.

Открытие такого явления как радиация привело к созданию ядерного оружия, испытания которого в атмосфере являются дополнительным источником облучения населения Земли. Почти 40 лет атмосфера Земли сильно загрязнялась радиоактивными продуктами атомных и водородных бомб.

Атомные электростанции (АЭС) также являются источником радиации, так как в основе производства электроэнергии лежат цепные реакции деления тяжелых ядер. Одним из факторов облучения человека после аварий на атомных электростанциях является техногенный радиационный фон атомной энергетики, который при обычной работе ядерной установки невелик. В зависимости от характера аварии на атомной электростанции, радиоактивные вещества, выброшенные в атмосферу, попадают в окружающую среду и переносятся воздушными потоками на различные расстояния от эпицентра аварии. Вся среда обитания, флора, фауна, находящаяся в зоне взрыва, будет подвергаться облучению. Радиоактивное облако осаждается на землю с дождевыми осадками.

Лекция

Как защититься от радиации?

Радиация может попадать в наш организм как угодно, и часто виной этому становятся предметы, не вызывающие подозрений. Действенный способ обезопасить себя - использовать дозиметр радиации. Этим миниатюрным прибором можно самостоятельно контролировать безопасность и экологическую чистоту окружающего вас пространства и предметов.

При угрозе реального радиоактивного заражения первое, что надо сделать - это спрятаться. Фактически важно как можно быстрее укрыться в помещении, защитить органы дыхания и защитить тело. В помещении с закрытыми окнами и дверями и с отключённой вентиляцией можно снизить потенциальное внутреннее облучение. Обычные хлопчатобумажные ткани при использовании в качестве фильтров уменьшают концентрацию аэрозолей, газов и паров в 10 раз и более. При этом защитные свойства ткани и бумаги можно увеличить, если намочить их.

Защитить кожу от радиоактивного заражения можно тщательно омыв тело, а волосы и ногти необходимо дезинфицировать специальными средствами. Одежду желательно уничтожить.

Если не удалось избежать контакта с радиоактивными элементами, то с действием пагубных веществ можно бороться с помощью особых йодовых таблеток. Также врачи рекомендуют наносить йодовую сеточку на тело или принять одну ложку морской капусты. С йодом лучше не переусердствовать, так как употребление йода без достаточных оснований и в чрезмерных количествах не только бесполезно, но и опасно. Если вы опасаетесь радиации, то можно ввести в свой ежедневный рацион морепродукты.

Есть мнение, что от радиации защищает алкоголь, который снижает восприимчивость к радиации, пишет dozimetr.biz. Но давно разработаны современные противорадиационные препараты, которые, конечно, гораздо надёжнее алкоголя.

Чтобы защитить себя от радиации в обычной жизни, избегайте потребления в пищу неизвестно как выращенных ранних овощей.

Больше всего от радиации страдают половые органы, молочные железы, костный мозг, легкие, глаза. Поэтому некоторые врачи рекомендуют лишь в случае острой необходимости обследоваться на медицинских рентгеновских аппаратах: не чаще одного раза в год.

Не редкость случаи, когда общеупотребительные предметы оказывались сильно излучающими. Часы с самосветящимся циферблатом - тоже источник «рентгенов», а уран могут использовать для придания блеска искусственным фаpфоpовым зубам. Однажды сильным источником излучения оказалась бетонная плита, использованная в конструкции жилого дома, пишет Zasovetom.

Если говорить о дозах радиации, то она вредна для жизни в любых дозах. Последствия облучения могут проявиться через 10-20 лет или в следующих поколениях. При этом для детей радиация гораздо более опасна, чем для взрослых. 4/5 облучения обычный человек получает от естественного фона, а атомная электростанция при соблюдении всех правил эксплуатации - безопасна. «Экономия тепла» в помещениях, то есть непpоветpивание комнат или офисов, и рентгеновские обследования вызывают гораздо большее облучение, чем соседняя АЭС.