Гаррисберг ядерная авария. План лекции. Восстановление стабильного охлаждения реактора

Авария на АЭС Три-Майл-Айленд (англ. Three Mile Island accident) - одна из крупнейших аварий в истории ядерной энергетики, произошедшая 28 марта 1979 года на атомной станции Три-Майл-Айленд, расположенной на реке Саскуэханна, неподалёку от Гаррисберга (Пенсильвания, США). До Чернобыльской аварии, случившейся через семь лет, авария на АЭС «Три-Майл Айленд» считалась крупнейшей в истории мировой ядерной энергетики и до сих пор считается самой тяжёлой ядерной аварией в США, в ходе неё была серьёзно повреждена активная зона реактора, часть ядерного топлива расплавилась.

Хронологическое описание аварии

Аварийная остановка реактора

В ночь с 27 на 28 марта 1979 года энергоблок №2 работал на 97% мощности. Непосредственно перед началом аварийных событий системы энергоблока работали в штатном режиме, за исключением двух известных для персонала проблем. Во-первых, это постоянная небольшая протечка теплоносителя через затвор одного из клапанов компенсатора давления, из-за чего в сбросном трубопроводе держалась повышенная температура, а избыток среды из бака-барботера приходилось сливать примерно раз в каждые 8 часов. Во-вторых, при осуществлении регулярной процедуры выгрузки (замены) ионообменной смолы из фильтра конденсатоочистки второго контура произошло блокирование (закупоривание) смолой трубопровода выгрузки, и около 11 часов предпринимались попытки продуть его смесью сжатого воздуха и воды. Наиболее вероятно, возникшие при выполнении этой операции неполадки стали первым звеном во всей последующей цепи аварийных событий. Предположительно, вода от одного из фильтров конденсатоочистки через неисправный обратный клапан попала в систему сжатого воздуха, который использовался в том числе и для управления пневматическими приводами арматуры. Конкретный механизм воздействия воды на функционирование системы так и не был установлен, известно лишь то, что в 4:00:36 (-0:00:01 - время от условной точки отсчета) произошло неожиданное единовременное срабатывание пневмоприводов и закрытие всей арматуры, установленной на входе и выходе из фильтров конденсатоочистки. Поток рабочей среды оказался полностью перекрыт и работа второго контура станции была нарушена. Последовательно отключились конденсатные, питательные насосы и турбогенератор. Вода перестала поступать в парогенераторы и теплоотвод от реактора ухудшился. Возможность возникновения подобной аварийной ситуации была учтена при проектировании станции. Соответственно, была предусмотрена система аварийной подачи питательной воды в парогенераторы из баков запаса конденсата, а персонал был обучен управлению станцией в таких условиях. Переходной процесс занял несколько секунд за которые, автоматически, без участия операторов, произошло следующее: 04:00:37 (00:00:00) - остановка турбогенератора; 04:00:37 (00:00:00) - запуск насосов аварийной питательной воды; 04:00:40 (00:00:03) - срабатывание электромагнитного клапана компенсатора давления (из-за повышения давления в реакторной установке выше 15,5 МПа); 04…

Далекий 1979-й был славным годом. В этом году случилось несколько революций, советские хоккеисты взяли «Кубок Вызова» у команды НХЛ, в Сахаре целых полчаса шел снег, а на Джимми Картера напал кролик. И за три недели до памятной атаки кролика произошла крупнейшая в США (а на тот момент — и в мире) авария на атомной станции. Эта катастрофа поставила крест на американской ядреной энергетике, и показала, что с атомом, хоть и мирным, шутки плохи.

Авария на АЭС Три-Майл-Айленд: первая ядерная

Объект: Энергоблок № 2 АЭС Three Mile Island (Три-Майл-Айленд, «Трехмильный остров») на одноименном острове на реке Саскуэханна, в 16 км южнее города Гаррисберг, штат Пенсильвания, США.

Причины

Можно выделить две причины катастрофы на АЭС Three Mile Island:


  • «Спусковым механизмом» аварии стал вышедший из строя питательный насос второго контура охлаждения реактора.

  • Аварийное развитие событий было обусловлено просто невероятным сочетанием целого ряда технических неполадок (заклинивание клапана, неправильные показания приборов, отказ нескольких насосов), грубых нарушений правил ремонта и эксплуатации, и пресловутого «человеческого фактора».

Люди, впервые столкнувшиеся с такой аварией, просто-напросто растерялись, у них не было ни соответствующей подготовки (к подобного рода нештатным ситуациям в то время вообще никто не был готов), ни понимания того, что происходит. Усугубили ситуацию безбожно вравшие приборы и большое количество проблем технического плана.

Поэтому и получилось то, что получилось — первая серьезная авария на АЭС, которая до трагических событий на Чернобыльской АЭС оставалась крупнейшей в мире.

Хроника событий

Авария на втором энергоблоке АЭС началась примерно в четыре утра 28 марта, и борьба за реактор велась до самого вечера, а полностью устранить опасность удалось лишь ко 2 апреля. Хроника событий этой аварии обширна, однако имеет смысл остановиться только на ее ключевых моментах.

Примерно 4.00. Остановка питательного насоса второго контура, в результате чего циркуляция воды прекратилась, а реактор начал перегреваться. Именно здесь случилось главное событие, послужившее началом аварии: из-за грубой ошибки, допущенной во время ремонта, не запустились аварийные насосы второго контура. Как выяснилось позже, проводившие ремонт техники не открыли задвижки на напоре, но операторы не могли видеть этого, так как индикаторы состояния насосов на пульте управления были просто-напросто закрыты ремонтными табличками!

Первые 12 секунд после аварии. Повышение температуры и давления в реакторе запустило систему аварийной защиты, которая заглушила атомный котел. Чуть ранее сработал предохранительный клапан, который начал выпускать из реактора пар и воду (она скапливалась в специальной емкости — барботере). Однако при достижении нормального давления клапан по какой-то причине не закрылся, что заметили только через 2,5 часа — за это время барботер переполнился, из-за критического уровня давления лопнули расположенные на нем предохранительные мембраны, и помещения гермооболочки начали заполняться перегретым паром и горячей радиоактивной водой.

4.02. Сработала система аварийного охлаждения реактора — в активную зону начала подаваться вода, которая из-за не закрывшегося клапана через барботер также поступала в гермооболочку.

4.05. Первая грубая ошибка операторов. Несмотря на то, что реактор был практически пуст, приборы показывали, что в нем слишком много воды, а поэтому операторы постепенно отключили все аварийные насосы, закачивающие воду в первый контур.

4.08. Операторы, наконец, обнаружили, что аварийные насосы второго контура не работают, но их запуск не особо исправил ситуацию.

Вплоть до 6.18 люди, опираясь на неверные показания приборов (и, в то же время, почему-то не замечая другие важные показатели, говорившие о характере аварии), пытались определить проблему и выполняли разнообразные действия, но лишь усугубили ситуацию. В результате активная зона реактора, лишенная охлаждения, начала в прямом смысле слова плавиться, хотя цепная ядерные реакции уже были остановлены. Перегрев был обусловлен распадом высокоактивных продуктов деления урана (именно из-за этого ядерный реактор не может быть остановлен сразу, в одно мгновение).

Лишь в 6.18 утра прибывший инженер определил истинную причину аварии, и слив воды из активной зоны реактора был прекращен. Однако насосы аварийного охлаждения, остановленные двумя часами ранее, по разным причинам удалось запустить лишь в 7.20, что и предотвратило катастрофу — специальная борированная вода, закачанная в активную зону, остановила ее нагрев и дальнейшее разрушение.

Казалось бы, авария предотвращена, и теперь можно спокойно заниматься полной остановкой реактора. Однако уже днем 28 марта выяснилось, что в корпусе реактора образовался огромный водородный пузырь, который мог в любую секунду вспыхнуть и взорваться — такой взрыв на АЭС привел бы к страшной катастрофе. Но откуда взялся этот водород? Он образовался из-за реакции раскаленного циркония с раскаленным же водяным паром, который буквально распадался на атомы кислорода и водорода. Кислород окислял цирконий, а свободный водород скапливался под крышкой реактора — так и образовался взрывоопасный пузырь.

Вечером, в 19.50 удалось восстановить работу одного из насосов первого контура, который, правда, проработал всего 15 секунд, но это позволило вскоре запустить остальные насосы и восстановить более или менее нормальную работу первого контура системы охлаждения реактора.

Вплоть до 2 апреля операторы работали над удалением из-под крышки реактора водорода — эта операция увенчалась успехом, и опасность неуправляемого развития аварии была полностью устранена.

Интересно, что в 6.30 утра операторы хотели провести разведку внутри гермооболочки, так сказать, посмотреть на аварию «изнутри», однако начальство станции не дало разрешения на вылазку. Как выяснилось позже, это спасло людей от неминуемой гибели — к тому времени радиационный фон в помещениях гермооболочки превышал норму в сотни раз!

А уже 1 апреля на станцию Три-Майл-Айленд с визитом прибыл сам президент США Джимми Картер, который успокоил людей и рассказал, что никакой опасности нет. И если верить официальным данным, то опасности действительно не было, но волнение людей, возникшее из-за аварии, понять можно.


АЭС Три-Майл-Айленд

Поcледствия аварии

Удивительно, но авария на АЭС Три-Майл-Айленд не имела серьезных последствий для здоровья людей и экологии, однако она оказала самое серьезное влияние на умы людей и американскую ядерную энергетику. Но, несмотря на это, все работы по устранению последствий аварии были завершены лишь к 1993 году!

Разрушения активной зоны. Температура в реакторе во время аварии достигала 2200 градусов, в результате расплавилось около половины всех компонентов активной зоны. В абсолютных цифрах это составляет почти 62 тонны.

Радиоактивное загрязнение. Из атомного реактора вытекло большое количество радиоактивной воды, в результате чего уровень радиоактивности в помещениях гермооболочки более чем в 600 раз превысил норму. Некоторое количество радиоактивных газов и пара попало в атмосферу, и в результате каждый житель 16-километровой зоны вокруг АЭС получил облучение не больше, чем во время сеанса флюорографии. Самого опасного — выбросов в атмосферу и воду высокоактивных нуклидов — удалось избежать, поэтому местность осталась «чистой».

Крах атомной энергетики США. После аварии на АЭС Три-Майл-Айленд в США было принято решение больше не строить атомных электростанций, что привело к застою в американской атомной энергетике.

Психология людей и «китайский синдром». По просто удивительному стечению обстоятельств за две недели до аварии на большие экраны вышел фильм «Китайский синдром», повествующий о катастрофе на АЭС. Жаргонный термин «китайский синдром», придуманный в 1960-х годах физиками-ядерщиками, означает аварию, при которой топливо в реакторе плавится и прожигает защитную оболочку. А ведь во втором энергоблоке АЭС Три-Майл-Айленд произошло именно расплавление активной зоны реактора! Так что нет ничего странного в том, что после реальной аварии поднялась паника, и никакие уверения высокопоставленных чиновников, включая самого президента США, не могли окончательно успокоить людей.

Современное положение

В настоящее время АЭС Three Mile Island продолжает работу — функционирует энергоблок № 1, который во время аварии находился в ремонте, и был запущен в 1985году. Второй энергоблок закрыт, внутренняя часть реактора полностью вынута и утилизирована, а за площадкой ведется наблюдение. Станция будет работать до 2034 года.

Интересно, что в 2010 году турбогенератор аварийного второго энергоблока был продан, снят и по частям перевезен на атомную станцию Shearon Harris (штат Северная Каролина, США), где занял место в новом энергоблоке. Удивительно? Нисколько. Ведь это оборудование проработало всего полгода, а во время аварии не пострадало и не получило радиоактивного заражения — не пропадать же многомиллионному добру)

Что сделано, чтобы подобное не повторилось

Одним из результатов расследования причин аварии стало понимание, что операторы станции были элементарно не готовы к инциденту. Эту проблему решили пересмотром концепции подготовки операторов АЭС: если раньше упор делался на то, чтобы люди анализировали ситуацию и самостоятельно искали решение, то теперь операторы учились работать преимущественно по заранее подготовленным «сценариям» аварий.

Аналогичные происшествия

Через семь лет в СССР произошла авария, которая в прямом и переносном смысле затмила инцидент на АЭС Три-Майл-Айленд — это печально известная катастрофа на Чернобыльской АЭС, произошедшая 26 апреля 1986 года. Интересно, что ход обеих аварий был схожим, однако в четвертом энергоблоке ЧАЭС произошло то, чего не случилось у американцев — прогремел взрыв, имевший самые серьезные последствия.

Авария на АЭС Три-Майл-Айленд также меркнет и на фоне аварии на АЭС «Фукусима», которая произошла в Японии во время цунами и землетрясения 11 марта 2011 года. И японская, и советская аварии все еще доставляют немало беспокойств, и остается надеяться, что мир больше не увидит новых ядерных катастроф.

(Л.В. Матвеев, А.П. Рудник, Почти все о ядерном реакторе. Москва, Энергоатомиздат 1990)

Потерпевший аварию реактор PWR имел номинальную тепловую мощность 2772 МВт и в момент аварии работал на 98%-ной мощности.

На рис. 1 приведена несколько упрощенная схема блока АЭС «Три-Майл-Айленд», на котором произошла авария реактора. По этой схеме можно проследить развитие аварии, которое в книге Д. Дэвинса «Энергия» описано следующим образом:

  • перекрылся конденсаторный насос 10;
  • падение подачи воды вызвало отключение питательных насосов 11, турбина отключилась;
  • через 2 с произошла «быстрая остановка» реактора, начали работать вспомогательные насосы питательной воды;
  • через 6 с давление в парогенераторе поднялось до 15,855 МПа, что вызвало открытие предохранительного клапана в компенсаторе объема 8;
  • через 12 с давление внутри реактора достигло 17,558 МПа, что привело в действие систему охлаждения реактора;
  • вспомогательные насосы питательной воды работали, но напора не было, так как не были открыты задвижки 26 после ремонта, проведенного несколько дней назад;
  • давление внутри корпуса реактора упало до 15,5 МПа, что должно было привести к закрытию предохранительного клапана, но его заклинило и он остался открытым;
  • через 1 мин индикатор уровня компенсатора объема быстро поднялся, парогенераторы осушились;
  • через 2 мин при давлении 11,25 МПа автоматически включилась САОЗ (система аварийного охлаждения активной зоны);
  • через 4,5 мин оператор отключил один инжекторный насос высокого давления, поскольку индикатор уровня компенсатора объема ошибочно показывал высокий уровень;
  • через 8 мин началась подача питательной воды вспомогательными насосами после открытия закрытых задвижек 26;
  • через 10,5 мин вручную был отключен второй инжекторный насос высокого давления;
  • через 15 мин разрывная мембрана дренажного бака 27 сработала при давлении 1,336 МПа (по проекту она должна срабатывать при 1,4 МПа), так как предохранительный клапан 3 не закрылся;
  • дренажный насос направил радиоактивную воду во вспомогательный резервуар 24;
  • через 20—75 мин после начала аварии параметры системы стабилизировались (7,136 МПа и 287,8°С), предохранительный клапан открылся, были включены вспомогательные насосы питательной воды, САОЗ, насос отстойника;
  • через 1 ч 15 мин - 1 ч 40 мин после начала аварии оператор отключил оба главных циркуляционных насоса из-за крайне высокой вибрации;
  • начала подниматься температура активной зоны. Она превысила максимально допустимые значения через 14 мин после останова инжекторных насосов высокого давления. Должна была начаться естественная циркуляция теплоносителя, но не началась. Предполагалось, что произошло частичное закупоривание активной зоны или образование пустот. Не было выявлено, что естественная циркуляция не началась;
  • примерно через 2 ч 30 мин после начала аварии предохранительный клапан 3 был закрыт оператором;
  • через 3 ч давление в корпусе реактора возросло до 15,117 МПа и открылся предохранительный клапан;
  • через 3—10 ч после начала аварии было отмечено несколько подъемов давления; возможно, произошли небольшие взрывы водорода. Давление в реакторе упало примерно до 3,515 МПа. Вероятно, что в этот период активная зона была частично осушена, что вызвало некоторое оплавление и попадание побочных продуктов радиоактивного распада в теплоноситель».

Здесь мы прервем цитирование описания развития аварии; к этому моменту можно считать, что наиболее острый период аварии кончился. Но сама авария полностью еще не была ликвидирована. Наиболее опасным представляется выделение водорода внутри реактора: концентрация водорода в защитной оболочке здания реактора была 1,9 % при пределе воспламеняемости 4 % и пределе взрывоопасности 6 - 8 %. В связи с этим около двух недель работала система вывода водорода (эта система была установлена специально, а не была предусмотрена в первоначальной конструкции реактора). К концу этого периода температура реактора была снижена примерно до 120 °С при одном включенном главном циркуляционном насосе. Были так же дегазированы ксенон и йод, и радиоактивные вещества выведены из вспомогательного здания.

Какой главный вывод следует из описанной выше аварии на АЭС «Три-Майл-Айленд»? Авария произошла в результате ряда малозначительных и маловероятных (особенно в своей совокупности) событии отказа оборудования. С нашей точки зрения, которая излагалась выше, эта авария лишний раз демонстрирует иллюзорность обоснования надежности реактора на основе теории вероятности: незначительность каждого из событий, крайне малая вероятность их совпадения — все это в теории, а на практике — возникновение аварии, последствия которой могли привести к таким же последствиям, как при одной из самых тяжелых аварий с потерей теплоносителя в первом контуре.

Выброс радиоактивности в окружающую среду при аварии АЭС «Три-Майл-Айленд» оценивается в 9 - 10 16 Бк. Физики-реакторщики любят при этом сравнивать этот выброс с тем выбросом радиоактивности, который произошел при извержении вулкана Сент-Хеленс 18 мая 1980 г. (не только мы виноваты, природа и сама рождает радиоактивность — вот подтекст подобного сравнения). При извержении указанного вулкана было выброшено 1,1-10 17 Бк — даже несколько больше, чем при аварии реактора. При этом не забывают подчеркнуть, что основная доля активности выбросов АЭС «Три-Майл-Айленд» приходилась на радиоактивный ксенон, который биологически мало активен, а в выбросах вулкана радиоактивность преобладала в виде радия, тория, полония, свинца и калия, которые биологически несравненно более активные, чем ксенон, и поэтому потенциально значительно более опасны. Но главное — вулканами пока мы управлять не умеем, а хорошие ядерные реакторы проектировать обязаны уметь.

В связи с анализом аварии на АЭС «Три-Майл-Ай-ленд» необходимо подчеркнуть еще следующие обстоятельства. Во-первых, авария не сопровождалась самопроизвольным разгоном реактора, контроль над критичностью не был потерян. Это очень важный (и благоприятный) момент. Во-вторых, авария протекала при четкой работе персонала управления реактором на фоне отказа ряда узлов реактора. Это является характерной особенностью данной аварии, отличающей ее от ранее протекавших аварий. Так, при аварии на реакторе в Чолк-Ривере было допущено две ошибки: во-первых, вместо сокращения подачи замедлителя (D 2 0) была ошибочно сокращена подача теплоносителя (Н 2 0) — просто техник перепутал клапаны. Во-вторых, оператору были даны указания ввести регулирующие стержни в активную зону, но оператор перепутал кнопки и нажал другую — стержни введены не были, активная зона перегрелась, оплавилась, что вызвало образование водорода, который взорвался и разрушил активную зону. Авария на АЭС «Уиндскейл» также произошла из-за ошибки оператора, что привело к горению графита, применявшегося в этом реакторе в качестве замедлителя (вдобавок ко всему датчики внутри активной зоны не зарегистрировали пожара и сопровождавшую его в течение нескольких дней утечку радиоактивных веществ). На испытательной установке, принадлежащей американской армии в штате Айдахо, авария также была вызвана неправильными действиями персонала: без соблюдения достаточных мер предосторожности два техника пытались вручную извлечь из активной зоны реактора заклинивший стержень СУЗ; расклинивание произошло неожиданно и быстро, это вызвало всплеск нейтронов (началась, по-видимому, локальная саморазгоняющаяся цепная реакция), два техника были убиты этими нейтронами, активная зона реактора не пострадала. Таким образом, приведенные примеры свидетельствуют, что и непродуманные действия на реакторе чреваты возникновением аварий.

Выдержки из американского журнала «Нуклер ньюс» от 6 апреля 1979 года: «...28 марта 1979 года рано утром произошла крупная авария реакторного блока № 2 мощностью 880 МВт (электрических) на АЭС «Тримайл-Айленд», расположенной в двадцати километрах от города Гаррисберга (штат Пенсильвания) и принадлежавшей компании «Метрополитен Эдисон»... Блок № 2 на АЭС «Тримайл-Айленд», как оказалось, не был оснащен дополнительной системой обеспечения безопасности, хотя подобные системы на некоторых блоках этой АЭС имеются...

По словам министра энергетики Шлесинджера, радиоактивное заражение местности вокруг АЭС «крайне ограничено» по величине и масштабам и у населения нет никаких оснований для беспокойства. А между тем только за 31 марта и 1 апреля из 200 тысяч человек, проживающих в радиусе тридцати пяти километров от станции, около 80 тысяч покинули свои дома.

Люди отказывались верить представителям компании «Метрополитен Эдисон», пытавшимся убедить, что ничего страшного не произошло. По распоряжению губернатора штата был составлен план срочной эвакуации всего населения округа. В районе местонахождения АЭС было закрыто семь школ. Губернатор приказал эвакуировать всех беременных женщин и детей дошкольного возраста, проживающих в радиусе восьми километров от станции, и рекомендовал не выходить на улицу населению, проживающему в радиусе шестнадцати километров. Эти действия были предприняты по указанию председателя НРК Дж. Хендри после того, как была обнаружена утечка радиоактивных газов в атмосферу. Наиболее критическая ситуация сложилась 30—31 марта и 1 апреля, когда в корпусе реактора образовался огромный пузырь водорода, что грозило взрывом оболочки реактора; в таком случае вся окружающая местность подверглась бы сильнейшему радиоактивному заражению.

Из описания аварии

Первые признаки аварии были обнаружены в 4 часа утра, когда по неизвестным причинам прекратилась подача питательной воды основными насосами в парогенератор. Все три аварийных насоса уже две недели находились в ремонте, что было грубейшим нарушением правил эксплуатации АЭС.

В результате парогенератор не мог отводить от первого контура тепло, вырабатываемое реактором. Автоматически отключилась турбина. В первом контуре реакторного блока резко возросли температура и давление воды. Через предохранительный клапан смесь перегретой воды с паром начала сбрасываться в специальный резервуар (барбатер), однако после того, как давление воды снизилось до нормального уровня, клапан не сел на место, вследствие чего давление в барбатере также повысилось сверх допустимого. Аварийная мембрана на барбатере разрушилась, и около 370 кубометров горячей радиоактивной воды вылилось на пол.

Автоматически включились дренажные насосы, персонал должен был немедленно отключить их, чтобы вся радиоактивная вода осталась внутри защитной оболочки, однако этого сделано не было. Вода залила пол слоем в несколько дюймов, начала испаряться, и радиоактивные газы вместе с паром проникли в атмосферу, что явилось одной из главных причин последующего радиоактивного заражения местности.

В момент открытия предохранительного клапана сработала система аварийной защиты реактора со сбросом стержней-поглотителей, в результате чего цепная реакция прекратилась и реактор был практически остановлен. Процесс деления ядер урана в топливных стержнях прекратился, однако продолжался ядерный распад осколков... Предохранительный клапан оставался открытым, уровень воды в корпусе реактора снижался, температура быстро возрастала. По-видимому, это привело к образованию пароводяной смеси, в результате чего произошел срыв главных циркуляционных насосов, и они остановились.

Как только давление упало, автоматически сработала система аварийного расхолаживания активной зоны, и топливные сборки начали охлаждаться. Это произошло через две минуты после начала аварии. (Здесь ситуация похожа на чернобыльскую за двадцать секунд до взрыва. Но в Чернобыле система аварийного охлаждения активной зоны была отключена персоналом заблаговременно.) Вода по-пре- жнему испарялась из реактора. Предохранительный клапан, по-видимому, заклинило, операторам не удалось закрыть его с помощью дистанционного управления. Уровень воды в реакторе упал, и одна треть активной зоны оказалась без охлаждения. Защитные циркониевые оболочки топливных стержней начали трескаться и крошиться. Из поврежденных тепловыделяющих элементов начали выходить высокоактивные продукты деления.

Вода первого контура стала еще более радиоактивной. Температура внутри корпуса реактора превысила четыреста градусов, и указатели на пульте управления зашкалили. ЭВМ, следившая за температурой в активной зоне, начала выдавать сплошные вопросительные знаки и выдавала их в течение последующих одиннадцати часов...

В ночь с 28 на 29 марта в верхней части корпуса реактора начал образовываться газовый пузырь. Активная зона разогрелась до такой степени, что из-за химических свойств циркониевой оболочки стержней произошло расщепление молекул воды на водород и кислород. Пузырь объемом около 30 метров кубических, состоявший главным образом из водорода и радиоактивных газов — криптона, аргона, ксенона и других, — сильно препятствовал циркуляции охлаждающей воды, поскольку давление в реакторе значительно возросло. Но главная опасность заключалась в том, что смесь водорода и кислорода могла в любой момент взорваться (то, что произошло в Чернобыле). Сила взрыва была бы эквивалентна взрьгау трех тонн тринитротолуола, что привело бы к неминуемому разрушению корпуса реактора. В другом случае смесь водорода и кислорода могла проникнуть из реактора наружу и скопилась бы под куполом защитной оболочки. Если бы она взорвалась там, все радиоактивные продукты деления попали бы в атмосферу (что произошло в Чернобыле). Уровень радиации внутри защитной оболочки достиг к тому времени 30 тысяч бэр в час, что в 600 раз превышало смертельную дозу. Кроме того, если бы пузырь продолжал увеличиваться, он постепенно вытеснил бы из корпуса реактора всю охлаждающую воду и тогда температура поднялась бы настолько, что расплавился бы уран.

В ночь на 30 марта объем пузыря уменьшился на 20 процентов, а 2 апреля он составлял всего лишь 1,4 метра кубического. Чтобы окончательно ликвидировать пузырь и устранить опасность взрыва, техники применили метод так называемой дегазации воды...

1 апреля электростанцию посетил президент Картер. Он обратился к населению с просьбой «спокойно и точно» соблюдать все правила эвакуации, если в этом возникнет необходимость.

Выступая 5 апреля с речью, посвященной проблемам энергетики, президент Картер подробно остановился на таких альтернативных методах, как использование солнечной энергии, переработка битуминозных сланцев, газификация угля и т. п., но совершенно не упомянул о ядерной энергии, будь то расщепление атомного ядра или управляемый термоядерный синтез.

Многие сенаторы заявляют, что авария может повлечь за собой «мучительную переоценку» отношения к ядерной энергетике, однако, по их словам, страна вынуждена будет и далее производить электроэнергию на АЭС, так как иного выхода для США не существует. Двойственная позиция сенаторов в этом вопросе наглядно свидетельствует о том затруднительном положении, в котором очутилось правительство США после аварии...»

Американцы не стали закрывать АЭС и отказываться от ядерной энергетики, а доля ядерной энергетики в энергобалансе продолжала нарастать — с 11% от всей производимой электроэнергии в 1980 году и до 20,1% в 1992 году. Сейчас можно сказать, что на уровне примерно в 20% произошла стабилизация; с 1992 года она изменяется очень незначительно и в 2001 году составила 20,7%.

Верно ли то, что на политику США в области ядерной энергетики влияют антиядерные настроения населения и многочисленные «зеленые» движения? Скорее, эти настроения лишь являются оправданием для очень специфической политики, например для отказа от развития технологии реакторов-размножителей.

В июне 1996 года окружной суд штата Пенсильвания отклонил 2100 исков, в которых были выдвинуты требования о компенсации ущерба здоровью в связи с утечкой на Три-Майл-Айленд. Суд постановил: «Стороны имели в распоряжении почти два десятилетия для предоставления доказательств в пользу своих претензий... Недостаточность доказательств, заявленных в поддержку истца, очевидна. Суд исследовал все материалы дела на предмет доказательств, которые бы, будучи представленными в наиболее благоприятном для истца свете, позволили на основании существенных фактов передать рассмотрение исковых требований суду. Эта попытка была тщетной».

Хотя многочисленные исследования подтвердили отсутствие радиационных последствий аварии на Три-Майл-Айленд, отношение общественности к этой аварии и к самой атомной энергетике, сформированное СМИ, практически не изменилось. Если, согласно опросам общественного мнения, в 1971 году 58% американцев заявляли, что они бы приветствовали наличие АЭС в месте, где они живут, то более поздние опросы показывали, что 63% американцев стремились бы избежать такого соседства. Опросы отмечали также следующую тенденцию: если в 1950—1960-е годы общественность имела даже изрядно преувеличенную веру в технический прогресс, то в дальнейшем доверие к науке все более и более уменьшалось.

26 апреля 1986 года в СССР произошла крупнейшая в истории атомной энергетики авария на Чернобыльской АЭС. Об этой аварии было известно во всём мире, и даже само слово "Чернобыль" превратилось в нарицательное, обозначающее масштабную катастрофу. Гораздо менее известна авария на атомной электростанции Три-Майл-Айленд (Three Mile Island), случившаяся за семь лет до чернобыльской и лишь благодаря счастливому случаю не переросшая в апокалиптическую катастрофу. Но даже несмотря на то, что катастрофа была предотвращена и никто не пострадал, это сделало её самой масштабной катастрофой в американской атомной энергетике и нанесло тяжелейший удар по самой мощной и развитой в мире атомной отрасли, а также спровоцировало общенациональную панику. Лайф выяснил, как американцам удалось предотвратить свой Чернобыль.

Строительство

1960-е и 70-е годы стали золотым веком мировой атомной энергетики. Ведущие страны мира строили новые АЭС пачками, одну за другой. Атомная энергетика считалась самым перспективным и выгодным источником получения энергии. В наибольшей степени атомный бум затронул три страны: США, СССР и Францию, где было построено наибольшее число АЭС. Абсолютным лидером как по числу атомных станций, так и по их суммарной мощности были США.

АЭС Три-Майл-Айленд, которой суждено было стать местом самой серьёзной аварии в американской атомной отрасли, была заложена в 1968 году, а спустя шесть лет первый её энергоблок был пущен в эксплуатацию. Всего за несколько месяцев до аварии был достроен и запущен второй энергоблок, который и стал причиной драматических событий.

Атомная станция была построена всего в 16 километрах от города Гаррисберг, являвшегося столицей штата Пенсильвания, и в случае возникновения проблем потребовалась бы срочная эвакуация большого количества людей.

Авария

Если катастрофа на Чернобыльской АЭС произошла буквально за несколько секунд, в Америке события развивались, как в лучших голливудских триллерах, и держали всех в напряжении на протяжении нескольких дней.

Ночью 28 марта 1979 года реактор работал в штатном режиме и ничто не предвещало серьёзной опасности. Точнее, некоторые проблемы были, но эти проблемы были понятными и предсказуемыми. Речь идёт о небольшой протечке теплоносителя ядерного реактора через клапан компенсатора давления, из-за чего приходилось сливать барботажный бак раз в восемь часов. Стоит отметить, что хотя протечка и была небольшой, она превышала допустимые инструкциями показатели и фактически АЭС работала с серьёзным нарушением.

Тем не менее это было некритично и персонал знал, что делать. Однако в то же время забился трубопровод выгрузки, который пытались прочистить смесью воды и сжатого воздуха. Предположительно, в ходе этой процедуры вода попала на один из обратных клапанов, оказавшийся неисправным. Через него она попала в систему управления пневмоприводами арматуры, что привело к их одномоментному срабатыванию и закрытию арматуры на входе и выходе фильтров конденсатоочистки.

Это, в свою очередь, привело к отключению турбогенератора и насосов. Моментально начали расти температура и давление в реакторе.

После этого сработала автоматическая система безопасности, и всё стало бы приходить в норму, но вмешался человеческий фактор, превративший небольшой инцидент в крупнейшую в американской истории аварию на атомном объекте.

Персоналу необходимо было расхолодить реактор. Однако они даже не догадывались, что их действия только усугубляют ситуацию, а не исправляют её. Недавно на станции был ремонт и индикаторы задвижек аварийных питательных насосов на пульте управления были закрыты бумажками. Персонал несколько минут даже не догадывался, что задвижки закрыты. Кроме того, не закрылся клапан компенсатора давления, из-за чего происходила утечка теплоносителя.

Персонал АЭС не сумел сориентироваться и, не замечая течи, делал всё по штатной инструкции. Они отключили один из аварийных насосов и ограничили подачу воды, что привело к падению давления, закипанию воды и заполнению среды контура паром, тогда как персонал полагал, что он заполняется водой.

Сброс воды через неисправный клапан привёл к переполнению барботажного бака и разрыву его предохранительной мембраны, из-за чего кипяток и пар стали поступать в гермооболочку.

Персонал продолжал ломать голову над тем, что делать. Позднее оказалось, что сотрудники АЭС вообще были слабо подготовлены к нештатным ситуациям и ЧП. Кроме того, противоречивые симптомы и показания датчиков приводили их в замешательство. Но тут их смена закончилась и на работу заступили другие операторы.

Им наконец удалось определить неисправность клапана компенсатора давления и устранить течь. Однако после этого началось быстрое окисление и разрушение тепловыделяющих элементов реактора. Новая смена операторов не знала о проблемах с теплоносителем и попыталась запустить насосы для охлаждения, чего сделать не удалось из-за нехватки воды (впрочем, одна попытка оказалась успешной). Началось разрушение активной зоны реактора.

Ситуацию спасла автоматическая система охлаждения реактора, включившаяся в этот момент. Персонал, действовавший фактически вслепую и толком не понимавший, что им досталось в наследство от предыдущей смены (хотя и не потерявший контроля над ситуацией), принял решение не вмешиваться в её работу.

Разрушение реактора было приостановлено (всего было повреждено около 45% активной зоны реактора), однако его охлаждение по-прежнему было проблемой. Персонал уже понял, что насосы не сработали из-за заполнения областей паром. А без насосов приходилось охлаждать реактор борированной водой, а её запас был существенно ограничен. Попытка поднять давление в первом контуре для конденсации пара не удалась. Тогда попытались, наоборот, снизить давление до минимально возможного, но из-за того, что началось повторное осушение активной зоны, от этой попытки также отказались.

Только к вечеру удалось запустить насосы, после чего критическая фаза миновала. Однако было отмечено скопление водорода в теплоносителе, что вызвало настоящую панику в СМИ и всей Пенсильвании. От водорода удалось избавиться к 1 апреля, и этот момент считается официальным окончанием кризисной фазы, после которой какая-либо опасность миновала.

В случае если бы катастрофу не удалось предотвратить, экстренной эвакуации подлежали бы более 660 тысяч жителей окрестных районов. Для сравнения: после аварии на Чернобыльской АЭС было эвакуировано около 115 тысяч.

По международной шкале ядерных событий (INES) - общепринятой системе оценки аварий в атомной отрасли - аварии на АЭС Три-Майл-Айленд был присвоен 5-й уровень. Более серьёзные аварии случались только на химкомбинате "Маяк" в 1957 году (6-й уровень), а также в Чернобыле (1986 год) и в Фукусиме (2011 год).

Китайский синдром

Хотя катастрофических последствий удалось избежать, авария на АЭС вызвала беспрецедентную панику в американском обществе. В отличие от чернобыльской аварии, о которой советские СМИ сообщили только через несколько суток, американская освещалась едва ли не в прямом эфире. После того как СМИ узнали о том, что в теплоносителе скапливается водород, они принялись публиковать статьи под апокалиптическими заголовками, в духе того, что сейчас этот водород взорвётся вместе с реактором и тогда точно наступит апокалипсис, хотя такое развитие событий было маловероятно.

Дополнительно невротизировал общество художественный фильм "Китайский синдром", вышедший в широкий прокат буквально за пару недель до аварии. Этот фильм, весьма далёкий от реальности, как раз был посвящён катастрофе на атомной станции, причём в нём утверждалось, что расплавившийся реактор прожжёт земную кору буквально до Китая, то есть практически насквозь. Это было очевидной нелепостью, тем не менее на первой же пресс-конференции после аварии специалистов буквально засыпали вопросами о том, насколько близка случившаяся катастрофа к событиям фильма?

На волне всеобщей паники фильм "Китайский синдром" получил четыре номинации на "Оскар", а сам термин "китайский синдром" стал нарицательным и обозначает паническое преувеличение возможностей ядерной энергетики и суеверное отношение к ним.

Однако в первые дни было не до смеха. Даже после того, как удалось охладить реактор, над вентиляционной трубой станции были взяты замеры, в которых были превышены показатели радиации. Возник вопрос об эвакуации прилегающей населённой зоны. Губернатор штата Пенсильвания обратился к жителям штата, заявив о добровольной эвакуации беременных женщин и детей. Однако через несколько часов он вновь выступил с обращением, в котором подчеркнул, что нет никакой необходимости в экстренной ситуации. Тем не менее полумиллионное население гаррисбергской агломерации в буквальном смысле слова сидело на чемоданах в ожидании эвакуации. А противоречивые заявления властей и СМИ привели к тому, что примерно треть населения близлежащих районов (около 200 тысяч человек) села в автомобили и поехала куда глаза глядят, лишь бы подальше от опасного места.

Чтобы успокоить население, 1 апреля на станцию прибыл лично президент США Джимми Картер. Это было сигналом того, что критическая фаза миновала, иначе первое лицо государства не стало бы подвергать себя опасности. Тем не менее уехавшие местные жители стали возвращаться в дома лишь через несколько дней.

Последствия

В результате аварии на АЭС не пострадал ни один человек, выброс радиоактивных частиц также был незначителен, катастрофические последствия удалось предотвратить. Тем не менее это ЧП напугало американское общество. Резко активизировалось движение за запрет атомной энергетики и ядерного оружия. По всей страны проходили митинги с требованиями закрытия атомной отрасли, в которых принимали участие сотни тысяч человек. Антиатомный митинг в Нью-Йорке собрал рекордное число участников - около 200 тысяч человек.

Хотя протестное движение вскоре затихло, над атомной отраслью был установлен очень жёсткий государственный контроль, переработаны меры безопасности. Гораздо более тщательно проводилось обучение персонала, старых сотрудников отправляли на переобучение, особое внимание уделялось реагированию на нештатные ситуации. Каждая атомная электростанция обязана была разработать детальные планы эвакуации населения из близлежащих районов на случай возможных аварий. А в том случае если данная эвакуация по каким-либо причинам была невозможной, АЭС просто лишалась лицензии и прекращала свою деятельность.

АЭС Три-Майл-Айленд вынуждена была заплатить 25 миллионов долларов в качестве компенсации по коллективному иску граждан и ещё 82 миллиона в качестве компенсаций за потери бизнеса и расходы на эвакуацию.

На ликвидацию последствий аварии на АЭС было потрачено около миллиарда долларов. Второй энергоблок, на котором произошла авария, до сих пор не функционирует и уже не будет запущен.

Это ЧП до сих пор остаётся крупнейшим в американской истории. Авария нанесла сокрушительный удар американской атомной отрасли, вызвав тяжелейшую депрессию. Если ранее Америка была абсолютным мировым лидером атомной энергетики и строила АЭС десятками, то за последующие 30 с лишним лет не было заложено ни одной новой станции, а все проекты, находившиеся в стадии строительства, были заморожены на несколько лет и достроены существенно позже.