Естественный фон радиации мкзв ч. Допустимая доза излучения для человека. Естественная и искусственная радиация

Радиацией в общем смысле называют распространение энергии в виде элементарных частиц и квантовых потоков. Выделяют световое (видимое невооруженным глазом), инфракрасное, ультрафиолетовое и ионизирующее излучение.

Для безопасности жизнедеятельности человека наибольший интерес представляет ионизирующая радиация, которая способствует образованию свободных радикалов в клетках живого организма, что запускает процесс разрушения белков, гибели или перерождения клеток.

Эти процессы могут стать причиной смерти живого организма. Именно поэтому под понятием “радиация” чаще всего подразумевается ионизирующее излучение.

Все ли виды радиации опасны?

Радиационное облучение не всегда смертельно и губительно, как принято полагать. В некоторых случаях нестабильность изотопов различных элементов используется во благо, в частности, в селекции растений и животных, медицине, энергетике и народном хозяйстве.

Радиация и радиоактивность - одно и то же?

Радиация и радиоактивность - понятия схожие, но совсем не тождественные. Радиацией называют свободные потоки энергии, которые существуют в пространстве до тех пор, пока не поглотятся каким-либо предметом. Радиоактивность же - это способность предмета или вещества поглощать излучение, становясь источником радиации.

Виды излучения и проникающая способность

Различают несколько видов радиационного излучения, среди наиболее значимых выделяют следующие:

  1. Альфа-излучение - поток положительных частиц со сравнительно большой массой, они обладают мощной ионизацией и представляют серьезную опасность при попадании в организм через ЖКТ, но при этом задерживаются даже небольшими преградами и не проникают под кожу.
  2. Бета-излучение - мельчайшие частицы с несколько большей проникающей способностью. Защитить от такого излучения может тонкий слой алюминия или несколько сантиметров дерева.
  3. Гамма-излучение и подобное ему рентгеновское - поток нейтрально заряженных частиц, имеющих высокую проникающую способность, представляет наибольшую опасность для человека. Защитить от облучения могут материалы с тяжелыми ядрами, и для этого понадобится слой в несколько метров.

Естественная и искусственная радиация

Излучение может быть как естественным, так и появляться вследствие деятельности человека. В природе мощными источниками радиации являются Солнце и процесс распада некоторых элементов в составе земной коры. Даже в организме человека в норме имеются вещества, которые создают персональный радиационный фон.

Искусственная радиация является следствием деятельности атомных электростанций, разработки и применения любой техники, в которой используются ядерные реакторы, а также использования радиоактивных изотопов в медицине, добычи элементов с нестабильными атомными ядрами, проведения испытаний, захоронения опасных отходов и утечки ядерного топлива.

Внешнее и внутреннее облучение

Естественный радиационный фон обуславливается наличием внешних и внутренних источников радиации. Основные пути проникновения радиации в организм человека:

  • через пищеварительный тракт, что обусловлено условиями жизни и характером деятельности человека;
  • через слизистые оболочки и кожу, что также определяется местоположением и может быть связано с особенностями местности проживания (влияют близость искусственных источников радиации, географическая широта и высота над уровнем моря) и строительными материалами, содержащими радиоактивные вещества, из которых построены объекты жилищного фонда и инфраструктуры.

Допустимые и смертельные дозы радиации

Естественный уровень радиации зависит от местности и условий жизни человека. Измеряется величина в дозах, получаемых организмом за определенный промежуток времени (как правило, за один час или год):

  • Экспозиционная, отражающая степень ионизации при гамма- или рентгеновском излучении, основная единица измерения - рентген.
  • Поглощенная веществом, предметом или организмом доза измеряется в “греях”.
  • Эффективная (допустимая) доза определяется индивидуально для каждого органа.
  • Эквивалентная доза радиационного облучения рассчитывается согласно коэффициентам и зависит от вида излучения.

Нормы радиационного фона

В среднем в норме и не несет опасности для населения величина излучения около двадцати микрорентген в час, но показатель может значительно различаться в зависимости от особенностей исследуемой территории.

Предельная граница радиации (ПДК - предельно допустимая концентрация) - показатель, составляющий примерно 0.5 мкЗв/час (или 50 мкР/ч). Однако при уменьшении сроков воздействия радиоактивного излучения до нескольких часов, человек может вынести и такие дозы облучения, как 10 мкЗв/ч (или 1 мкР в час).

Находясь в зоне радиационного загрязнения или воздействия радиации, например, при медицинских исследованиях, несколько минут максимальный допустимый уровень облучения составляет до нескольких миллизивертов в час.

Проникающая радиация накапливается в организме. Нормы определяют, что для полноценного функционирования организма и сохранения здоровья на должном уровне накопленное количество радиации за всю жизнь не должно превышать предела от 100 до 700 мЗв.

При этом, в поле верхних значений допустимые дозы будут находиться для жителей высокогорных районов и территорий с повышенной радиоактивностью.

Суммарно посчитать воздействие радиации в год поможет таблица примерных доз облучения при различных видах деятельности. Например, при флюорографии полученная доза составляет 0,06 мЗв, а рентгеновский луч дает 30% и 3% облучения от годовой дозы при рентгене (пленочном и цифровом соответственно) органов грудной клетки.

Радиационное заражение

Радиационным (радиоактивным) заражением считается ситуация, которая являет собой опасность для здоровья и даже жизни людей, проживающих на территориях выпадения радиоактивных веществ, а также в местностях, близких к эпицентру техногенных аварий. Нормальный радиационный фон нарушается при утечках во время транспортировки и хранения радиоактивных отходов, авариях на атомных электростанциях или в результате случайных или преднамеренных утерь радиоисточников.

Основными отравляющими веществами являются йод-131, стронций, цезий, кобальт и америций. Минимальный период полураспада радиоактивных веществ составляет около восьми суток, максимальный – более четырехсот лет. При техногенных авариях дозы облучения снижаются до допустимого уровня в среднем за 30-50 лет, хотя все зависит от характера выброса.

Так, например, нахождение в зоне отчуждения вокруг Чернобыльской АЭС в течение 10 часов сегодня эквивалентно перелету, а в Хиросиме и Нагасаки, которые испытали на себе воздействие ядерной бомбы, на данный момент могут жить люди.

Опасные дозы облучения

  1. 50%-ая вероятностью летального исхода наступает при 3-4 Гр проникающей радиации, а при 7 Гр и более смерть наступает в 99% случаев;
  2. Облучение свыше 10 Гр уже может считаться смертельной для человека, лучевая болезнь в этом случае убивает за 2-3 недели.
  3. Смертельная доза радиации для человека составляет 15 Гр (смерть наступает за 1-5 суток);

Симптомы и степени тяжести заражения

В клинической картине лучевой болезни выделяют четыре степени тяжести:

  • поражение первой степени возникает при облучении в пределах 2 Гр;
  • средняя тяжесть характерна для дозы до 4 Гр;
  • при тяжелой (третьей) степени облучение колеблется в пределах 4-6 Гр;
  • доза радиации при лучевой болезни крайней тяжести составляет более 6 Гр.

Кроме того, врачи говорят о лучевой травме, протекающей без каких-либо характерных симптомов, если пострадавший получил облучение менее 1 Гр.

  • Симптомы первой степени лучевой болезни проявляются в головных болях, изменении аппетита, раздражительности и нарушениях сна. У пострадавших, как правило, отмечаются раздражение слизистых, расстройства ЖКТ и повышенная потливость. Выздоровление наступает через один-два месяца, если воздействие радиации прекратилось.
  • Поражение средней степени тяжести характеризуется усугублением существующих симптомов, патологическими изменениями внутренних органов и ЦНС, возникновением трофических язв, а также многочисленными осложнениями, которые связаны с ослаблением иммунитета. Больные часто так и не выздоравливают полностью, а врачам лишь удается добиться ремиссии с периодическими обострениями.
  • Лучевая болезнь третьей степени отличается необратимыми изменениями в работе большинства органов и систем, деградацией тканей и частыми кровотечениями. Состояние представляет значительную опасность для жизни пациента, быстро прогрессирует и в большинстве случаев заканчивается летальным исходом.
  • Признаки радиационного поражения крайней тяжести мало изучены в медицинской практике, т.к. настолько серьезная форма лучевой болезни встречается очень редко. Современные методы диагностики и лечения позволяют выявить и остановить болезнь на тех этапах, когда оказывать помощь пострадавшему еще целесообразно. При этом стойкое улучшение состояния пациента наступает, как правило, через два-три года после прекращения воздействия радиации на организм.

Провести измерение радиоактивного излучения может любой человек, приборы сегодня легко найти в продаже.

Какова безвредная и смертельная доза радиации для человека и что нужно знать, чтобы правильно оценить опасность?

Рассмотрим ниже.

Естественная радиация

Что имеют в виду под словами «естественный радиационный фон»?

Это радиация, создаваемая солнечным, космическим излучением, а также из природных источников. Она воздействует на живые организмы непрерывно.

Биологические объекты, предположительно, к нему адаптированы. К ней не относятся скачки радиации, возникающие из-за деятельности, осуществляемой на планете людьми.

Когда говорят безопасная доза радиации, имеют в виду именно естественный фон. В какой бы зоне человек ни находился, он получает в среднем 2400 мкЗв/год из воздуха, космоса, земли, продуктов питания.

Внимание:

  1. Естественный фон – 4-15 мкР/час. На территории бывшего Союза уровень радиации колеблется от 5 до 25 мкР/ч.
  2. Допустимый фон – 16-60 мкР/час.

Космическое излучение неравномерно охватывает земной шар, нормальная интенсивность на полюсах – выше (магнитное поле земли на экваторе сильнее отклоняет заряженные частицы). А также допустимый уровень зависит от высоты над уровнем моря ( солнечного излучения на высоте 10 км над уровнем моря – 0,2 мбэр/час, на высоте 20 км – 1,6).

Определённое количество получает человек при авиаперелетах: при длительности 7-8 часов на высоте 8 км на турбовинтовом самолете со скоростью ниже скорости звука составит 50 мкЗв.

Внимание: влияние радиоактивного излучения на живые организмы полностью еще не изучено. Малые дозы не вызывают явных, доступных для наблюдения и изучения симптомов, хотя, вероятно, оказывают отложенный, системный эффект.

Вопрос влияния небольших количеств является спорным, одни специалисты утверждают, что к естественному фону человек адаптирован, другие считают, что абсолютно безопасным нельзя считать ни один предел, в том числе нормальный радиационный фон.

Виды радиационного фона

Их необходимо знать, чтобы суметь оценить, где и когда могут встречаться дозы, смертельные для организма человека.

Виды фона:

  1. Естественный. В дополнение к внешним источникам, в организме есть внутренний источник – природный калий.
  2. Технологически измененный естественный. Его источники – природные, однако искусственно обработанные. Например, это могут быть извлеченные из недр земли природные ископаемые, из которых впоследствии были изготовлены стройматериалы.
  3. Искусственный. Под ним понимают загрязнение земного шара искусственными радионуклидами. Начал формироваться с развитием ядерного оружия. Составляет 1-3% от естественного фона.

Существуют списки городов России, в которых количество лучевых воздействий стало аномально высоким (из-за техногенных катастроф): Озерск, Северск, Семипалатинск, посёлок Айхал, город Удачный.

Как измеряют

Измерять могут либо на местности, либо – если измерение проводится с медицинскими целями — в тканях организма.

Измеряют дозиметрами, которые через несколько минут показывают мощность различных видов излучения (бета и гамма), а также поглощаемую дозу в час. Альфа-лучи бытовые приборы не улавливают.

Потребуется профессиональный, при измерении необходимо, чтобы прибор находился рядом с источником (сложно, если нужно измерить уровень излучения из земли, на которой уже построено строение). Для определения количества радона используют бытовые радиометры радона.

Единицы измерения

Часто можно встретить «радиационный фон в норме составляет 0,5 микрозиверт/час», «норма – до 50 микрорентген в час». Почему единицы измерения разные и как они соотносятся друг с другом. Значение часто может совпадать, например, 1 Зиверт = 1 Грей. Но у многих единиц разное смысловое наполнение.

Всего существует 5 главных единиц:

  1. Рентен – единица является внесистемной. 1 Р = 1 БЭР, 1 Р примерно равен 0,0098 Зв.
  2. БЭР – это устаревшая мера измерения того же самого, доза, воздействующая на живые организмы как рентгеновские или гамма-лучи мощностью 1 Р. 1 БЭР = 0,01 Зв.
  3. Грей – поглощенная. 1 Грей соответствует 1 Джоулю энергии излучения на массу 1 кг. 1 Гр = 100 Рад = 1 Дж/кг.
  4. Рад – внесистемная единица. Также показывает дозу поглощенной радиации на 1 кг. 1 рад – это 0,01 Дж на 1 кг (1 рад = 0,01 Гр).
  5. Зиверт – эквивалентная. 1 Зв, составляющий 1Гр равен 1 Дж/1 кг или 100 БЭР.

Для примера: 10 мЗв (миллизивертов) = 0,01 Зв = 0,01 Гр = 1 Рад = 1 БЭР = 1 Р.

В системе СИ прописаны Грей, Зиверт.

Существует ли вообще безопасная доза?

Порога безопасности не бывает, это было установлено ученым Р. Зивертом еще в 1950 году. Конкретные цифры могут описать диапазон, предугадать их воздействие возможно только ориентировочно. Даже малая, допустимая доза может вызывать соматические или генетические изменения.

Сложность в том, что увидеть повреждения сразу возможно не всегда, они проявляются некоторое время спустя.

Все это затрудняет исследование вопроса и вынуждает ученых придерживаться осторожных, приблизительных оценок. Именно поэтому безопасный уровень облучения для человека – это диапазон значений.

Кем устанавливаются нормы

Вопросами нормирования и контроля в РФ занимаются специалисты Госкомсанэпиднадзора. В нормах СанПиНа учтены рекомендации международных организаций.

Документы:

  1. НРБ-99. Это основной документ. Прописаны нормативы отдельно для гражданского населения и работников, чей труд предполагает контакты с источниками радиации.
  2. ОСПОР-99.

Поглощенная доза

Она показывает, какое количество радионуклидов было поглощено организмом.

Допустимые дозы облучения согласно НРБ-99:

  1. За год – до 1 мЗв, что составляет 0,57 мкЗв/ч (57 микрорентген/час). За любые пять лет подряд – не более 5 мЗв. В год — не более 5 мЗв. Если человек получил дозу облучения за год 4 мЗв, за прочие четыре года должно быть не более 1 мЗв.
  2. За 70 лет (берется как средняя продолжительность всей жизни) – 70 мЗв.

Обратите внимание: 0,57 мкЗв/ч – это верхнее значение, считается, что безопасно для здоровья – в 2 раза меньше. Оптимально: до 0,2 мЗв/час (20 микрорентген/час) – именно на эту цифру и стоит ориентироваться.

Внимание: эти нормы радиационного фона не учитывают естественный уровень, который колеблется в зависимости от местности. Порог для жителей равнин будет ниже.

Это пределы для гражданского населения. Для профессионалов они в 10 раз выше: допустимо 20 мЗв/год за 5 лет подряд, при этом необходимо, чтобы в один год выходило не более 50.

Допустимая, для человека зависит и от длительности облучения: без вреда для здоровья можно провести несколько часов при внешнем облучении 10 мкЗв (1 миллирентген/час), 10-20 минут – при нескольких миллирентген. Выполняя рентген грудной клетки пациент получает 0,5 мЗв, что составляет половину годовой нормы.

Нормы согласно СанПин

Поскольку значительная часть радиации поступает с продуктами питания, питьевой водой и из воздуха, СанПиНом введены нормы, которые позволят оценить эти источники:

  1. Сколько для помещений? Безопасное количество гамма-лучей – 0,25-0,4 мкЗв/час (эта цифра включает естественный фон для конкретной местности), радон и торон в совокупности – не более 200 Бк/куб.м. в год.
  2. В питьевой воде – сумма всех радионуклидов не больше 2,2 Бк/кг. Радона – не более 60 Бк/час.
  3. Для продуктов норма радиации прописана детально, по каждому виду отдельно.

Если дозы в квартире превышают указанные в п. 1, здание считается опасным для жизни и переквалифицируется из жилого в нежилое, либо предназначаются под снос.

Обязательно оценивается зараженность стройматериалов: уран, торий, калий в сумме должны составлять не более 370 Бк/кг. Оценивается и участок под строительство (промышленное, индивидуальное): гамма-лучи у земли – не больше 0,3 мкЗв/ч, радон – не больше 80 мБк/кв.м*с.

Что делать, если радиоактивность питьевой воды выше указанной нормы (2,2 Бк/кг)?

Такая вода еще раз проходит оценку на содержание конкретных радионуклидов отдельно по каждому виду.

Интересно: иногда можно услышать, что вредно употреблять в пищу бананы или бразильские орехи. Орехи действительно содержат некоторое количество радона, поскольку корни деревьев, на которых они растут, уходят крайне глубоко в почву, отчего и поглощают естественный, присущий недрам фон.

Важно: многие продукты естественного происхождения содержат радиоактивные изотопы. В среднем норма допустимой радиации, получаемой с пищей – 40 миллибэров/год (10% годовой дозы). Все реализуемые через магазины продукты, предназначенные в пищу, должны проходить проверку на заражение стронцием, цезием.

Смертельная доза

Какая доза будет смертельной?

В одном из произведений Бориса Акунина рассказывается об острове Ханаан. Святые отшельники не подозревали, что охраняемый ими «кус сферы небесной» — метеорит, угодивший в месторождение урана. Излучение этого природного делителя приводило к смерти через год.

Но один из «охранников» отличался богатырским здоровьем – он позже других полностью облысел, и прожил в два раза дольше, чем прочие.

Этот литературный пример четко показывает, насколько вариативным может быть ответ на вопрос, какова смертельная доза радиации для человека.

Существуют такие цифры:

  1. Смерть – свыше 10 Гр (10 Зв, или 10000 мЗв).
  2. Угроза для жизни – дозировка более 3000 мЗв.
  3. Лучевую болезнь вызовет более 1000 мЗв (или 1 Зв, или 1 Гр).
  4. Риск различных заболеваний, в том числе раковых – более 200 мЗв. До 1000 мЗв говорят о лучевой травме.

Однократное облучение приведет к:

  • 2 Зв (200 Р) – снижение лимфоцитов в крови на 2 недели.
  • 3-5 Зв – выпадение волос, облезание кожи, необратимое бесплодие, 3,5 Зв – у мужчин временно исчезают сперматозоиды, при 5,5 – навсегда.
  • 6-10 Зв – смертельное поражение, в лучшем случае еще несколько лет жизни с очень тяжелой симптоматикой.
  • 10-80 Зв – кома, смерть через 5-30 мин.
  • От 80 Зв – смерть мгновенно.

Смертность при лучевой болезни зависит от полученной дозы и состояния здоровья, при облучении более 4,5 Гр смертность – 50%. Также лучевую болезнь подразделяют на различные формы, в зависимости от полученного количества Зв.

Имеет значение и вид облучения (гамма, бета, альфа), время облучения (большая мощность в короткий промежуток или та же самая небольшими порциями), какие именно участки тела подверглись облучению, или оно было равномерным.

Ориентируйтесь на приведенные выше цифры и помните о важнейшем правиле безопасности – здравом смысле.

Навигация по статье:

В каких единицах измеряется радиация и какие допустимые дозы безопасны для человека. Какой радиационный фон является естественным, а какой допустимым. Как перевести одни единицы измерения радиации в другие.

Допустимые дозы радиации

Величина 1 мЗв/год, суммарно должна включать в себя все эпизоды техногенного воздействия радиации на человека. Сюда входят все типы медицинских обследований и процедур, включает флюорографию, рентген зуба и так далее. Так же сюда относятся полеты на самолетах, прохождение через досмотр в аэропорту, получение радиоактивных изотопов с пищей и так далее.

В чем измеряется радиация

Для оценки физических свойств радиоактивных материалов применяются такие величины как:

  • активность радиоактивного источника (Ки или Бк)
  • плотность потока энергии (Вт/м 2)

Для оценки влияния радиации на вещество (не живые ткани) , применяются:

  • поглощенная доза (Грей или Рад)
  • экспозиционная доза (Кл/кг или Рентген)

Для оценки влияния радиации на живые ткани , применяются:

  • эквивалентная доза (Зв или бэр)
  • эффективная эквивалентная доза (Зв или бэр)
  • мощность эквивалентной дозы (Зв/час)

Оценка действия радиации на не живые объекты

Действие радиации на вещество проявляется в виде энергии, которую вещество получает от радиоактивного излучения, и чем больше вещество поглотит этой энергии, тем сильнее действие радиации на вещество. Количество энергии радиоактивного излучения, воздействующего на вещество, оценивается в дозах, а количество поглощенной веществом энергии называется - поглощенной дозой .

Поглощенная доза - это количество радиации, которое поглощено веществом. В системе СИ для измерения поглощенной дозы используется - Грей (Гр).

1 Грей - это количество энергии радиоактивного излучения в 1 Дж, которая поглощена веществом массой в 1 кг, независимо от вида радиоактивного излучения и его энергии.

1 Грей (Гр) = 1Дж/кг = 100 рад

Данная величина не учитывает степень воздействия (ионизации) на вещество различных видов радиации. Более информативная величина, это экспозиционная доза радиации.

Экспозиционная доза - это величина, характеризующая поглощённую дозу радиации и степень ионизации вещества. В системе СИ для измерения экспозиционной дозы используется - Кулон/кг (Кл/кг) .

1 Кл/кг= 3,88*10 3 Р

Используемая внесистемная единица экспозиционной дозы - Рентген (Р):

1 Р = 2,57976*10 -4 Кл/кг

Доза в 1 Рентген - это образование 2,083*10 9 пар ионов на 1см 3 воздуха

Оценка действия радиации на живые организмы

Если живые ткани облучить разными видами радиации, имеющими одинаковую энергию, то последствия для живой ткани будут сильно отличаться в зависимости от вида радиоактивного излучения. Например, последствия от воздействия альфа излучения с энергией в 1 Дж на 1 кг вещества будут сильно отличаться от последствий воздействия энергии в 1 Дж на 1 кг вещества, но только гамма излучения . То есть при одинаковой поглощенной дозе радиации, но только от разных видов радиоактивного излучения, последствия будут разными. То есть для оценки влияния радиации на живой организм недостаточно просто понятия поглощенной или экспозиционной дозы радиации. Поэтому для живых тканей было введено понятие эквивалентной дозы.

Эквивалентная доза - это поглощённая живой тканью доза радиации, умноженная на коэффициент k, учитывающий степень опасности различных видов радиации. В системе СИ для измерения эквивалентной дозы используется - Зиверт (Зв) .

Используемая внесистемная единица эквивалентной дозы - Бэр (бэр) : 1 Зв = 100 бэр.


Коэффициент k
Вид излучения и диапазон энергий Весовой множитель
Фотоны всех энергий (гамма излучение) 1
Электроны и мюоны всех энергий (бета излучение) 1
Нейтроны с энергией < 10 КэВ (нейтронное излучение) 5
Нейтроны от 10 до 100 КэВ (нейтронное излучение) 10
Нейтроны от 100 КэВ до 2 МэВ (нейтронное излучение) 20
Нейтроны от 2 МэВ до 20 МэВ (нейтронное излучение) 10
Нейтроны > 20 МэВ (нейтронное излучение) 5
Протоны с энергий > 2 МэВ (кроме протонов отдачи) 5
Альфа-частицы , осколки деления и другие тяжелые ядра (альфа излучение) 20

Чем выше "коэффициент k" тем опаснее действие определенного вида радиции для тканей живого организма.

Для более лучшего понимания, можно немного по-другому дать определение "эквивалентной дозы радиации":

Эквивалентная доза радиации - это количество энергии поглощённое живой тканью (поглощенная доза в Грей, рад или Дж/кг) от радиоактивного излучения с учетом степени воздействия (наносимого вреда) этой энергии на живые ткани (коэффициент К).



В России, с момента аварии в Чернобыле, наибольшее распространение имела внесистемная единица измерения мкР/час, отражающая экспозиционная дозу , которая характеризует меру ионизации вещества и поглощенную им дозу. Данная величина не учитывает различия в воздействии разных видов радиации (альфа, бета, нейтронного, гама, рентгеновского) на живой организм

Наиболее объективная характеристика это - эквивалентная доза радиации , измеряемая в Зивертах. Для оценки биологического действия радиации в основном применяется мощность эквивалентной дозы радиации, измеряемая в Зивертах в час. То есть это оценка воздействия радиации на организм человека за единицу времени, в данном случае за час. Учитывая, что 1 Зиверт это значительная доза радиации, для удобства применяют кратную ей величину, указываемую в микро Зивертах - мкЗв/час:

1 Зв/час = 1000 мЗв/час = 1 000 000 мкЗв/час.

Могут применяться величины, характеризующие воздействия радиации за более длительный период, например, за 1 год.

К примеру, в нормах радиационной безопасности НРБ-99/2009 (пункты 3.1.2, 5.2.1, 5.4.4), указана норма допустимого воздействия радиации для населения от техногенных источников 1 мЗв/год .

В нормативных документах СП 2.6.1.2612-10 (пункт 5.1.2) и СанПиН 2.6.1.2800-10 (пункт 4.1.3) указаны приемлемые нормы для естественных источников радиоактивного излучения , величиной 5 мЗв/год . Используемая формулировка в документах - "приемлемый уровень" , очень удачная, потому что он не допустимый (то есть безопасный), а именно приемлемый .

Но в нормативных документах есть противоречия по допустимому уровню радиации от природных источников . Если просуммировать все допустимые нормы, указанные в нормативных документах (МУ 2.6.1.1088-02, СанПиН 2.6.1.2800-10, СанПиН 2.6.1.2523-09), по каждому отдельному природному источнику излучения, то получим, что радиационный фон от всех природных источников радиации (включая редчайший газ радон) не должен составлять более 2,346 мЗв/год или 0,268 мкЗв/час . Это подробно рассмотрено в статье на этом сайте. Однако в нормативных документах СП 2.6.1.2612-10 и СанПиН 2.6.1.2800-10 указана приемлемая норма для природных источников радиации в 5 мЗв/год или 0,57 мкЗ/час.

Как видите, разница в 2 раза. То есть к допустимому нормативному значению 0,268 мкЗв/час, без всяких обоснований применен повышающий коэффициент 2. Это скорее всего связано с тем, что нас в современном мире стали массово окружать материалы (прежде всего строительные материалы) содержащие радиоактивные элементы.

Обратите внимание, что в соответствии с нормативными документами, допустимый уровень радиации от естественных источников излучения 5 мЗв/год , а от искусственных (техногенных) источников радиоактивного излучения всего 1 мЗв/год.

Получается, что при уровне радиоактивного излучения от искусственных источников свыше 1 мЗв/год могут наступить негативные воздействия на человека, то есть привести к заболеваниям. Одновременно нормы допускают, что человек может жить без вреда для здоровья в районах, где уровень выше безопасного техногенного воздействия радиации в 5 раз, что соответствует допустимому уровню радиоактивного естественного фона в 5мЗв/год.

По механизму своего воздействия, видам излучения радиации и степени ее действия на живой организм, естественные и техногенные источники радиации не отличаются .

Все же, о чем говорят эти нормы? Давайте рассмотрим:

  • норма в 5 мЗв/год, указывает, что человек в течении года может максимально получить суммарную дозу радиации, поглощённую его телом в 5 мили Зиверт. В эту дозу не входят все источники техногенного воздействия, такие как медицинские, от загрязнения окружающей среды радиоактивными отходами, утечки радиации на АЭС и т.д.
  • для оценки, какая доза радиации допустима в виде фонового излучения в данный момент, посчитаем: общую годовую норму в 5000 мкЗв (5 мЗв) делим на 365 дней в году, делим на 24 часа в сутки, получим 5000/365/24 = 0,57 мкЗв/час
  • полученное значение 0,57 мкЗв/час, это предельно допустимое фоновое излучение от природных источников, которое считается приемлемым.
  • в среднем радиоактивный фон (он давно уже не естественный) колеблется в пределах 0,11 - 0,16 мкЗв/час. Это нормальный фон радиации.

Можно подвести итог по допустимым уровням радиации, действующим на сегодняшний день:

  • По нормативной документации, предельно допустимый уровень радиации (радиационный фон) от природных источников излучения может составлять 0,57 мкЗ/час .
  • Если не учитывать не обоснованный повышающий коэффициент, а также не учитывать действие редчайшего газа - радона, то получим, что в соответствии с нормативной документацией, нормальный радиационный фон от природных источников радиации не должен превышать 0,07 мкЗв/час
  • предельно допустимой нормативной суммарной дозой, полученной от всех техногенных источников , является 1 мЗв/год.

Можно с уверенность утверждать, что нормальный, безопасный радиационный фон в пределах 0,07 мкЗв/час , действовал на нашей планете до начала промышленного применения человеком радиоактивных материалов, атомной энергетики и атомного оружия (ядерные испытания).

А в результате деятельности человека, мы теперь считаем приемлемым радиационный фон в 8 раз превышающий естественное значение.

Стоит задуматься, что до начала активного освоения человеком атома, человечество не знало, что такое раковые заболевания в таком массовом количестве, как это происходит в современном мире. Если до 1945 года в мире регистрировались раковые заболевания, то их можно было считать единичными случаями по сравнению со статистикой после 1945 года.

Задумайтесь , по данным ВОЗ (всемирной организации здравоохранения), только в 2014 году на нашей планете умерли около 10 000 000 человек от раковых заболеваний, это почти 25% от общего количества умерших, то есть фактически каждый четвертый умерший на нашей планете, это человек умерший от ракового заболевания.

Так же по данным ВОЗ, ожидается, что в ближайшие 20 лет, число новых случаев заболевания раком будет увеличено примерно на 70% по сравнению с сегодняшним днем. То есть рак станет основной причиной смертности. И как бы тщательно, правительство государств с атомной энергетикой и атомным оружием, не маскировали бы общую статистику по причинам смертности от раковых заболеваний. Можно уверенно утверждать, что основной причиной раковых заболеваний, является воздействие на организм человека радиоактивных элементов и излучений.

Для справки:

Для перевода мкР/час в мкЗв/час можно воспользоваться упрощенной формулой перевода:

1 мкР/час = 0,01 мкЗв/час

1 мкЗв/час = 100 мкР/час

0,10 мкЗв/час = 10 мкР/час

Указанные формулы перевода - это допущения, так как мкР/час и мкЗв/час характеризуют разные величины, в первом случае это степень ионизации вещества, во втором это поглощённая доза живой тканью. Данный перевод не корректен, но он позволяет хотя бы приблизительно оценить риск.

Перевод величин радиации

Для перевода величин, введите в поле нужное значение и выберете исходную единицу измерения. После ввода значения, остальные величины в таблице будут вычислены автоматически.


В я попробовал внести ясность в путаницу среди обилия дозиметрических единиц измерения. Теперь же я хочу в доступном виде объяснить как расшифровывать показания дозиметра.

В дозиметрии используются только показатели поглощённой эквивалентной эфективной дозы. Она измеряется в зивертах. Среди важных режимов измерений выделяют определение накопленной поглощённой дозы.

Дело в том, что организм способен накоплять всю поглощённую за свою жизнь радиацию в виде необратимых изменений тканей и органов а так же радионуклидов, оседающих во внутренних тканях. Поскольку в природе постоянно присутствует некоторое фоновое излучение, то человек за свою жизнь накопляет дозу от 100 до 700 мЗв (милизивертов). Этот показатель рассчитан на 70 лет жизни. При таком раскладе совсем не трудно рассчитать норму полученой накопленой дозы за год или в сутки. Получается, что в год мы «должны» собрать норму в 1,43 - 10 мЗв, а за сутку, соответственно 0,004 - 0,027 мЗв. Накопленый эквивалент дозы измерятся после включения дозиметра и до тех пор, пока его не выключат или пока не обнулят результаты измерений.

Согласно показаниям моего дозимерта, за 32 часа и 48 минут я поймал 0,005 мЗв (мили зиверта) радиации, что вполне даже соответствует норме.

Но при некоторых «нестандартных ситуациях» бывает, что человек может поймать дозу излучения, во многие разы превышающую естественные фоновые показатели. Эту дозу можно накопить за раз (разовое облучение), кратковременно (облучение до 4-х суток подряд) или на протяжении многих лет.

Облучение малыми дозами но длительное время считается намного опаснее, чем облучение большой дозой, но за короткий промежуток времени.
3 мЗв/год - считается абсолютно безопасной нормальной дозой радиационного фона.

20 мЗв/год - предел годовой дозы облучения для работников ядерной и других видов радиационно-опасных работ.

150 мЗв/год - увеличивает вероятность возникновения онкологических заболеваний.

250 мЗв - после достижения этого порога накопленной дозы ликвидатора аварии на ЧАЭС больше не допускали до опасной работы и отправляли из Чернобыля.

Это были варианты получения накопленных доз за длительное время.
При кратковременном облучении граница предельно допустимой накопленой дозы поднимается.

До 0,01 мЗв - эту дозу можно не учитывать.

Если за одну смену рабочий имеет риск превысить порог в 0,2 мЗв , такая работа относится к радиационно опасным и предполагает ношение дозиметра.

До 100 мЗв - допустимое разовое (!) аварийное облучение населения. Медицинскими методами каких-либо заметных отклонений в строении тканей и органов не наблюдается.

Разовое облучение свыше 200 мЗв считается потенциально опасным, критическим для здоровья.

Облучение дозой 500-1000 мЗв вызывает чувство усталости, наблюдаются умеренные изменения в составе крови. Состояние нормализуется через некоторое время. Но появляется вероятность появления в будущем онкологических заболеваний.

1000-1500 мЗв (1-1,5 Зв) за раз могут вызвать симптомы, указывающие на реакцию органов и систем - тошнота, рвота, нарушение работспособности. Возникают различные формы лучевой болезни.

После значения доз 1500 мЗв (1,5 Зв) и выше (высокие уровни облучения) принято измерять поглощённую дозу в грэях (1 Зв = 1 Гр). Очевидно, что облучённый объект уже не воспринимают как «биологический» (вот такой у нас, медиков, чёрный юмор).

1,5-2,5 Гр (1500-2500 мЗв) - наблюдается кратковременная лёгкая форма лучевой болезни, которая появляется в виде выраженной, продолжающейся длительное время лейкопении (снижения числа лейкоцитов). В 30-50% случаев может наблюдаться рвота в первые сутки после облучения. При дозах больше 2 грэй - высок риск летального исхода.

2,5-4 Гр (2500-4000 мЗв) - возникает лучевая болезнь средней степени тяжести. У всех облученных в первые сутки после облучения наблюдается тошнота и рвота, резко снижается содержание лейкоцитов и появляются подкожные кровоизлияния. Такие дозы - вызывают существенный, непоправимый ущерб здоровью, облысение и белокровие.

Смертельные дозы проникающей радиации:

3-4 Гр (3000-4000 мЗв) - повреждение костного мозга, в течение месяца после облучения смертельный исход возможен у 50% облученных (без медицинского вмешательства).

4-7 Гр (4000-7000 мЗв) - развивается тяжелая форма лучевой болезни и высока смертность.

Свыше 7 Гр (7000 мЗв) - крайне тяжелая форма острой лучевой болезни. В крови полностью исчезают лейкоциты. Появляются множественные подкожные кровоизлияния. Смертность 100%. Причиной смерти, чаще всего являются инфекционные заболевания и кровоизлияния.

10Гр (10 зВ) - смерть в течение 2-3 недель.

15 Гр - 1-5 суток и всё.

Таким образом, накопленная эквивалентная эфективная доза является числом "показательным ". Она уже имеется и ничего с ней не сделаешь. Но есть ещё и показатель "предсказательный ". Он называется мощностью дозы эквивалентного эфективного облучения . Он тоже измеряется в зивертах/час, но показывает «будущее».

На моём дозиметре состоянием на 21:42 (29.01.2012) видно, что мощность эквивалентной эфективной дозы гамма-излучения на текущий момент составляет 0,16 мкЗв/час (микро зиверта в час) с погрешностью 20% (измерить настолько непостоянную величину, как радиоактивный распад можно лишь с погрешностью). Порог срабатывания сигнализации установлен на значение 0,3 мкЗв/час. Это значит, что можно быть увереным в том, что при текущем положении дел через один час я поймаю дозу в 0,16 мкЗв = 0,00016 мЗв . Этот показатель является в пределах допустимого фонового излучения.

0,2 мкЗв/час (~20 микрорентген/час) - наиболее безопасный уровень мощности фонового излучения.

0,3 мкЗв/час (~30 мкР/час) - предел безопасного фонового излучения, установленый санитарными нормами в Укранине.

0,5 мкЗв/час (~50 мкР/час) - верхний предел допустимой безопасной мощности дозы фонового излучения.

Сократив время непрерывного нахождения до нескольких часов - люди могут без особого вреда своему здоровью перенести излучение мощностью в 10 мкЗв/час , а при времени экспозиции до нескольких десятков минут - относительно безвредно облучение с интенсивностью до нескольких миллизивертов в час (при медицинских исследованиях - флюорография, небольшие рентгеновские снимки и др.).

В качестве базовой использовалась эта статья. В ней ещё очень много интересного. Описаны методы защиты от радиации а так же способ создания радиометра «из подручных средств».

Спасибо за внимание.

/ Физическое здоровье

Зиверт, миллизиверт и микрозиверт

Измерение мощности излучения и полученной дозы при рентгенографии зубов.

Профилактика радиоактивных заблуждений - 2

С момента открытия рентгеновых лучей отношение к их использованию и, вообще, существованию у народа нашего, да и не нашего, менялось полярно - от радиоистерии до радиофобии. В первое время увлечение радиологией среди более-менее грамотного населения планеты было довольно распространенным явлением. В лабораторных условиях смонтировать примитивную трубку, испускающую катодные лучи, не так уж и сложно, и в начале прошлого века рентгеновы лучи в своих целях начали использовать не только врачи, но и всякого рода врачеватели, фокусники и шарлатаны. Естественно, без всякой защиты и понимания природы этого явления. Последствия не заставили себя долго ждать. Появились сообщения о поражениях кожи, костей и выяснилось, что причиной их возникновения стало бездумное использование примитивных генераторов Х-лучей. Люди стали относится к этому делу с осторожностью и настороженностью. Дальше была война, японцы и американцы со своими бомбами. В общем, в глазах общественности Хиросима окончательно испортила имидж лучевого воздействия на организм. Начался период радиофобии.

Однако, с развитием науки, высоких технологий и на фоне всеобщего поумнения народ потихоньку успокоился. На западе даже получила распространение так называемая теория радиационного гормезиса . Суть ее заключается примерно в том, что если большие дозы радиации оказывают неблагоприятное воздействие на живые организмы - угнетают деление клеток, рост и развитие, то малые дозы, наоборот, стимулируют практически все физиологические процессы.

Откуда взялось такое мнение? Ну, во-первых, сейчас ни для кого не секрет, что существует естественный радиационный фон и это такая же составная и неотъемлемая часть природы, как воздух, вода и солнечный свет. Жить без него нельзя. Вернее, можно, но мыши, изолированные от всякого фонового воздействия, чувствуют себя гораздо хуже своих вольных собратьев. То есть для организма воздействие естественного радиационного фона - это что-то вроде "халявной" энергетической подпитки. Кратковременное и однократное увеличение фона стимулирует многие процессы отвечающие за функционирование иммунитета и обновление клеток. Еще есть версия, что в далекой древности фон был многократно выше и, за счет мутагенного воздействия, образовалось множество разных тварей земных. Потом фон резко упал и за последние десять тысяч лет ни одного нового зайца или березы у Матушки Природы создать не получилось. Примерно так.

Есть у этой теории и ярые противники и их гораздо больше, чем сторонников. Противники эти придерживаются концепции линейного беспорогового эффекта радиации (ЛБЭ), согласно которой безвредных доз нет, вредны любые, но по-разному. Есть лимит установленный природой, а все, что свыше - уже лишнее, а значит - вредное. Разработал концепцию шведский физик Зиверт , он же придумал эффективную эквивалентную дозу, за что и был увековечен в качестве ее единицы.

Откуда же берется радиационный фон

Прежде всего, общий фон надо разделять на естественный природный и неестественный техногенный. Техногенный, понятно, фабрики, заводы, плюс электрификация всей страны и телевизор в каждый дом. Ну и медицина конечно. На медицинские исследования в среднем приходится до четверти всего суммарного годового воздействия .

В свою очередь, источниками радиации определяющими природный фон являются, как это не банально звучит - небо и земля. Из космоса на нас летят все мыслимые и не мыслимые виды излучения, способные испепелить на своем пути все живое. Однако, фильтруясь через атмосферу (особенно через многострадальный озоновый слой), на землю попадает, то что попадает и никакого воздействия мы не чувствуем. От земли навстречу неустанно поднимается газ радон, продукт распада радиоактивных элементов. Элементы эти в разных количествах есть под всей поверхностью земли и радон выделяется везде и постоянно - и в Антарктиде под пингвинами, и в Африке под пигмеями, и прямо сейчас у нас из подвала. Поэтому в душных подвальных помещениях радиационный фон всегда выше, чем на чердаке. Многие, наверное, обращали внимание, что в буржуйских фильмах, когда показывают подвалы небоскребов, там обязательно есть большие страшные вентиляторы - это они так с радоном борются. У нас в этом плане попроще: радон - не аммиак, глаз не щиплет, в нос не бьет, значит его вроде и нету. Так и живем.

Поскольку радиация не пахнет, ее присутствие приходится определять и измерять с помощью разнообразной дозиметрической аппаратуры. Некоторые индивидуумы иногда заявляют, что чувствуют изменения в своем организме даже при малейшем и кратковременном изменении радиационного фона, например, после ортопантомографии. Можно с уверенностью сказать, что это ни какая не сверхчувствительность, а просто истерика или вранье. В Хиросиме - там, конечно да, все резко почувствовали, а тут - не тот случай.

Для измерения мощности излучения и полученной дозы существует много разных единиц, но население наше между собой эти единицы, как правило, не различает и все, что связано с излучением меряют в "рентгенах". Рентгены у нас излучают, получают, их хватают, они летают, образуются и накапливаются. Сразу следует сказать, что рентген сейчас считается единицей внесистемной и вместо него официально используется "Кулон на килограмм" - Кл/кг. Однако Кулон , из-за некруглости своей, единица очень неудобная и поэтому, для разного рода расчетов до сих пор допускается использование единицы рентгена. В общем, рентген - это такое количество излучения, при воздействии которого в 1 кубическом сантиметре воздуха образуется 2,08х10 9 пар ионов. И всё. Остальное - не рентген.

В рентгенах измеряют количество генерированного излучения или экспозиционную дозу. То есть, это количество энергии, которое, можно сказать, в вашу сторону вылетело, и должно упасть, если ничем не предохраняться. То, что упало и уже не смоешь, называется поглощенной дозой и измеряется в Греях.

Грей - это 1 джоуль энергии на 1 кг живого веса. По старому 1 Гр равен 100 рад (Radiation Absorbed Dose) и получается при воздействии экспозиционной дозы в 100 рентген. Однако, рад , как и бэр (биологический эквивалент рентгена) - тоже единицы внесистемные и сейчас не используются. Вместо них используется Зиверт.

Что такое Зиверт

Вот если на человека (не дай Бог, конечно!) упал 1 Грей лучистой энергии, то, проникая во внутрь ткани, луч ослабляется за счет тканевого поглощения. В результате, грубо говоря, от целого упавшего на кожу "джоуля на килограмм", с учетом коэффициента тканевого ослабления, остается 0,85. Но уже внутри, в тканях - это и есть Зиверт. Доза, измеряемая в Зивертах, называется эквивалентной, то есть соответствующей определенному виду излучения (a, b, y, X-R).

Однако для рентгеновского излучения поглощенная и эквивалентная дозы считаются равными. Поступившая в ткани энергия проделывает определенную работу и способна вызвать в организме какой-либо эффект. Для оценки возможных эффектов, как скорых, так и вероятных отдаленных (стохастических) используют понятие - эффективная эквивалентная доза. Определяется она из расчета воздействия на весь организм путем нахождения среднего числа от эквивалентных доз, полученных двенадцатью самыми проблемными местами организма. Этими "местами" являются: половые железы, молочные и щитовидная железы, красный костный мозг, легкие, надпочечники, поверхность ближайшей костной ткани и еще 5 наиболее подверженных воздействию участков при данном виде исследования. В нашем случае это язык, глаз, слюнные железы, хрусталик и гипофиз.

Так что же, всё-таки такое 1 Зиверт?

Это такая эффективная эквивалентная доза, которая получается при поглощенной дозе в 1 Грей. А что такое 1 Грей - много или мало? Если поставить 100 нормальных здоровых мужиков и каждому одномоментно раздать по Грею, то велика вероятность того, что половина из них заболеет лучевой болезнью. Иначе говоря, поглощенная доза в 1 Гр в 50% случаев вызывает развитие лучевой болезни в различных ее проявлениях. Излечение при такой дозе происходит самопроизвольно. Абсолютно смертельная доза для человека - 6 Гр. Поэтому Грей, или то же самое Зиверт - это очень большая доза. Если не участвовать в ликвидации радиационных катастроф, не подвергаться лучевой терапии по поводу опухоли и не пытаться создать в сарае атомную бомбу - такую дозу вряд ли можно где-то просто так получить. Поэтому более широкое применение находят меньшие единицы.

Разделив 1 Зиверт на 1000 мы получаем миллизиверт. То есть 1 мЗв - это одна тысячная Зиверта.

Сколько это - 1 миллизиверт

Если убрать техногенный фон и забраться в самый экологически чистый район, где не делают флюорографию, не смердят кочегарки и не добывают уран - естественный фон там будет примерно 0,5-1,0 миллизиверт в год (1 мЗв). Предельно допустимой для жизнедеятельности человека величиной фона считается 5 мЗв в год. Если брать планету в целом, то средний естественный фон составляет 2 мЗв. Однако, "средняя температура по больнице" - совсем не означает, что во всех палатах одинаково прохладно. В Чернобльской зоне, в одном из многочисленных Боливийских Сан-Паулу и кое-где на юге Африки фон перехлестывает все мыслимые границы и - ничего, люди живут. Короче - 1 миллизиверт в год - это такая доза, которая считается абсолютно безопасной при добавлении ее к среднему естественному фону, и именно столько отпущено нам на год для проведения рентгенографии, согласно САНПИНу и НРБ. Но, миллизиверт, опять же, величина достаточно крупная. Например, обычная пленочная флюорография обеспечивает дозу около 0,5-0,8 миллизиверта. Поэтому, делим миллизиверт еще на тысячу. Получаем - микрозиверт.

Микрозиверт - 1 мкЗв

Это одна тысячная миллизиверта или одна миллионная Зиверта. То есть, пленочная флюорограмма равна 500-800 мкЗв, а цифровая 60 мкЗв. Компьютерная томограмма черепа, сделанная на пошаговом томографе обеспечивает 1000-15000 мкЗв, на современном спиральном - 400-500 мкЗв, а на челюстно-лицевом томографе с плоскостным сенсором, типа PICASSO или ACCUITOMO - 45-60 мкЗв. Почувствуйте разницу.

Где можно получить дозу в 1 микрозиверт

Если открыть "Taschenatlas der Zahnarztlichen Radiologie" Фридриха Паслера и Хайке Виссер, больше известную у нас в русском переводе как "Рентгенодиагностика в практике стоматолога", то где-то в середине книги можно найти информацию, что серия из 20 внутриротовых снимков, выполненных с помощью визиографа и современного рентгенодиагностического аппарата с круглым тубусом, обеспечивают эффективную эквивалентную дозу 21,7 мкЗв. Данные официально опубликованы в Германии в 2000 г. То есть, по немецким расчетам, один внутриротовой снимок зуба как раз и соответствует примерно одному микрозиверту. Вот, казалось бы, и всё. Но, имея пытливый ум, вредный характер и отягощенную Чернобылем историю, можно попробовать усомниться.

Измеряют стандартную эффективную эквивалентную дозу с помощью антропоморфных фантомов. Это такая кукла, сделанная из материала с коэффициентом поглощения как у мягких тканей человека (например, воск или резина). В места, где у человека находятся вышеперечисленные органы, помещают дозиметры, делают снимок исследуемой области, потом считывают показания и выводят среднее. Казалось бы - чего проще. Но, как выяснилось, у нас в стране большие проблемы с фантомами. Всяких разных много, но именно таких днем с огнем не сыщешь. Так что измерить достоверно эквивалентную эффективную дозу для каждого вида современной рентгенографии не так-то просто. Можно, конечно, попробовать договориться с моргом… Но лучше начнем с теории.

Отталкиваясь от знания того, что 75% лучистой энергии уходит прямо по направлению луча, особенно при близком положении объекта и генератора, можно утверждать, что при исследовании зубов верхней и нижней челюсти человек получает совершенно разную лучевую нагрузку.

При рентгенографии зубов нижней челюсти , луч направлен почти параллельно земле или даже снизу вверх, то есть в затылок, в макушку, в щеку, в общем, большинство жизненно важных органов и прочих гениталий остаются далеко сбоку.

И, наоборот, при исследовании зубов верхней челюсти луч направляется большей частью сверху вниз, то есть в аккурат за шиворот, где все это добро обычно и находится.

В те времена далекие, когда терапевтическая стоматология у нас была проста и однозначна, как солдатское белье, Ставицкий Р. В. проводил расчеты доз как раз на стоматологическом приеме при рентгенографии с помощью актюбинских рентгенодиагностических аппаратов 5Д-1 и 5Д-2. Судя по его цифрам, пациент получал от этих генераторов (а кое-где получает до сих пор) и советской пленки 29-47 мкЗв за один снимок при рентгенографии зубов верхней челюсти и 13-28 мкЗв нижней. То есть, нагрузка при исследовании зубов верхней челюсти практически в 2 раза выше, чем при работе с нижней. Та же пропорция наблюдается в рекомендациях некоторых производителей современной аппаратуры в отношении высокочувствительной пленки - 8-12 мкЗв верхняя челюсть и 4-7 мкЗв нижняя. Если учесть, что нагрузка при цифровой рентгенографии в среднем в 3 раза ниже, чем при пленочной, то, по грубым подсчетам, нагрузка при работе с радиовизиографом получается по максимуму 4 мкЗв для верхней челюсти и 2 мкЗв для нижней.

В общем, по немцам выходит, что в отпущенный нам на облучение 1 миллизиверт мы можем вложить тысячу внутриротовых снимков зубов (безусловно, с учетом того, что пациент в течение текущего года не будет проходить флюорографию и другие тяжелые лучевые обследования), а по нашим грубым подсчетам - 250-300. Вам столько надо? Нет, конечно!

О нюансах следует помнить

До сих пор речь шла об эффективной эквивалентной дозе из расчета на весь организм, однако в силу специфики обследования, эквивалентная доза, полученная половыми железами и слюнными - отличается в сотни раз! Наибольшую нагрузку при рентгенографии зубов избирательно получают язык, слюнные железы и хрусталик. Нагрузка на остальные органы либо идентична, либо меньше приведенной выше эффективной эквивалентной дозы. Эквивалентная доза для языка в 8 раз выше эффективной, слюнных желез - в 4, а хрусталика в 1,25 раза.

В то же время, без разницы - 1 мкЗв или 5 мкЗв - это дозы ничтожно малые дозы. Пять микрозивертов человек получает после трех часов сиденья перед обыкновенным телевизором и ничуть не "парится" по этому поводу. Понятие "малых доз" начинается после 100 000 мкЗв, поскольку первые минимальные подвижки в организме и негативные реакции на излучение, которые могут быть сразу же выявлены в условиях лаборатории, начинаются при дозе в 100 миллизивертов.

В общем, не стоит применять к своему мирному стоматкабинету такие понятия, которые используются на ядерном полигоне. Всё гораздо проще и светлей. Понятно, что в связи с чернобыльской трагедией, радиофобия для нашего народа - почти национальная черта, но тут, опять же, не тот случай. Конечно, перегнуть можно любую палку - даже самый небольшой генератор весит около пуда, и если голова у аппарата случайно открутится - можно сильно отбить ноги. А на вопрос пациента "Какую дозу я получил?" - вы можете добрым голосом ответить: "Маленькую. Очень маленькую!". И при этом никого не обманете! Так что, соблюдайте технику безопасности, действуйте согласно инструкции и всё будет хорошо!

Д.В.Рогацкин , врач-рентгенолог,
журнал «Профилактика», #3-2008

Ортопантомография

ОПТГ, или так называемый панорамный рентген. За несколько минут аппарат выдает обзорный снимок всей полости рта. Этот рентген предоставляет информацию о зубах, верхней и нижней челюстной кости, пазухах и других твердых и мягких тканях головы и шеи.


Ортопантомография, фото medpulse.ru

Панорамный рентген - важная часть полного зубного обследования. Его желательно делать один раз в пять - семь лет. Хотя он и не отображает многих деталей, как при снимках зубов и десен другими видами рентгена, все же он помогает предотвратить большинство потенциальных заболеваний.

Лилиана Локацкая

Для справки

Миллизиверты атомщиков и ликвидаторов

  • 50 миллизивертов - это годовая предельно допустимая доза облучения операторов на атомных объектах в "мирное время".
  • 250 миллизивертов - это предельно допустимая аварийная доза облучения для профессионалов-ликвидаторов. После получения такой дозы человеку, как правило, необходимо лечиться. Он уже никогда не должен быть допущен для работы на АЭС или других радиационно-опасных объектах.
  • 300 мЗв - такой уровень вызывает признаки лучевой болезни.
  • 4000 мЗв - это лучевая болезнь с вероятностью летального исхода, т.е. смерти.
  • 6000 мЗв - гибель облученного человека в течение нескольких дней.

1 миллизиверт (мЗв) = 1000 микрозивертов (мкЗв).