Как работает голограмма. Голография. На простых примерах показать нечто сложное

Рассеянные объектом волны характеризуются амплитудой , фазой и направлением . В обычной фотографии регистрируется только амплитуда световых волн, и её распределение в пределах двумерного светоприёмника. Для этого используется объектив, строящий действительное изображение объекта записи. Полученное плоское изображение может создавать только иллюзию объёма за счёт перспективы , светотени и перекрытия объектами друг друга . Стереофотография позволяет с помощью двух и более объективов более достоверно имитировать объём за счёт свойств бинокулярного зрения , но даёт возможность наблюдать записанные объекты с единственной точки.

В голографии кроме амплитуды регистрируются также фаза и направление световых волн с помощью интерференции, преобразующей фазовые соотношения в соответствующие амплитудные. При этом объектив не требуется, а полученная голограмма позволяет менять точку наблюдения произвольно, а в некоторых случаях и «заглядывать» за объект. При записи голограммы складываются две волны: одна из них идёт непосредственно от источника (опорная волна), а другая отражается от объекта записи (объектная волна) . В месте сложения этих волн размещают фотопластинку или иной регистрирующий материал. В результате сложения объектной и опорной волн возникает неподвижная интерференционная картина, которая регистрируется фотопластинкой в виде микроскопических полос потемнения, соответствующих распределению электромагнитной энергии в этой области пространства .

Если проявленную пластинку осветить волной, близкой к опорной, то записанная интерференционная картина за счёт дифракции преобразует свет в волну, близкую к объектной. Таким образом, при воспроизведении голограммы образуется волновое поле, соответствующее записанному по амплитуде, фазе и направлению. В результате зритель видит в месте расположения объекта съёмки относительно фотопластинки его мнимое изображение . Вторая волна, образованная при освещении голограммы, образует действительное изображение . Любая голограмма является способом сохранения информации об электромагнитной волне в виде интерференционной картины (максимумов и минимумов пучностей) методом физической записи в специальной среде об отражённом от объекта, рассеянном, волновом фронте электромагнитного излучения, его амплитуде (яркости) и сдвиге фазы (объёме) в некоторой точке с возможно меньшей потерей информации, либо имитации такой картины специальными голографическими методами.

Источники света

Голограмма является записью интерференционной картины, поэтому важно, чтобы длины волн (частоты) объектного и опорного лучей с максимальной точностью совпадали друг с другом, и разность их фаз не менялась в течение всего времени записи (иначе на пластинке не запишется чёткой картины интерференции). Поэтому источники света должны испускать электромагнитное излучение с очень стабильной длиной волны в достаточном для записи временном диапазоне.

Крайне удобным источником света является лазер . До изобретения лазеров голография практически не развивалась (вместо лазерного излучения использовали очень узкие линии в спектрах испускания газоразрядных ламп , что очень затрудняло эксперимент). На сегодняшний день голография предъявляет одни из самых жёстких требований к когерентности излучения лазеров.

Чаще всего когерентность принято характеризовать длиной когерентности - той разностью оптических путей двух волн, при которой контраст интерференционной картины уменьшается в два раза по сравнению с интерференционной картиной, которую дают волны, прошедшие от источника одинаковое расстояние. Для различных лазеров длина когерентности может составлять от долей миллиметра (мощные лазеры, предназначенные для сварки, резки и других применений, нетребовательных к этому параметру) до сотен и более метров (специальные, так называемые одночастотные лазеры).

История голографии

Первая голограмма была получена в 1947 году (задолго до изобретения лазеров) Денешем Габором в ходе экспериментов по повышению разрешающей способности электронного микроскопа . Он же придумал само слово «голография», которым он подчеркнул полную запись оптических свойств объекта. Первые голограммы Габора отличались низким качеством из-за отсутствия источников когерентного излучения .

Схема записи Денисюка

Q = 2 π λ d n Λ 2 {\displaystyle Q={\frac {2\pi \lambda d}{n\Lambda ^{2}}}} ,

Где λ - длина волны; d - толщина слоя; n - средний показатель преломления слоя; Λ - расстояние между интерференционными плоскостями.

Объёмными (толстыми) голограммами считаются такие, у которых Q > 10. И наоборот, голограмма считается тонкой (плоской), когда Q < 1.

Галогенсеребряные фотоматериалы

Основным фотоматериалом для записи голограмм являются специальные фотопластинки на основе традиционного бромида серебра . За счёт специальных присадок и специального механизма проявления удалось достичь разрешающей способности более 5000 линий на миллиметр, однако за это приходится платить крайне низкой чувствительностью пластинки и узким спектральным диапазоном (точно подобранным под излучение лазера). Чувствительность пластинок настолько низкая, что их можно выставить на несколько секунд под прямой солнечный свет без риска засветки.

Кроме того, иногда применяются фотопластинки на основе бихромированной желатины , которые обладают ещё большей разрешающей способностью, позволяют записывать очень яркие голограммы (до 90 % падающего света преобразуется в изображение), однако они ещё менее чувствительны, причём они чувствительны только в области коротких волн (синий и, в меньшей степени, зелёный участки спектра).

В России крупное промышленное (кроме некоторого количества мелких) производство фотопластинок для голографии осуществляет российская «Компания Славич ».

Некоторые схемы записи позволяют писать и на пластинках с меньшей разрешающей способностью, даже на обычных фотоплёнках с разрешением порядка 100 линий на миллиметр, однако эти схемы имеют массу ограничений и не обеспечивают высокого качества изображения.

Фотохромные кристаллы

Наряду с фотографическими мелкозернистыми галогенсеребряными средами, применяются так называемые фотохромные среды , изменяющие спектр поглощения под действием записывающего света.

KCl

Одними из эффективнейших среди фотохромных кристаллов являются щёлочно-галоидные кристаллы , из которых наилучшие результаты были получены на аддитивно окрашенных кристаллах хлорида калия (KCl). Голограммы, записанные на таких кристаллах, достигают 40 % относительной дифракционной эффективности при теоретически возможной в данной среде 60 %. При этом голограммы в данном материале весьма толстые (толщиной до нескольких миллиметров, и могут в принципе достигать единиц сантиметров). Голографическая запись в аддитивно окрашенных кристаллах KCl базируется на фототермическом F-X преобразовании центров окраски , то есть фактической коалесценции одиночных анионных вакансий в более крупные кластерные образования размером десятки нанометров . При этом голографическая запись в таких кристаллах реверсивна (обратима) и очень устойчива по времени .

Также возможна голографическая запись с помощью легирования кристаллов соответствующей примесью. Возможно использовать для этой цели эффект компенсационного влияния введенных в АО KCl катионных (ионы Са ++) и анионных (ионы ОН −) примесей на процесс фототермического преобразования F-центров. Показано, что просветление при этом в максимуме полосы поглощения F-центров достигает 90 % и не сопровождается образованием центров, обуславливающих поглощение в видимой области спектра. Разработан механизм такого влияния, основанный на фотохимических реакциях, конечные продукты которых поглощают в УФ-диапазоне. Обосновано, что ключевую роль в рассматриваемом явлении играют бивакансии и комплексы Са ++ (ОН −) 2 - катионная вакансия. На основе полученных результатов разработана новая фотохромная система для формирования голограмм, основанная на эффекте компенсации влияния катионных и анионных примесей .

Сегнетоэлектрические кристаллы

При голографической записи, в качестве регистрирующей среды, так же широко используются сегнетоэлектрические кристаллы. В основном это ниобат лития - LiNbO 3 . Явление изменения показателя преломления под действием света вызвано электрооптическим эффектом. При записи голограмм сегнетоэлектрические кристаллы обладают теми же преимуществами, что и фотохромные материалы. Кроме того, после множества циклов «запись - стирание» не наблюдается эффекта усталости. Поскольку получаемые голограммы являются фазовыми, их дифракционная эффективность может быть на порядок выше, чем у голограмм на фотохромных материалах.

Однако, эти кристаллы обладают недостатками, присущими фотохромным материалам. Основной проблемой в данном случае является нестабильность голограммы, которая не фиксируется, в отличие от обычных фотослоёв. Другая трудность состоит в низкой величине голографической чувствительности.

Голографические фотополимерные материалы

В последние годы интенсивно разрабатываются регистрирующие среды на базе голографических фотополимерных материалов, представляющих собой многокомпонентную смесь органических веществ, нанесенную в виде аморфной пленки толщиной 10-150 мкм на стеклянную или пленочную подложку. Фотополимерные пленки менее дорогостоящие, чем кристаллы ниобата лития, менее громоздки и имеют по сути большую величину изменения коэффициента преломления, что приводит к большим значениям дифракционной эффективности и большей яркости голограммы. Однако, с другой стороны ниобат лития, из-за его толщин, способен сохранять большие объёмы информации, чем фотополимерные пленки, толщины которых ограничены.

Поскольку фотополимеры не обладают зернистым строением, то разрешающая способность такого материала достаточна для сверхплотной записи информации. Чувствительность фотополимера сравнима с чувствительностью фотохромных кристаллов. Записанные голограммы являются фазовыми, что позволяет получать высокую дифракционную эффективность. Такие материалы позволяют хранить информацию длительное время, устойчивы к воздействию температур, а также отличаются улучшенными оптическими характеристиками.

«Давным-давно в далёкой-предалёкой галактике…» Иными словами, все мы когда-то впервые смотрели «Звёздные войны», восхищаясь их техническими чудесами - космическими кораблями, гоночными карами, дроидами и, конечно, появляющимися прямо в воздухе голограммами. Потом режиссёры стали нас баловать: объёмные изображения появлялись в кино всё чаще, а сегодня без них не обходится ни один уважающий себя фильм – ибо мы уже не мыслим себе иного будущего.

Но многие всё ещё не до конца отдают себе отчёт в том, что это будущее, в общем-то, давно наступило – при чём не где-нибудь в «Аватаре», «Троне» или «Прометее», а в нашей с вами реальности. Знаете ли вы, что в скором времени исполняется 70 (!) лет с момента изобретения первой голограммы? Итак, ближе к делу… что вообще представляет собой эта технология?

Основной принцип

Голография (от древнегреческого бЅ…О»ОїП‚ ОіПЃО¬П†П‰, то есть «полное описание») – это особый метод фотографирования, при котором с помощью лазера регистрируется оптическое электромагнитное излучение объектов, после чего восстанавливаются в высшей степени реалистичные изображения трехмерных объектов.

Когда записывают голограмму, в определённой области пространства складывают две волны, полученные разделением одного и того же лазерного луча. При этом так называемая опорная волна идёт непосредственно от источника, а объектная волна отражается от предмета записи. В этой же области размещают фотопластинку, на которой возникает сложная картина полос потемнения, соответствующих распределению электромагнитной энергии (картине интерференции) в этой области пространства.

Проще говоря, то же самое происходит с обычной фотоплёнкой. Но если изображения с последней необходимо распечатывать на бумаге, то с голограммой всё проще и быстрее. Достаточно снова осветить фотопластинку волной, близкой к опорной, и она преобразует её в волну, близкую к объектной. Таким образом, мы будем видеть (с той или иной степенью точности) такой же свет, какой отражался бы от объекта записи – хотя самого объекта в пространстве нет.

Открытие


Первая голограмма была получена в 1947 году Деннисом Габором в ходе экспериментов по повышению разрешающей способности электронного микроскопа. Он же придумал само слово «голография», которым хотел подчеркнуть полную запись оптических свойств объекта. К сожалению, его голограммы отличались низким качеством, поскольку в качестве когерентного источника света Габор использовал единственно доступные ему газоразрядные лампы с очень узкими линиями в спектре испускания. Но это ни коим образом не умаляет значения его работы, за которую автор получил Нобелевскую премию по физике в 1971 году.

После революционного изобретения в 1960 году рубиново-красного (длина волны 694 нм) и гелий-неонового (длина волны 633 нм) лазеров, голография начала интенсивно развиваться. Уже через пару лет известный российский учёный Юрий Денисюк разработал метод записи отражающих 2-D голограмм на прозрачных фотопластинках, позволяющих записывать голограммы самого высокого качества.

Эволюция


В 1977 году Ллойд Кросс создал так называемую мультиплексную голограмму – или, как мы говорим сегодня, изображение в 3-D формате. Оно принципиально отличается от всех остальных голограмм тем, что состоит из десятков или даже сотен отдельных плоских ракурсов, видимых под разными углами. Такая голограмма, естественно, не имеет вертикального параллакса (иными словами, нельзя посмотреть на объект сверху и снизу), но зато размеры записываемого объекта не ограничены длиной когерентности лазера (которая редко превышает несколько метров, а чаще всего составляет всего несколько десятков сантиметров) или размерами фотопластинки.

Кроме того, это новшество позволяет оторваться от скучной реальности и с головой окунуться в мир фантазий, создавая голограммы несуществующих объектов. Достаточно нарисовать или смоделировать на компьютере придуманный объект с множества различных ракурсов. Мультиплексная голография превосходит по качеству все остальные способы создания объёмных изображений на основе отдельных ракурсов, однако по состоянию на сегодняшний день она всё ещё уступает в плане реалистичности традиционным методам голографии.

Носители информации


Основным фотоматериалом для записи голограмм являются специальные фотопластинки на основе традиционного бромида серебра, позволяющих достичь разрешающей способности более 5000 линий на миллиметр. Иногда применяются фотопластинки на основе бихромированной желатины, которые обладают ещё большей разрешающей способностью, позволяя записывать очень яркие голограммы (до 90 % падающего света преобразуется в изображение).

Существует метод записи с помощью щёлочно-галоидных кристаллов (хлорид калия и другие). В последние годы также интенсивно разрабатываются регистрирующие среды на базе голографических фотополимерных материалов. Эту многокомпонентную смесь органических веществ наносят в виде тончайшей плёнки на стеклянную или плёночную подложку. Такие носители менее дорогостоящие и громоздкие, однако вмещают меньшее количество информации с сравнении с кристаллическими аналогами.

Голограмма в домашних условиях


Сегодня любой желающий может записывать голограммы среднего качества в домашних условиях без использования специального оборудования. Для этого достаточно создать некий каркас, на котором будут неподвижно установлены лазер, фотопластинка (как правило, ПФГ-03М) и выбранный объект записи.

Самым простым в использовании и доступным источником когерентного света являются лазерные указки. После откручивания или отпиливания фокусирующей луч линзы указка начинает светить подобно фонарику. Это позволяет осветить фотопластинку и объект, расположенный за ней. Необходимо только зафиксировать каким-либо образом (например, бельевой прищепкой) кнопку указки во включённом состоянии.

Но, с другой стороны, в подобных ухищрениях уже нет необходимости – ведь первая версия голографических смартфонов «Takee 1» был официально представлен миру ещё в 2014 году компанией «Estar Technology». Устройство отслеживает положение глаз пользователя при помощи фронтальной камеры и 4 дополнительных фронтальных модулей, и создаёт голографические 3D-изображения, для просмотра которых не нужны очки.

ГОЛОГРАФИЯ
особый фотографический метод, при котором с помощью лазера регистрируются, а затем восстанавливаются изображения трехмерных объектов, в высшей степени похожие на реальные. Такая фотографическая запись называется голограммой. При освещении лазером голограмма формирует изображение, которое представляет собой точную копию исходного трехмерного объекта и обнаруживает все свойства таких объектов, например изменение перспективы при перемещении наблюдателя. Метод голографии, применяемый в основном для регистрации информации, которую несет свет, отражающийся от некоего объекта или проходящий сквозь него, пригоден отнюдь не только для видимого света. Теоретически этот метод приложим ко всем другим волновым явлениям - звуковым волнам, сверхвысокочастотному, инфракрасному, рентгеновскому и электронному излучению. Этим и объясняется тот интерес, который вызывает голография; однако из-за практических трудностей ее пока не удалось применить к электронам и в рентгеновской области спектра.
См. также ЛАЗЕР .
Суть метода голографии. Пучок света, создаваемый лазером, отличается от света, испускаемого обычными источниками, например электролампой, в двух отношениях. Во-первых, он монохроматичен, т.е. характеризуется только одной длиной волны. Во-вторых, он когерентен, т.е. гребни и впадины каждой его волны согласуются с гребнями и впадинами каждой другой волны. Если рассматривать пучок света как последовательность волновых фронтов, лазерный луч представляет собой такой луч, в котором все точки волнового фронта согласованы по фазе. При взаимном наложении двух когерентных волновых фронтов (в месте пересечения двух когерентных пучков) происходит т.н. интерференция: волновые фронты усиливают друг друга, если совпадают по фазе, и ослабляют, если не согласуются по фазе. На интерференции и основана голография. Одна из возможных схем регистрации голограмм трехмерных объектов представлена на рисунке. Здесь когерентный свет лазера разделяется на два пучка. Одним пучком освещается объект, который необходимо зарегистрировать; свет, отражающийся от объекта, падает на фотографическую пластинку или другую фоточувствительную регистрирующую среду. Другой пучок, называемый опорным, направляется зеркалом под некоторым углом на ту же фотографическую пластинку, где его волновой фронт налагается на волновой фронт, пришедший от объекта. В результате взаимного наложения двух когерентных волновых фронтов возникает интерференционная картина, которая и регистрируется на фотографической пластинке как изменения плотности почернения - увеличение плотности почернения в тех местах, где волновые фронты совпадают по фазе, и уменьшение плотности почернения там, где они пришли не в фазе. Эта запись интерференционной картины и называется голограммой.

Обычно голограмма не обнаруживает никакого сходства с зарегистрированным объектом; это просто какой-то набор темных и светлых пятен, в которых не угадывается никакого смысла. Но, будучи интерференционной картиной, голограмма содержит информацию весьма особого свойства: это запись не только амплитудных, но и фазовых характеристик волнового фронта, отразившегося от объекта. (Амплитуда равна половине разности высот гребня и впадины волны. Чем больше амплитуда, тем интенсивнее свет.) Если теперь объект удалить, а на голограмму направить опорный пучок (т.е. такой же пучок света, как и тот, которым она была записана), то она сформирует волновой фронт, несущий всю ту информацию, которую нес первоначальный волновой фронт. Таким образом, голограмма воссоздает волновые фронты, исходившие от объекта, хотя самого объекта в этом месте уже нет.
Применение голографии. Основные особенности голографии, отличающие ее от фотографии, таковы: 1) это запись интерференционной картины, содержащая не только амплитудную, но и фазовую информацию, тогда как обычная фотография - это запись только интенсивностей света, не содержащая фазовой информации; 2) при регистрации голограммы нет необходимости в фокусировке, голограмма чаще всего не имеет сходства с объектом; 3) голограмма способна восстанавливать точную копию волнового фронта, идущего от объекта (если объект трехмерный, она восстанавливает трехмерное изображение); 4) изменяя угол между опорным пучком и волновым фронтом, идущим от объекта, можно на одном участке фотографической пластинки записать более одной голограммы; 5) в большинстве случаев для восстановления изображения достаточно любой малой части голограммы; если голограмма повреждена или частично уничтожена, она все равно восстановит изображение. Эти и некоторые другие важные особенности голограмм привлекли внимание многих исследователей, стремившихся довести голографию до практического применения. На "объемных голограммах", полученных с регистрацией интерференционной картины по толщине фотоэмульсионного слоя на фотопластинке, была продемонстрирована возможность восстановления многоцветных трехмерных изображений при освещении белым светом. Весьма перспективным представляется применение голографии в микроскопии. Благодаря возможности спокойно исследовать трехмерный объект, после того как записана его голограмма, устраняются некоторые трудности, связанные с визуальным исследованием объектов при большом увеличении. То, что вместо самого объекта рассматривается его восстановленное голографическое изображение, не мешает исследователю использовать метод фазового контраста и другие методы микроскопии. Более того, этим могут быть существенно уменьшены трудности, связанные с подготовкой образца, в ходе которой объект может оказаться деформированным. В данной области ведутся интенсивные разработки. Голография привнесла много нового в интерферометрию - область прецизионной измерительной техники, основанной на применении интерференции. Был создан ряд голографических методов, позволяющих получать восстановленное изображение объекта вместе с волновым фронтом от того же самого объекта после какой-либо его деформации, столь малой, что ее невозможно обнаружить другими методами. На интерференционной картине, возникающей при взаимном наложении двух волновых фронтов, выявляются деформационные искажения порядка длины волны света. Голографическими методами можно исследовать с интерферометрической точностью любые объекты; не требуется, чтобы их поверхности были оптического или близкого к оптическому качества. Поиски возможностей применения голографии продолжаются. В области т.н. оптической фильтрации и оптической обработки данных удалось достичь некоторого успеха при использовании специальных голограмм для распознавания особенностей рельефа на аэрофотоснимках. Голографические методы облегчают обработку радиолокационной информации; они нашли применение при расшифровке данных бортовых самолетных РЛС. Ряд научных организаций работает над устранением еще имеющихся трудностей. Методами, аналогичными оптическим, были получены акустические голограммы - записи картин интерференции звуковых волн. Были сделаны голограммы объектов, находящихся под водой; в ряде лабораторий ведутся исследования возможностей применения голографических методов при ультразвуковом просвечивании человеческого тела. Результаты такого просвечивания можно представить в виде оптического изображения. Методами, аналогичными методам оптической и акустической голографии, можно получать голограммы в сверхвысокочастотном излучении. Специальные СВЧ-голограммы, зарегистрированные с борта самолета, позволяют получать изображения местности с высоким разрешением рельефа.
Историческая справка. Основные принципы голографии сформулировал в 1947 Д. Габор из Королевского научно-технического колледжа в Лондоне. Однако метод не находил практического применения до начала 1960-х годов, когда появился лазер. Применив лазер и усовершенствовав первоначальный голографический метод, Э.Лейт и Ю.Упатниекс из университета штата Мичиган получили голограммы, которые давали необычайно похожие на реальность трехмерные изображения. В 1962 Лейт и Упаниекс представили свой метод лазерной голографии. После этого метод голографии начал быстро развиваться. Были разработаны голограммы, позволяющие восстанавливать изображение в белом свете; активно ведутся исследования в направлении применения голографии для обработки данных.
ЛИТЕРАТУРА
Вьено Ж.-Ш., Смигильский П., Руайе А. Оптическая голография. М., 1973 Применения голографии. М., 1973 Физические основы голографии. Л., 1981 Клименко И.С. Голография сфокусированных изображений и спекл-интерферометрия. М., 1985

Энциклопедия Кольера. - Открытое общество . 2000 .

Синонимы :

Смотреть что такое "ГОЛОГРАФИЯ" в других словарях:

    Голография … Орфографический словарь-справочник

    - (от греч. holos весь полный и...графия), метод записи, воспроизведения и преобразования волновых полей, основанный на интерференции волн. Предложен Д. Габором в 1948. Голография позволяет получать изображение объектов. На фоточувствительный слой … Большой Энциклопедический словарь

    ГОЛОГРАФИЯ, процесс создания голограммы. Одна или несколько фотографий накладываются на одну пленку или пластину с использованием интерференции между двумя частями расщепленного луча ЛАЗЕРА. На первый взгляд сформированная модель бессмысленна, но … Научно-технический энциклопедический словарь

    - (от греч. holos весь, полный и grapho пишу), способ записи и восстановления волн. поля, основанный на регистрации интерференц. картины, к рая образована волной, отражённой предметом, освещаемым источником света (п р е д м е т н а я волна), и… … Физическая энциклопедия

    - [Словарь иностранных слов русского языка

    Голография - см. Криминалистическая голография … Энциклопедия права

    ГОЛОГРАФИЯ, и, жен. (спец.). Получение объёмного изображения, основанное на взаимном действии (наложении друг на друга) световых волн. | прил. голографический, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

Физические принципы

Рассеянные объектом волны характеризуются амплитудой и фазой. Регистрация амплитуды волн не представляет затруднений; обычная фотографическая пленка регистрирует амплитуду, преобразуя ее значения в соответствующее почернение фотографической эмульсии. Фазовые соотношения становятся доступными для регистрации с помощью интерференции, преобразующей фазовые соотношения в соответствующие амплитудные. Интерференция возникает, когда в некоторой области пространства складываются несколько электромагнитных волн, частоты которых с очень высокой степенью точности совпадают. Когда записывают голограмму, в определённой области пространства складывают две волны: одна из них идёт непосредственно от источника (опорная волна), а другая отражается от объекта записи (объектная волна). В этой же области размещают фотопластинку (или иной регистрирующий материал), в результате на этой пластинке возникает сложная картина полос потемнения, которые соответствуют распределению электромагнитной энергии (картине интерференции) в этой области пространства. Если теперь эту пластинку осветить волной, близкой к опорной, то она преобразует эту волну в волну, близкую к объектной. Таким образом, мы будем видеть (с той или иной степенью точности) такой же свет, какой отражался бы от объекта записи.

Источники света

Голограмма является записью интерференционной картины, поэтому важно, чтобы длины волн (частоты) объектного и опорного лучей с максимальной точностью совпадали друг с другом, и разность их фаз не менялась в течение всего времени записи (иначе на пластинке не запишется чёткой картины интерференции). Поэтому источники света должны испускать электромагнитное излучение с очень стабильной длиной волны в достаточном для записи временном диапазоне.

Крайне удобным источником света является лазер . До изобретения лазеров голография практически не развивалась (вместо лазера использовали очень узкие линии в спектре испускания газоразрядных ламп , что очень затрудняет эксперимент). На сегодняшний день голография предъявляет одни из самых жёстких требований к когерентности лазеров.

Чаще всего когерентность принято характеризовать длиной когерентности - той разности оптических путей двух волн, при которой контраст интерференционной картины уменьшается в два раза по сравнению с интерференционной картиной, которую дают волны, прошедшие от источника одинаковое расстояние. Для различных лазеров длина когерентности может составлять от долей миллиметра (мощные лазеры, предназначенные для сварки, резки и других применений, нетребовательных к этому параметру) до сотен и более метров (специальные, так называемые одночастотные лазеры).

История голографии

Первая голограмма была получена в 1947 году (задолго до изобретения лазеров) Деннисом Габором в ходе экспериментов по повышению разрешающей способности электронного микроскопа . Он же придумал само слово «голография», которым он подчеркнул полную запись оптических свойств объекта. К сожалению, его голограммы отличались низким качеством. Получить качественную голограмму без когерентного источника света невозможно.

Схема записи Денисюка

где λ - длина волны; d - толщина слоя; n - средний коэффициент преломления слоя; Λ - расстояние между интерференционными плоскостями.

Объёмными (толстыми) голограммами считаются такие, у которых Q > 10. И наоборот, голограмма считается тонкой (плоской), когда Q < 1.

Галогенсеребряные фотоматериалы

Основным фотоматериалом для записи голограмм являются специальные фотопластинки на основе традиционного бромида серебра. За счёт специальных присадок и специального механизма проявления удалось достичь разрешающей способности более 5000 линий на миллиметр, однако за это приходится платить крайне низкой чувствительностью пластинки и узким спектральным диапазоном (точно подобранным под излучение лазера). Чувствительность пластинок настолько низкая, что их можно выставить на несколько секунд под прямой солнечный свет без риска засветки.

Кроме того, иногда применяются фотопластинки на основе бихромированной желатины , которые обладают ещё большей разрешающей способностью, позволяют записывать очень яркие голограммы (до 90 % падающего света преобразуется в изображение), однако они ещё менее чувствительны, причём они чувствительны только в области коротких волн (синий и, в меньшей степени, зелёный участки спектра).

В России крупное промышленное (кроме некоторого количества мелких) производство фотопластинок для голографии осуществляет российская «Компания Славич ».

Некоторые схемы записи позволяют писать и на пластинках с меньшей разрешающей способностью, даже на обычных фотоплёнках с разрешением порядка 100 линий на миллиметр, однако эти схемы имеют массу ограничений и не обеспечивают высокого качества изображения.

Фотохромные кристаллы

Наряду с фотографическими мелкозернистыми галогенсеребряными средами, применяются так называемые фотохромные среды , изменяющие спектр поглощения под действием записывающего света.

KCl

Одними из эффективнейших среди фотохромных кристаллов являются щёлочно-галоидные кристаллы, из которых наилучшие результаты были получены на аддитивно окрашенных кристаллах хлорида калия (KCl). Голограммы, записанные на таких кристаллах, достигают 40 % относительной дифракционной эффективности при теоретически возможной в данной среде 60 %. При этом голограммы в данном материале весьма толстые (толщиной до нескольких миллиметров, и могут в принципе достигать единиц сантиметров). Голографическая запись в аддитивно окрашенных кристаллах KCl базируется на фототермическом F-X преобразовании центров окраски, то есть фактической коалесценции одиночных анионных вакансий в более крупные кластерные образования размером десятки нанометров . При этом голографическая запись в таких кристаллах реверсивна (обратима) и очень устойчива по времени .

Также возможна голографическая запись с помощью легирования кристаллов соответствующей примесью. Возможно использовать для этой цели эффект компенсационного влияния введенных в АО KCl катионных (ионы Са ++) и анионных (ионы ОН −) примесей на процесс фототермического преобразования F-центров. Показано, что просветление при этом в максимуме полосы поглощения F-центров достигает 90 % и не сопровождается образованием центров, обуславливающих поглощение в видимой области спектра. Разработан механизм такого влияния, основанный на фотохимических реакциях, конечные продукты которых поглощают в УФ-диапазоне. Обосновано, что ключевую роль в рассматриваемом явлении играют бивакансии и комплексы Са ++ (ОН −) 2 - катионная вакансия. На основе полученных результатов разработана новая фотохромная система для формирования голограмм, основанная на эффекте компенсации влияния катионных и анионных примесей .

Сегнетоэлектрические кристаллы

При голографической записи, в качестве регистрирующей среды, так же широко используются сегнетоэлектрические кристаллы. В основном это ниобат лития - LiNbO 3 . Явление изменения показателя преломления под действием света вызвано электрооптическим эффектом. При записи голограмм сегнетоэлектрические кристаллы обладают теми же преимуществами, что и фотохромные материалы. Кроме того, после множества циклов «запись - стирание» не наблюдается эффекта усталости. Поскольку получаемые голограммы являются фазовыми, их дифракционная эффективность может быть на порядок выше, чем у голограмм на фотохромных материалах.

Однако, эти кристаллы обладают недостатками присущими фотохромным материалам. Основной проблемой в данном случае является нестабильность голограммы, которая не фиксируется в отличие от обычных фотослоев. Другая трудность состоит в низкой величине голографической чувствительности.

Голографические фотополимерные материалы

В последние годы интенсивно разрабатываются регистрирующие среды на базе голографических фотополимерных материалов, представляющих собой многокомпонентную смесь органических веществ, нанесенную в виде аморфной пленки толщиной 10-150 мкм на стеклянную или пленочную подложку. Фотополимерные пленки менее дорогостоящие чем кристаллы ниобата лития, менее громоздки и имеют по сути большую величину изменения коэффициента преломления, что приводит к большим значениям дифракционной эффективности и большей яркости голограммы. Однако, с другой стороны ниобат лития, из-за его толщин, способен сохранять большие объемы информации, чем фотополимерные пленки толщины которых ограничены.

Поскольку фотополимеры не обладают зернистым строением, то разрешающая способность такого материала достаточна для сверхплотной записи информации. Чувствительность фотополимера сравнима с чувствительностью фотохромных кристаллов. Записанные голограммы являются фазовыми, что позволяет получать высокую дифракционную эффективность. Такие материалы позволяют хранить информацию длительное время, устойчивы к воздействию температур, а также отличаются улучшенными оптическими характеристиками.

См. также

Примечания

Ссылки

  • Голография - Виртуальная Галерея - крупнейший в СНГ сайт, посвященный голографии
  • Игорь Осколков Анимированная голография . Компьютерра (15 сентября 2009 года). Проверено 24 сентября 2009.

Литература

В век современных компьютеров новые технологии шагают все дальше и дальше. Люди привыкли видеть голографические картинки на игрушках, на одежде, на упаковках. Но многие ли знают, что уже существует 3D проектор, который создает видимые глазу без специальных очков голографические изображения?

Голограмма - это что?

Хорошая упаковка продукции - это ни больше ни меньше как лицо бренда или компании. Разумеется, товар встречают по «одежке», а вот провожают уже по качеству. Тогда что такое голограмма на упаковке? Гарантия того, что покупатель приобретает качественный и оригинальный товар.

На сегодняшний день голографическое изображение на заказ не является особой редкостью, потому что есть множество причин использовать его как на упаковках, так и на картах товаров. Что такое голограмма? В первую очередь, отличный, а главное, эффективный способ защитить продукцию от подделок. Голограмма, фотопример которой представлен ниже, дает покупателям гарантию, что они приобретают настоящий товар, а не поддельный, ведь нелегально упаковку или карту, на которой имеется подобное изображение, подделать во много раз сложнее.

Где применяются голографические изображения?

Итак, голограмма - это гарантия Кроме того, это отличный способ защитить товары или документы от подделки. Например, голограмма в трудовой книжке. Подобного рода изображения на упаковках способны сохранить продукцию от вскрытия. Защита пластиковых банковских карт также происходит с помощью голограммы. Эти изображения эффективно повышают возможности брендинга. Кроме того, голограмма - это один из способов улучшить внешний

Изготовление голограмм

Естественно, что разработка и изготовление подобного изображения проводятся строго индивидуально. Почему? Потому что голограмма - это своеобразный замок. А если все замки являются копиями друг друга, то и подобрать ключ (то есть изготовить подделку) не составит большого труда. Поэтому с целью повышения уровня защиты того или иного товара необходимо создавать каждый логотип с нуля.

Изготовление голограмм - достаточно сложный процесс, ведь они бывают разных типов. К примеру, саморазрушающиеся изображения. Неоднократно наблюдались случаи, когда мошенники скупали большое количество товара, снимали этикетки и клеили на их место поддельные голограммы. Чтобы это предотвратить, в ход пошла саморазрушающаяся голограмма. Это значит, что если наклейку один раз сняли, то ее невозможно будет использовать во второй раз. Вследствие этого вероятность подделки товара снижается.

Интересно то, что голограмма фото также подлежит изготовлению. То есть, если у вас есть любимая фотография, то вы можете заказать ее голографическое изображение. Единственное «но» - оно все равно будет выглядеть плоским, так как третье, отсутствующее, измерение на бумаге не сможет восполнить даже голографическая съемка.

3D проектор - что это?

На сегодняшний день уже изобретен 3D проектор, или система трехмерного проецирования, которая позволяет создать реалистичные изображения в пространстве, способные двигаться. Это могут быть фотографии или чертежи любых предметов или даже изображения людей. Диапазон, который может вместить подобная 3D голограмма, варьируется от размеров баскетбольного мячика до габаритов танка в масштабе 1:1.

Кроме того, подобная технология - это не просто показ трехмерных изображений. Она позволяет взаимодействовать людям и виртуальным объектам. К примеру, человек может повернуть изображение, наглядно показать, как действует виртуальная система и прочее.

Зачем нужен 3D проектор? Чем он полезен?

При 3D показе зрителям вовсе не обязательно сидеть в специальных очках. Все действия происходят как в реальности, только в виртуальной среде. И предметы, и людей зритель видит объемными, независимо от расстояния от человека до изображения и угла наблюдения. И все это доступно и без 3D очков!

Помимо всего прочего, подобный проектор является визуализатором самых смелых идей. Он позволяет показать зрителю все что угодно, и при этом максимально реалистично, потому что изображение имеет разрешение Full HD, вне зависимости от его размера.

Визуализация человека, который по каким-либо причинам не смог приехать на мероприятие

3D проектор позволяет максимально реалистично показать того человека, который не смог присутствовать на встрече. В этом случае «реалистично» - значит так, будто бы человек стоит сейчас на сцене и разговаривает с залом. То есть очень живо и правдоподобно.

Поэтому даже если у реального выступающего нет возможности участвовать в шоу, его голограмма блестяще справится и без него. Причем копия будет действовать абсолютно так же, как и оригинал, к примеру, взаимодействовать с предметами, свободно расхаживать по сцене, обращаться к аудитории, танцевать, петь и прочее.

В зрительном зале даже могут не распознать подобную подмену и не догадываться, что перед ними копия, до тех пор, пока в их не появится двойник.

Показать зрителю то, что не вмещается в зрительном зале без материальных и денежных затрат

С помощью 3D технологии легко можно показать предметы, обладающие значительным весом, громоздкие и сложные для транспортировки. В этом случае использовать трехмерное изображение предмета куда проще, удобнее и рациональнее, чем оригинальный объект. Представьте, что вам необходимо продемонстрировать, к примеру, танк времен Великой Отечественной войны, находясь в зале размером 10 на 10 метров, который, ко всему прочему, забит зрителями. Виртуальное изображение вы легко сможете прокрутить, уменьшить или увеличить.

На простых примерах показать нечто сложное

Вы сумеете без проблем продемонстрировать зрителю достаточно сложный объект, например, устройство механизма или целого комплекса.

Естественно, можно транспортировать и установить сложнейшее оборудование на вращающейся платформе. Включить опыт в сценарий лекции, хоть и с большими затратами сил, времени и нервов, предположим, можно. А вот с помощью 3D проектора вы сумеете разобрать сложную машину на составные части, выбрать определенную деталь и увеличить ее размеры, потом продемонстрировать зрителю, как работает именно она, кроме того, можно показать ее принцип работы в разрезе. 3D-технология позволяет все это сделать, не прикладывая усилия. Кроме того, деталь будет демонстрироваться в натуральном размере.

Наглядно показать несуществующее или невидимое

Для подавляющего большинства людей главный канал восприятия информации - зрение. Это делает наглядность одним из важнейших свойств новейших технологий, потому что с помощью нее можно показать зрителю все, что необходимо.

Наглядность особенно ценится в тех случаях, когда реальный объект показать невозможно, так как он мал или невидим. К примеру, можно продемонстрировать зрителям радиоизлучение телефона и его влияние на организм или показать, как происходит процесс заживления раны.

Восхитить зрителя - устроить зрелищное шоу

Довольно часто ораторы задаются целью удивить зрителя, показать ему то, чего он наверняка еще не видел. Обычно после постановки подобной задачи люди начинают ломать голову, что показать, а главное, как. Ведь в век Интернета удивить публику очень и очень непросто. С этой задачей вполне справится пара художников и 3D проектор.

Таким образом, можно сделать вывод, что технология голограмм и 3D технологии значительно шагнули вперед. Осталось только дождаться, когда подобное начнет внедряться в