Общие положения о договоре ниокр. Договор на выполнение научно-исследовательских и опытно-конструкторских работ (ниокр) (примерная форма). Отличие договоров на выполнение НИР и ОКР от других видов договоров

Под сетевым планированием и управлением (СПУ) принято понимать графическое изображение комплекса взаимосвязанных проектных работ, отражающее их логическую последовательность, взаимозависимость и планируемую продолжительность с целью его использования в оперативном управлении ходом работ при реализации проекта.

Сетевое планирование и управление основывается на (разработанных практически одновременно и независимо друг от друга) двух методах: методе критического пути МКП (СРМ- Critical Path Method) и методе оценки и пересмотра планов ПЕРТ (.PERT - Program Evaluation and Review Technique).

Планирование и управление в системах СПУ осуществляется с помощью сетевого графика (плана, модели).

Сетевой график (план, модель, сеть) - графическое изображение комплекса взаимосвязанных проектных работ (технологических операций), выполняемых в определенной последовательности.

На рис. 10.1 представлен упрощенный календарный план (линейный график Ганта) строительства и монтажа оборудования насосной станции. Этот же план можно изобразить в другой, необычной форме - графической (в форме графов, рис. 10.2).

Основными элементами сетевого графика являются работы (связи) и события, условно изображаемые соответственно стрелками и кружками, например, событие 1 или событие 3. Каждая работа имеет одно начальное и одно конечное событие и обозначается (кодируется) номерами этих событий, например работа 1-2 или работа 2-5 (см. колонку «код работ» на рис. 10.1).

Рис. 10.2.

Событие в сетевом графике отображает только факт получения (достижения) результата предшествующей работы (работ) и условие начала следующей за ним работы (работ). Например, событие 2 означает, что строительство здания насосной станции завершено и начаты установка насосов и устройство заземления. В сети всегда существует одно исходное (начальное) и одно (или несколько) завершающее событие, все остальные - промежуточные. Цифры внутри кружка обозначают порядковые номера событий и нумеруются произвольно.

Работа - отдельный процесс, выполнение которого связано с затратами времени и ресурсов (стоимостных, материальных и др.). Продолжительность работ во времени проставляется над стрелкой в сутках (часах, неделях и т.д.). По характеру потребления времени и ресурсов различают три вида работ:

  • работа, требующая затрат и времени и ресурсов;
  • ожидание - процесс, требующий только затрат времени (например, твердение бетона);
  • фиктивная работа - логическая связь (зависимость) между двумя или несколькими работами, не требующая ни времени, ни ресурсов, но указывающая, что возможность начала одной работы непосредственно зависит от результатов другой. Фиктивная работа (зависимость) изображается на графике пунктирной стрелкой. Непрерывная последовательность выполнения нескольких работ

в сетевом графике образует путь, который обозначается номерами событий, через которые он проходит (например, путь 1 -4-5). Его длина равна сумме продолжительности работ, составляющих этот путь.

Путь, имеющий наибольшую длину (от начального до конечного события), называется критическим. На графике он изображается жирной линией (см. рис. 10.2).

Критический путь - максимальный по продолжительности путь от начального до конечного события сетевого графика. Работы, лежащие на этом пути, также называются критическими. Покажется нелогичным, но именно наибольшая длительность критического пути определяет наименьшую общую продолжительность работ по проекту в целом. Длительность выполнения всего проекта в целом может быть сокращена за счет сокращения длительности работ, лежащих на критическом пути. Соответственно любая задержка выполнения работ критического пути повлечет увеличение длительности проекта.

Используемый в сетевом планировании и управлении метод критического пути (МКП) позволяет рассчитать возможные календарные графики выполнения комплекса работ на основе описанной логической структуры сети и оценок продолжительности выполнения каждой работы, определить критический путь для проекта в целом.

Правила построения сетевого графика. При построении сетевого графика руководствуются правилами, основные из которых сводятся к следующему:

  • сетевой график выполняется без масштаба, он должен быть простым, без лишних пересечений;
  • работы-стрелки могут иметь произвольную длину, наклоны и направлены слева направо;
  • в графиках не должно быть замкнутых контуров, то есть необходимо, чтобы работы не возвращались к тем событиям, из которых вышли;
  • в сети нельзя допускать «тупиков», то есть событий, из которых не выходит ни одной работы, если это событие не является для данной сети завершающим (конечным);
  • в сети не должно быть событий (за исключением начального), в которые не входит ни одной работы.

Элементы графика на чертеже располагают в таком порядке, чтобы они изображали логическую последовательность выполнения отдельных работ, тем самым определяя направление перехода от одного события к другому (от одной работы к другой) или очередность свершения событий на данном пути.

Расчет сетевого графика. Цель расчета сетевого графика - выявление резервов времени работ, которые позволяют сократить продолжительность выполнения всего комплекса работ при его планировании и оптимизации графика; маневрировать ресурсами при оперативном управлении ходом работ при реализации проекта.

Расчет графика по времени (по временным параметрам) заключается в определении критического пути, резервов времени событий и работ. В заключение расчета делается проверка и выводы. Для определения критического пути выписываются все возможные пути графика, устанавливается продолжительность каждого из них суммированием продолжительности работ, входящих в данный путь.

Временные параметры сетевого графика можно рассчитывать различными способами. Способы ручного счета (табличный, секторный, аналитический и др.) используются для небольших сетевых графиков. Для расчета сетевых графиков с количеством событий более двадцати, как правило, используется специальное программное (компьютерное) обеспечение.

Временные параметры сетевого графика и их расчет. К временным параметрам относятся: резерв времени события, ранний и поздний сроки свершения события, ранние и поздние сроки начала и окончания работ, резерв времени работы.

Резерв времени события - такой промежуток времени, на который может быть отсрочено свершение этого события без нарушения сроков завершения комплекса работ в целом. Определяется как разность между поздним и ранним сроками свершения события.

Ранний срок свершения события - срок, необходимый для выполнения всех работ, предшествующих данному событию. Он определяется продолжительностью максимального из всех путей (или работ), предшествующих данному событию.

Поздний срок свершения события - такой срок свершения события, превышение которого вызовет аналогичную задержку наступления завершающего события. Он находится вычитанием из продолжительности критического пути продолжительности максимального пути (или работы), следующего заданным событием.

Резерв времени работы - отрезок времени, в пределах которого можно изменить сроки начала и окончания данной работы (и свершения события) без нарушения срока окончания всего комплекса работ. В сетевом планировании различают полный, свободный и частные резервы времени работ.

Полный резерв времени работы - максимальный период, на который можно увеличить продолжительность данной работы, не изменяя при этом продолжительности критического пути. Он определяется как разность между поздним и ранним сроками начала работы или поздним и ранним сроками окончания работы.

Ранний срок начала работы совпадает с ранним сроком свершения начального для данной работы события.

Поздний срок начала работы равен разности между поздним сроком свершения конечного события для данной работы и продолжительностью работы.

Ранний срок окончания работы равен сумме раннего срока свершения начального для данной работы события и продолжительности работы.

Поздний срок окончания работы совпадает с поздним сроком свершения конечного для данной работы события. У отдельных работ, помимо полного резерва времени, может быть свободный и частный резервы времени.

В табл. 10.1 и 10.2 приводятся результаты расчета сетевого графика, изображенного на рис. 10.2.

Таблица 10.1

Расчет событий сетевого графика (рис. 10.2)

Номер события

Сроки свершения событий

Резерв времени событий, сут.

Таблица 10.2

Расчет работ сетевого графика (рис. 10.2)

Продолжительность работы, сут.

Срок начала работ

Срок окончания работ

Полный резерв времени работ, сут.

Оптимизация сетевого графика. Под оптимизацией сетевого графика следует понимать сокращение продолжительности критического пути за счет резервов времени работ, если она (продолжительность) оказывается больше директивной (заданной).

Если первоначальный вариант сетевого графика не обеспечивает соблюдение директивных (заданных) сроков, то производится изменение планируемых параметров сетевой модели для уменьшения планируемого срока выполнения всего комплекса работ. Существуют следующие возможные пути (методы) уменьшения планируемого срока выполнения всего комплекса работ: замена последовательного выполнения работ параллельными (там, где это возможно по условиям технологии); перераспределение ресурсов между работами - передача рабочей силы, механизмов и прочего с работ ненапряженных путей (имеющих резерв) на работы критического пути.

Результатом оптимизации должна стать корректировка и пересчет сетевого графика.

Оптимизационные задачи в сетевом планировании не имеют строгого аналитического решения вследствие нелинейного характера зависимости времени выполнения работ и количества работников, занятых на этих работах, и решаются эвристически, в соответствии с опытом и интуицией менеджера, проводящего оптимизацию. В то же время указанные способы оптимизации дают удовлетворительные результаты.

Разработка сетевых графиков проектов требует времени и, следовательно, средств. Но стоит ли заниматься этими разработками? Ответ, безусловно, положительный, исключение составляют лишь незначительные и непродолжительные по времени проекты. Сетевой график легко понять, так как он является наглядной графической формой представления последовательности работ проекта. Когда сетевой график разработан, он легко поддается модификации и изменению, если во время осуществления проекта происходит что-то непредвиденное. Например, если случается задержка с доставкой материалов, необходимых для выполнения какой-то работы, последствия этого могут быть быстро оценены и весь проект пересмотрен за несколько минут с помощью компьютера. Информация, полученная в процессе пересмотра сетевого плана, может быть быстро передана всем участникам проекта.

Сетевой график несет важную информацию, раскрывая внутренние связи проекта. Он служит основой для календарного планирования работ и использования оборудования; облегчает взаимодействие всех менеджеров и исполнителей в процессе достижения установленных целей по времени, стоимости и качеству работ проекта; позволяет сделать приблизительную оценку продолжительности проекта, а не просто определить дату завершения проекта по чьему-либо желанию. Сетевой график дает возможность оценить периоды, в течение которых выполнение работ может начинаться и заканчиваться, а также время допустимой задержки их выполнения. Он создает основу для расчета потоков финансового обеспечения проекта; позволяет определить, какие работы являются «критическими» и, следовательно, должны выполняться строго по графику, чтобы проект был завершен в запланированные сроки; показывает, какие работы необходимо пересмотреть, если требуются более сжатые сроки для своевременного выполнения проекта.

Существуют и другие причины, по которым следует уделить пристальное внимание сетевому графику проекта. Сетевой график минимизирует риски, связанные с выполнением проекта. Часто на практике высказываются суждения, что три четверти времени процесса управления проектом занимает составление его сетевого графика. Возможно, это преувеличение, но оно свидетельствует о понимании руководителями проекта важности этой работы .

Вывод

Таким образом, в главе 10 изложены классические методы (подходы) планирования и управления инновационно-инвестиционными и другими проектами. Наибольший интерес представляют методы сетевого планирования с расчетом параметров сетевого графика (плана реализации проекта). Однако, несмотря на солидную историю и сроки применения на практике метода критического пути (МКП) и метода оценки и пересмотра планов (ПЕРТ), они остаются актуальными в настоящее время, так как позволяют достаточно объективно прогнозировать высокую результативность и эффективность в управлении реализацией инновационных и других проектов.

  • См.: Наумов Л.Ф., Захарова Л.Л. Указ. соч. С. 141 - 149.

Сетевое планирование применяют для организации и составления календарных планов реализации больших комплексов работ. Это, например, научно – исследовательские работы с участием нескольких институтов, разработка автоматизированной системы бухгалтерского учета, строительство большого объекта, освоение производства новой машины, планирование и осуществление космических исследований и т д. Во всех указанных случаях выполняется огромное количество взаимозаменяемых операций, в работу вовлекается множество людей, предприятий, организаций; управление осложняется новизной разработки, трудностью точного определения сроков и предстоящих затрат. В управлении сложными разработками высокоэффективными сказались сетевые методы , получившие в последние годы широкое распространение. Использование этих методов позволяет сравнительно просто выяснить, когда необходимо начинать и заканчивать выполнение отдельных операций, как задержка хода выполнения некоторой операции влияет на время завершения всего проекта.

Для использования сетевых методов нужно, прежде всего, разбить крупный проект на отдельные операции (работы) и составить перечень операций. Некоторые из них могут выполняться одновременно, другие – только в определённом порядке. Например, при строительстве дома нельзя возводить стены раньше, чем сделан фундамент. Необходимо выяснить очерёдность выполнения всех операций списка.

Для этого составляем список операций, непосредственно предшествующих каждой операции. После этого нужно запланировать время, необходимое для выполнения каждой операции. Полученные данные обычно помещаются в таблицу. Пример:

Таблица 10.1

Операция

Предшествующие операции

В таблице приведены данные для проекта, состоящего из шести работ. Для каждой из них задана продолжительность и указаны непосредственно предшествующие ей операции. Можно построить по этим данным сетевой график , или граф . Но сначала несколько понятий из теории графов. Граф – это совокупность двух конечных множеств: множества точек, которые называются вершинами , и множества пар вершин, которые называются рёбрами .

Рис. 10.1 Пример графа

Это пример графа, имеющего пять вершин и шесть ребёр. Если рассматривать множество упорядоченных пар точек, т.е. на каждом ребре задано направление, то граф называется ориентированным . В противном случае – неориентированном графом.

Рёбра, имеющие одинаковые концевые вершины, называются параллельными .

Ребро, концевые вершины которого совпадают, называется петлёй . На рисунке 10.1 a 4 и a 5 - параллельные ребра, a 2 - петля. Граф называется полным , если любые две его различные вершины соединены ребром, и он не содержит параллельных ребер.

Путём в графе называется такая последовательность рёбер, ведущая от некоторой начальной вершины P 1 в конечную вершину P n , в которой каждые два соседних ребра имеют общую вершину, и никакое ребро не встречается более одного раза. Например, в графе – примере последовательность рёбер (a 1 , a 2 , a 3 , a 4 , a 5 , a 6 ) образует путь, ведущий от вершины P 1 к вершине P 4 .

Циклом называется путь, начальная и конечная вершины которого совпадают. На рис. 10.1 образуют цикл рёбра (a 1 , a 3 , a 4 ) .

Длиной пути или цикла называется число рёбер этого пути или цикла.

В ориентированных графах на рёбрах задано направление, т.е. у каждого ребра фиксируется начало и конец. Такие направленные рёбра называются дугами .

Сетью называется граф, каждой дуге которого поставлено в соответствие некоторое число (или несколько чисел), обычно это время.

Таким образом, при построении графа каждую операцию изображают в виде ориентированной дуги. Связи между операциями также представляют в виде дуги. Дугу – связь проводят из конца дуги, соответствующей предшествующей операции, в начало следующей операции.

        1. Рис.10.2 Сетевой график комплекса работ

Чтобы отличить операции от связей, операции изображают сплошными линиями, а связи – пунктирами. Вершины графа называют событиями . Временем наступления события считают время, когда завершено выполнение всех операций, входящих в соответствующую вершину.

Таким образом, граф, представляющий взаимосвязь отдельных работ проекта, называется сетевым графиком. На рисунке 10.2 построен сетевой график для комплекса операций, заданных таблицей из предыдущего примера.

Главными элементами сетевого графика являются события и работы. Событие – это состояние, момент достижения промежуточной или конечной цели разработки (начальное событие – отправной момент разработки). Событие не имеет протяжённости во времени. Работа – это протяжённый во времени процесс, необходимый для свершения события. Любая работа имеет предшествующее событие и определённым событием заканчивается.

После первоначального составления сетевого графика необходимо проверить его соответствие некоторым обязательным требованиям:

    Только начальные события не имеют входящих стрелок, только конечные события – выходящих. Если событие по своему характеру является промежуточным, оно должно иметь как входящие, так и выходящие стрелки.

    Каждая работа должна иметь предшествующее и завершающее события.

    На графике не должно быть изолированных участков, не связанных работами с остальной частью графика.

    На графике не должно быть контуров (циклов) и петель, т.к. они, по существу, означают, что условием начала некоторой работы является её же окончание.

        1. Рис. 10.3 Пример контура

При возникновении контура (а в сложных сетях это случается довольно часто) необходимо вернутся к исходным данным и путём пересмотра состава работы добиться его устранения.

          Рис. 10.4 Пример введения фиктивного события для устранения параллельности работ

Это один из случаев, когда требуется введение фиктивных работ и событий.

Другой случай – отражение зависимости событий, не связанных реальными работами. Предположим, например, что работы a и b (см. рисунок) могут выполняться независимо друг от друга, но требуют одного и того же оборудования, так что работа в не может начаться, пока не освободится оборудование с окончанием работы a . Это обстоятельство требует введения фиктивной работы c (рис.10.5).

Третий случай – неполная зависимость работ. Например, работа c требует для своего начала завершения работ a и b , но работа d связана только с работой b , а от работы a не зависит.

Тогда требуется введение фиктивной работы x и фиктивного события , как показано на рисунке 10.6.

Во всех трёх указанных случаях фиктивные работы не имеют протяжённости во времени, однако без их включения анализ сетевого графика может дать неверные результаты.

Четвёртый случай введения фиктивных работ – это отражение реальных отсрочек и ожиданий. В ряде технологических процессов требуется, например, естественное дозревание, брожение, затвердевание, высушивание и т п., когда реальная работа не производится, но следующий этап до определённого момента начаться не может. В подобных случаях в сетевой график вводятся фиктивные работы, имеющие соответствующую протяжённость во времени.

Проведём анализ сетевого графика (рис.10.7 на след.с.), полученного в первоначальном варианте по следующим данным таблицы – перечня работ и событий (таблица 10.2). Этот график соответствует всем названным требованиям. Однако этот график не полностью упорядочен. Упорядочение сетевого графика заключается в таком расположении событий и работ, при котором, грубо говоря, все работы – стрелки направлены только слева направо. В каждом вертикальном “слое” упорядоченного графика находятся события, имеющие предшествующие события только в слоях, расположенных левее.

Таблица 10.2

предшествующее

завершающее

Рис.10.7 Неупорядоченный сетевой график

Для выделения слоёв и полного упорядочения нашего графика проделаем следующее. Поместив в первый слой начальное событие 1 (см. рис. 10.8), мысленно вычеркнем на графике это событие и выходящие из него стрелки. Тогда без входящих стрелок останутся события 2 и 3. Они образуют второй слой. Вычеркнув мысленно события 2 и 3 с выходящими из них работами, обнаружим, что без входящих стрелок остается событие 4, которое образует, таким образом, третий слой. Продолжая процедуру вычёркивания, получим четвёртый слой с событиями 5 и 6, пятый – с событием 7, шестой – с событием 8 и 9, и, наконец, седьмой слой с конечным событием 10.

Рис.10.8 Упорядоченный сетевой график

Уже с первого взгляда ясно, что по сравнению с предыдущим графиком упорядоченный график (рис. 10.8) отражает последовательность событий и работ гораздо более чётко и наглядно. В сложных “запутанных” сетях упорядочение графика является первоочередным условием для его последующего анализа. Отметим, что правильно составленный график всегда может быть упорядочен, чего нельзя сказать, например, о графике, содержащим контуры. Методом вычёркивания получаем правильную нумерацию вершин графа. Конечная вершина при этом получает наибольший номер.

Временные параметры сетевого графика

Каждая работа сетевого графика (кроме фиктивных работ) требует для своего выполнения затрат времени, трудовых и материальных ресурсов. Важнейшим этапом сетевого планирования является анализ сетевого графика по критерию времени. Рассмотрим принципы этого анализа на примере составленного нами графика.

Предположим, что продолжительность выполнения каждой работы может быть установлена с достаточной точностью. Сейчас мы рассматриваем только так называемые нормативные временные оценки работ. Их может, например, установить эксперт. Цифры у стрелок на рисунке показывают длительность работ (в днях).

Определим прежде всего ожидаемые сроки наступления всех событий графика. Срок наступления начального события будем считать нулевым. Поскольку работа 1 – 2 продолжается 10 дней, событие 2 наступит, очевидно, на десятый день после начала работ. Аналогично определяем, что для наступления события 3 потребуется 4 дня. Для события 4 входящими являются 2 работы: 1 – 4 и 3 – 4. Первая из них заканчивается на шестой день после начального момента работ.

Работа 3 – 4 может начаться только после наступления события 3, т.е. через 4 дня после начала события, и требует для своего выполнения 7 дней. Всего от начального события до завершения работы 3 – 4 проходит 11 дней. Поскольку событие 4 не может свершиться раньше окончания работы 3 – 4, ожидаемым сроком его наступления нужно считать 11 дней.

Перейдем к событию 5. Оно наступает после завершения работ 2 – 5 и 4 – 5. Первая из них завершается через 10 + 9 = 19 дней, вторая через 11 + 3 = 14 дней. Больший из этих сроков (19 дней) и есть ожидаемый срок наступления события 5. Аналогично определяем ожидаемые сроки наступления всех остальных событий. Конечное событие 10 наступает через 51 день после начального, этим сроком определяется, очевидно, и продолжительность всей разработки в целом.

Возвращаясь теперь от конечного события к начальному, проследим, как образовался этот срок – 51 день. Из трех работ, входящих в событие 10, определила этот срок работа 8 – 10, которая начинается с наступлением события 8 (42 дня) и продолжается 9 дней (42 + 9 = 51 день). В свою очередь срок наступления события 8 определила работа 7 – 8 (30 + 12 = 42 дня). Срок наступления события 7 непосредственно связан с работой 6 – 7, событие 6 – с работой 4 – 6, событие 4 – с работой 3 – 4, событие 3 – с работой 1– 3.

Как видим, существует некоторая цепочка работ, ведущая от начального события к конечному, которое определяет общую ожидаемую продолжительность всего комплекса работ сетевого графика. От начального события к конечному можно построить множество последовательных цепочек работ (путей) различной общей протяженности. Из всех возможных путей наибольшую продолжительность (51 день) имеет путь 1 – 3 – 4 – 6 –7 – 8 – 10, который мы нашли на графике, двигаясь поэтапно от конечного события к начальному.

Последовательность работ между начальным и конечным событиями сети, имеющая наибольшую общую протяжённость во времени, называется критическим путём . Критическими называются также события и работы, расположенные на этом пути.

Критический путь является центральным понятием сетевого планирования и управления. Естественно, что важнейшей целью анализа сетевого графика по критерию времени является установление общей продолжительности всего планируемого комплекса работ. Оказывается, что эта общая продолжительность определяется далеко не всеми работами сети, а только работами, лежащими на критическом пути. Увеличение времени выполнения любой критической работы ведёт к отсрочке завершения всего комплекса работ, в то время как задержка с выполнением некритических работ может никак не отразиться на сроке наступления конечного события.

Отсюда следует важные практические выводы. Руководители разработки должны уделять первоочередное внимание своевременному выполнению критических работ, обеспечению их необходимыми трудовыми и материальными ресурсами, чтобы не сорвать срок завершения всего проекта. Если сам этот срок по первоначально составленному графику оказался выше директивного, то для его уменьшения необходимо изучить возможности сокращения именно критических, а не любых работ. Если учесть, что в реальных сетевых графиках критические работы составляют лишь 10 – 15% общего числа работ, ясно, каким ценным орудием управления является метод критического пути в руках руководителей сложных разработок.

Сетевой график может содержать не один, а несколько критических путей. Если бы, например, на нашем графике работа 9 – 10 продолжалась не 11, а 15 дней, то сеть содержала бы два критических пути: уже найденный нами путь 1 – 3 – 4 – 6 – 7 – 9 – 10. Сколько бы ни было на графике критических путей, все лежащие на них работы непосредственно влияют на срок наступления конечного события.

Опишем описанные выше способы определения рассмотренных временных характеристик сети в общем виде.

Предположим, что выполнение работы начато в момент времени
. Пусть
заданная продолжительность работ
. Величинызаписывают на соответствующих дугах сетевого графика и считают их длинами.

Ранним сроком начала работы называется наименьшее допустимое время, когда работа может быть начата.

Если из вершины выходит несколько работ, то ранние сроки начала этих работ совпадают и называютсяранним сроком наступления события .

Ранний срок начала работы
обозначают, а ранний срок наступления события
. Обычно для удобства величинызаписывают в верхней трети каждой вершины:

Если работа начата в ранний срок начала, то время её окончания называется ранним сроком окончания работы . Ранний срок окончания работы
обозначается.

Для вычисления ранних сроков наступления событий используют алгоритм Форда. Считают, что нумерация вершин является правильной.

Алгоритм расчёта ранних сроков начал и окончаний работ.


Запись под максимумом означает: перебор ведётся среди таких номеров , что работы
принадлежат множеству входящих в вершинудуг.

Номер -той вершины, при движении из которой получено значение, заносят в левую часть вершины.

После нахождения величины можно подсчитать ранние сроки начал и окончаний работ:
.

Критическое время и критический путь

Ранний срок наступления конечного события называется критическим временем и обозначается
Весь проект не может быть завершен раньше момента времени
т.е. критическое время – это минимальный срок окончания всего комплекса работ. На сетевом графике
- это длина пути наибольшей длины из начальной вершины в конечную.

Всякий путь длины равной
из начальной вершины в конечную называетсякритическим путём.

Алгоритм построения критического пути

Начинают построение с конечной вершины. В её левой трети стоит номер той вершины, при движении из которой определялся ранний срок наступления события. Критический путь идёт из конечной вершины в вершину с этим номером; затем в вершину, номер которой стоит в левой трети полученной при движении вершины, и так до начальной вершины.

Если для критических событий никакие отсрочки их наступления недопустимы без угрозы срыва всего проекта, то для некритических событий такие отсрочки возможны. На нашем графике некритических событий всего три: 2, 5 и 9. Возьмём событие 9. По графику оно наступает через 36 дней после начального события, но могло бы наступить и через 40 дней, если к 40 добавить 11 дней на работу 9 – 10, то получится 51 день, т.е. срок наступления события 10 не будет нарушен. Если же событие 9 наступит через 41 день, то это уже приведёт к отсрочке завершения всего комплекса работ. Таким образом, 40 дней – это наиболее поздний допустимый срок наступления события 9.

Событие 5 совершается через 19 дней после начала работ, но следующее за ним критическое событие 8 наступает лишь через 42 дня, и этот срок не был бы нарушен, если бы событие 5 наступило даже через 37 дней после начального события (42 – 5) = 37). Тогда и событие 2 могло бы наступить через 28 дней после события 1 (37 – 9 = 28).

Таким образом, некритические события наряду с ожидаемым сроком наступления имеют наиболее поздний допустимый срок наступления (даны в скобках у некритических событий). Для критических событий эти сроки совпадают.

Некритические работы также могут иметь известные резервы времени своего выполнения. Возьмём, например, работу 4 – 7. Предшествующее ей события 4 наступает через 11 дней, а завершающие событие 7 – лишь через 30 дней после начала работ. Очевидно, что срок наступления события 7 не был бы нарушен, если бы работа 4 – 7 продолжалась 19 дней – на 15 дней больше её продолжительности по графику. Эти 15 дней и составляют свободный резерв времени работы 4 – 7.

Свободный резерв времени работы 6 – 9 составляет 8 дней (36 – 7 – 21 = 8). Работа 7 – 9, хотя и является некритической, свободного резерва времени не имеет, то же относится к работе 1 – 2 и 2 – 5 (свободные резервы времени указаны на рисунке в скобках у стрелок работ). Ясно, что критические работы резервов времени не имеют.

При определении резервов времени работ можно принять и другую линию рассуждений. Скажем, для работы 6 – 9 максимально допустимое время выполнения составляет 19 дней (резерв 12 дней). Но при такой длительности работ 6 – 9 событие 9 наступит не в ожидаемый, а в наиболее поздний допустимый срок (40 дней), что, как мы видели, сроков выполнения всего проекта не нарушает. Итак, наряду со свободным резервом времени, равным 8 дням, работа 6 – 9 имеет полный резерв времени – 12 дней.

Работа 7 – 9 свободного резерва времени не имеет, однако её полный резерв составляет 4 дня (40 – 6 – 30 = 4). Полные резервы времени, отличные от свободных резервов, имеют также работа 1 – 2 (18 дней), 2 – 5 (18 дней), 4 – 5 (23 дня).

Запишем эти временные характеристики сетевого графика в общем виде:

Поздним сроком окончания работы называется наиболее позднее допустимое время окончания работы без нарушения срока завершения всего проекта . Поздний срок окончания работы
обозначаетсяи определяется по формуле:
.

Поздним сроком наступления события называется наиболее поздний срок окончания всех работ, входящих в соответствующую вершину. Алгоритм вычисления поздних сроков наступления события:


Таким образом, для конечной вершины поздний срок наступления событий совпадает со временем выполнения всего проекта. Затем просматривают все вершины в порядке убывания их номеров. Для каждой вершины рассматривают множество всех выходящих работ. Из поздних сроков наступления их концов вычитают продолжительность этих работ. Минимальная из этих разностей и равна . Величинузаписывают обычно для удобства в правой части вершины.

Из алгоритма вычисления поздних сроков следует, что увеличение наиболее позднего срока окончания проекта наединиц ведёт к увеличению поздних сроков наступления всех событий также наединиц.

После определения можно вычислить поздние сроки начала и окончаний всех работ проекта:
.

Резервы времени.

Рассмотрим некоторую работу
. Найдём время, которое можно выделить для выполнения этой работы без задержки срока окончания всего проекта. Работа
не может быть начата раньше срокаи должна быть закончена не позднее времени. Для выполнения этой работы нужно затратить не более
единиц времени. По плану эту работу можно сделать заединиц времени.

Максимально допустимое время, на которое можно увеличить продолжительность выполнения работы
или отложить начало так, что это не вызовет задержки выполнения всего проекта называетсяполным резервом времени.

Полный резерв времени работы
обозначают, он равен:

.

Если полный резерв времени некоторой работы равен нулю, то задержка её выполнения вызовет такую же по времени задержку выполнения всего проекта.

Если на некоторой работе использовать её полный резерв, то путь, проходящий через эту работу, станет критическим. Полный резерв времени любой работы на этом пути станет равным нулю.

Найдём время, которое можно дополнительно выделить для выполнения работы
без введения дополнительных ограничений на время выполнения последующих работ. Для этого выполнения работы должно быть законченно к моменту времени. Таким образом, можно выделить
единиц времени на выполнение работы
.

Величина
называетсясвободным резервом времени работы
. Если использовать свободный резерв на некоторой операции, то последующие работы могут быть по-прежнему начаты в свои ранние сроки.

Определение резервов времени, событий и работ сетевого графика имеет важное значение как для этапа разработки и корректировки, так и в ходе выполнения проекта.

Во-первых, в проекте могут оказаться “узкие места” с точки зрения обеспечения трудовыми или материальными ресурсами одновременно ведущихся работ. Предположим, например, что при анализе нашего графика – примера обнаружились трудности комплектования исполнителей в период после 21 дня, когда выполняются работы 5 – 8, 6 – 7 и 6 – 9. Эти трудности исчезают с наступлением события 7 (30-й день). Очевидно, что тогда для более равномерного распределения исполнителей можно отсрочить до наступления события 7 начало работы 5 – 8, имеющий значительный свободный резерв времени. Такая отсрочка, как уже отмечалось, отражается на графике введением фиктивной работы.

Во-вторых, в первоначально составленном графике общая продолжительность работ может оказаться выше директивно установленного срока. Чтобы уложиться в этот срок, нужно очевидно сократить длительность некоторых работ критического пути. Обычно это оказывается возможным, но при условии привлечения на эти работы дополнительных ресурсов. Их можно высвободить за счёт удлинения продолжительности некритических работ, причем вычисленные резервы времени покажут, до какого предела такое удлинение допустимо. (Нужно, однако, учитывать, что при сокращении продолжительности критических работ и увеличении некритических работ сам критический путь может измениться).

В-третьих, уже в процессе осуществления проекта часто возникают отклонения от намеченных сроков выполнения работ и наступления событий. По некритическим работам и событиям фактическое запаздывание против графика может никак не отразиться на сроках выполнения всего проекта – если запаздывание находится в пределах резервов времени. Знание этих резервов покажет руководству, является ли происходящее запаздывание допустимым или оно угрожает сорвать график в целом и должно быть всеми мерами предотвращено.

Описанный метод расчёта резервов времени позволяет, как было уже показано на примере, определить и критический путь как последовательность событий, не имеющих резервов времени. Предложен и ряд других алгоритмов определения критического пути, в частности, таких, которые хорошо приспособлены к обработке сетевых графиков на ЭВМ.

Сетевые графики, составленные для практических целей, имеют обычно сотни, а нередко и тысячи событий и работ. Более сложны для анализа те графики, в которых число работ намного превышает число событий. Отношение числа работ к числу событий графика считается показателем (коэффициентом) сложности сети. Сложные сети обрабатываются на ЭВМ. Машина осуществляет проверку правильности составление графика, производит его упорядочение, определяет критический путь и его протяжённость во времени, резервы времени некритических событий и работ. Как результат анализа сети машина выдаёт на печать перечень критических событий и работ и их параметров, сроки наступления и резервы времени событий, перечень работ, упорядоченный в зависимости от резерва времени или по иным признакам, и другую информацию, предусмотренную программой.

При определении характеристики сетевого графика предполагалось, что время выполнения каждой работы точно известно - детерминировано. Это предложение в действительности выполняется довольно редко, поскольку основное направление использования сетевых методов – это планирование новых сложных разработок, зачастую не имевших в прошлом вообще никаких аналогов. Поэтому чаще всего продолжительность выполнения работы сетевого графика является неопределённой, в математическом понимании – случайной величиной. Если известен закон распределения случайной величины, то нетрудно найти две её важнейшие характеристики – среднее значение (математическое ожидание) и дисперсию. Однако применительно к работам сетевого графика уверенно судить о законе вероятности времени конкретных работ обычно не удаётся.

По каждой работе
, точную продолжительность которую установить нельзя, определяются на основании опроса исполнителей и экспертов три временные оценки.

а) оценка минимального времени, за которое может быть выполнена работа при самом благоприятном стечении обстоятельств
(её называют также оптимистической оценкой).

б) оценка максимального времени, которое потребуется на выполнение работы при самых неблагоприятных условиях (пессимистическая оценка)
.

в) оценка наиболее вероятного времени выполнения работы при нормальных условиях
.

Указанные три оценки и являются основой для расчета её дисперсии. При этом используется гипотеза об определённом законе вероятности длительностей работ (так называемое - распределение). В алгоритмическом смысле гипотеза даёт возможность построить простые формулы определения для каждой работы средней ожидаемой продолжительностьи дисперсиипри заданных
и.

.

Величины определяют продолжительность выполнения работ на сетевом графике. На их основе рассчитываются сроки наступления событий и резервы времени. Время наступления события определяется суммой средних значений продолжительности работ на наиболее длительном пути, ведущему от начального события к данному, как и в случае детерминированных длительностей работ. Дисперсия срока наступления события равна (точнее принимается равной) сумме дисперсией длительностей тех же работ наиболее протяж ённого пути, ведущего к событию. Процесс определения резервов времени событий и работ не отличается от соответствующего расчёта в детерминированном случае.

Алгоритм расчёта сетевого графика с вероятностным временем выполнения операций включает следующие основные этапы:

1. Расчёт ожидаемого времени выполнения работ и дисперсии.

2. Расчёт наиболее раннего возможного срока наступления конечного события
(алгоритм изложен ранее).


Построение сетевой модели

                    Таблица 10.3

0

Рис. 10.9 Сетевой график процесса с вероятностным временем выполнения операций

,0013

В качестве расчётного времени выполнения операций принимается ожидаемое время (таблица 10.4).

Таблица 10.4

Операции

Исследование сетевой модели

Первоначально рассчитываем наиболее ранний возможный срок наступления конечного события
, используя алгоритмы расчёта детерминированного сетевого графика. Затем определяем критический путь. В результате расчёта
дня (рис. 10.10).

Затем рассчитываем аргумент нормальной функции распределения вероятностей для критического пути:

.

Используя таблицу значений функции распределения вероятностей (см. табл. 10.3), определяем вероятность
.

Рис.10.10 Сетевой график процесса с результатами расчёта

Оптимизация сетевых моделей

При суждении о временных характеристиках событий сетевое планирование опирается на центральную предельную теорему теории вероятностей, которая утверждает, что сумма большого числа независимых случайных величин (в данном случае длительностей работ) при некоторых общих условиях имеет нормальное распределение со средним значением, равным сумме средних значений этих величин, и дисперсией, равной сумме этих дисперсией.

При анализе сетевых графиков по критерию времени выяснилось, что сокращение или увеличение продолжительности работ связано, как, правило, с возрастанием или уменьшением затрат на эти работы. Существование различных вариантов сетевого графика с разным уровнем затрат позволяет говорить о возможности поиска оптимальных вариантов. Естественно, в частности, поставить вопрос, какой из вариантов сетевого графика при данной общей длительности проекта осуществляется с наименьшими затратами. При иной постановке задачи отыскивается вариант ускорения комплекса работ, требующий минимального увеличения затрат.

Простейший подход, применяемый в практике сетевого планирования, предполагает, что каждой работе имеются следующие затраты: нормальная продолжительность работы и соответствующая ей величина затрат, срочная (экстренная) длительность работы и отвечающие ей затраты, стоимость ускорения работы в расчёте на единицу времени. Последняя величина в интервале между срочной и нормальной продолжительностью работы предполагается постоянной, т.е. ускорение работы и рост затрат связаны линейной зависимостью. Предположим, что для работ графика, изображенного на рис.10.11, указанные данные известны:

Управлять процессом планирования и ходом выполнения работы - задача не из лёгких. Очевидно, наиболее правильно в этом случае будет применение методов сетевого планирования и управления (СПУ).

Методы СПУ разработаны как математические методы построения моделей исследования операций. Разработка метода доведена до рабочих компьютерных программ и нам остаётся научиться ими пользоваться применительно к нашей работе по поиску идей. Использование методов СПУ вы будете осваивать на практических занятиях. Методы СПУ основаны на моделировании процессов с помощью сетевых графиков и представляют собой совокупность расчётных методов, организационных и контрольных мероприятий по планированию и управлению комплекса работ. Система СПУ позволяет:

формировать календарный план реализации некоторого комплекса работ;

выявлять и мобилизовывать резервы времени, трудовые, материальные и денежные ресурсы;

осуществлять управление комплексом работ по принципу «ведущего звена» с прогнозированием и предупреждением возможных срывов в ходе работ;

повышать эффективность управления в целом при четком распределении ответственности между руководителями разных уровней и исполнителями работ.

Сетевая модель представляет собой план выполнения некоторого комплекса взаимосвязанных работ (операций), заданного в специфической форме сети, графическое изображение которой называется сетевым графиком. Элементами сетевой модели являются события и работы.

Сетевой график - это модель достижения поставленной цели, причем цель является моделью, динамично приспособленной для анализа вариантов достижения цели, для оптимизации плановых заданий, для внесения изменений и т.п.

Метод работы с сетевыми графиками - сетевое планирование - базируется на теории графов. В переводе с греческого граф (grafpho - пишу) представляет систему точек, некоторые из них соединены линиями - дугами (или ребрами). Это топологическая (математическая) модель взаимодействующих систем. С помощью графов можно решать не только задачи сетевого планирования, но и другие задачи. Метод сетевого планирования применяется при планировании проведения комплекса взаимосвязанных работ. Он позволяет наглядно представить организационно-технологическую последовательность выполнения работ и установить взаимосвязь между ними. Кроме этого, он позволяет обеспечить координацию операций различной степени сложности и выявить операции, от которых зависит продолжительность всей работы (т.е. организационного мероприятия), а также сосредоточить внимание на своевременном выполнении каждой операции.

Сетевой метод - это система приемов и способов, позволяющих на основе применения сетевого графика (сетевой модели) рационально осуществлять весь управленческий процесс, планировать, организовывать, координировать и контролировать любой комплекс работ, обеспечивая эффективное использование денежных и материальных ресурсов. Применение этого метода позволяет улучшить:

планирование, обеспечивая его комплексность, непрерывность, создавая условия для улучшения определения требуемых ресурсов и распределения уже имеющихся ресурсов;

финансирование работ, т.к. появляются способы более точного расчет себестоимости работ, их трудоемкости и формирования нормативно-справочной базы;

структуру системы управления путем четкого определения и распределения задач, прав, обязанностей;

организацию процедур координации и контроля за ходом работ на базе оперативной и точной информации, а также оценку выполнения плана.

Сетевой график - это информационная модель, отображающая процесс выполнения комплекса работ, направленных на достижение единой цели. Цель сетевого планирование - воздействие на управление, а управление призвано поддерживать рациональный режим работы, восстанавливать нарушенное состояние подвижного равновесия динамических систем, обеспечивая слаженную работу всех ее звеньев. При этом управление системой ведется по ряду параметрам: времени, стоимости, ресурсам, технико-экономическим показателям. Однако наиболее распространенными являются системы с параметром «время».

Процесс управления при представлении управляемой системы в виде модели существенно упрощается. Основой сетевого планирования и управления является сетевой график, отражающий технологическую и логическую взаимосвязь всех операций предстоящей работы. Он состоит из трех составных частей (главных понятий), таких как «работа», «событие» и «путь».

«Работа» - это любой процесс, требующий затрат времени и ресурсов или только времени. Если на выполнение работы не требуется ресурсов, а затрачивается лишь время, то они называются «ожиданием». Работу на сетевом графике обозначают сплошной стрелкой (дугой графа), над которой числом обозначается продолжительность выполнения данной работы. Существует фиктивная работа (ожидание, простая зависимость) - работа, не требующая затрат времени, труда и средств. На графике она отображается пунктирной стрелкой.

Работы в виде стрелки (тогда граф называется ориентированным, или орграфом) на графике не являются векторами, поэтому вычерчиваются без масштаба. Каждая работа начинается и кончается «событием», которое обозначается кружочком, в котором цифра обозначает название (имя) данного события. Событие - это результат выполнения одной или нескольких работ, являющийся необходимым для начала последующих работ. Предшествующее событие является отправной точкой для работы (причиной), а последующее событие - ее результатом.

События в отличие от работ совершаются в определенные моменты времени, не используя при этом никаких ресурсов. Начало выполнения комплекса работ есть начальное событие. Момент завершения всех работ есть конечное событие.

Любой сетевой график имеет одно исходное (начальное) и одно завершающее (конечное) событие. Любая работа - стрелка - соединяет только два события.

Событие, из которого стрелка выходит, называется предшествующим данной работе, а событие, в которое стрелка входит, является - последующим. Одно и то же событие, кроме исходного и завершающего, является по отношению к одной работе предшествующим, а к другой - последующим. Такое событие называется промежуточным. События могут быть простыми и сложными. Простые события имеют только одну входящую и одну выходящую работу.

Сложные события имеют несколько входящих или несколько выходящих работ. Деление событий на простые и сложные имеет большое значение при расчете сетевых графиков. Событие считается свершившимся, когда будет закончена самая длинная по продолжительности из всех входящих в него работ.

Непрерывная технологическая последовательность работ (цепь) от первого события до последнего называется путем. Такой путь является полным путем. Полных путей может быть несколько. Длина пути определяется суммой продолжительности лежащих па нем работ. Используя метод графиков, можно определить каждый из путей. Это достигается последовательным выявлением элементов каждого пути.

В результате сравнения различных путей выбирают путь, на котором продолжительность всех содержащихся работ наибольшая. Этот путь носит название «критический путь». Он определяет время, необходимое для выполнения всего плана, на который составлен график. Именно от работ, лежащих на критическом пути, и их продолжительности зависит конечный срок выполнения плана.

Критический путь - основа оптимизации плана. Для того чтобы сократить срок выполнения всего плана, необходимо уменьшить продолжительность выполнения тех работ, которые находятся на критическом пути.

Все полные пути, продолжительность которых меньше критического, называются некритическими. Они обладают резервами времени. Под резервами времени понимаются допустимые сдвиги сроков совершения событий и выполнения работ, не меняющие сроков наступления завершающего события.

Резервы времени бывают полные и свободные. Полный резерв времени - это срок, на который можно перенести начало работы или увеличить ее продолжительность при неизменной длине критического пути. Полный резерв времени определяют как разность между поздним и ранним началом работы или между поздним и ранним окончанием работы.

Работы критического пути полного резерва времени не имеют, т.к. их ранние параметры равны поздним. Использование полного резерва времени на других некритических путях приводит к тому, что путь, к которому принадлежал запас времени, становится критическим.

Свободным резервом времени называется срок, на который можно перенести начало работы или увеличить ее продолжительность при условии, что ранние начала последующих работ не изменяются. Этот резерв времени используют в том случае, когда в одно событие входит две и более работ. Свободный резерв времени определяют как разность раннего начала последующей работы и раннего окончания рассматриваемой работы.

Резерв времени позволяет увеличить продолжительность выполнения работ или же начать их несколько позднее, а также дает возможность маневрировать внутренними финансовыми, материальными и трудовыми ресурсами (деньгами, количеством техники, численностью работников, временем начала работ).

Анализируя сетевые графики, можно заметить, что они отличаются не только количеством событий, но и числом взаимосвязей между ними. Сложность сетевого графика оценивается коэффициентом сложности. Коэффициент сложности представляет собой отношение количества работ сетевого графика к количеству событий и определяется по формуле:

К = Р / С, (3)

где К - коэффициент сложности сетевого графика;

Р и С - количество работ и событий, ед.

Сетевые графики, имеющие коэффициент сложности от 1,0 до 1,5, являются простыми, от 1,51 до 2,0 - средней сложности, более 2,1 - сложными.

Приступая к построению сетевого графика, следует установить:

Какие работы должны быть завершены ранее, чем начнется данная работа;

Какие работы могут быть начаты после завершения данной работы;

3. Какие работы могут выполняться одновременно с данной работой. Кроме того, надо придерживаться общих положений и правил:

сеть вычерчивается слева направо (это же направление имеют и стрелки-работы);

каждое событие с большим порядковым номером изображается правее предыдущего;

график должен быть простым, без лишних пересечений;

все события, кроме завершающего, должны иметь последующую работу (в сети не должно быть события, кроме исходного, в которое не входила бы ни одна работа);

один и тот же номер события нельзя использовать дважды;

в сетевом графике ни один путь не должен проходить дважды через одно и то же событие (если такие пути обнаружены, то это свидетельствует об ошибке);

если начало какой-либо работы зависит от окончания двух предшествующих работ, выходящих из одного события, тогда между событиями - окончаниями этих двух работ - вводится фиктивная работа (зависимость).

Использование сетевых моделей способно оказать существенную помощь в планировании и осуществлении мероприятий в рамках инновационного менеджмента, поэтому ими нельзя пренебрегать.

Введение

Глава I. Понятие и сущность сетевого планирования и управления

1.1. Сущность сетевых методов планирования и управления

1.2. Элементы и виды сетевых моделей

Глава II. Практическое применение моделей сетевого планирования и управления

2.1. Методы сетевого планирования и управления

2.2. Сетевой график

Заключение

Литература

Введение

В современных условиях все более сложными становятся социально-экономические системы. Поэтому решения, принимаемые по проблемам рационализации их развития, должны получать строгую научную основу на базе математико-экономического моделирования.

Одним из методов научного анализа является сетевое планирование.

В России работы по сетевому планированию начались в 1961-1962 гг. и быстро получили широкое распространение. Широко известны труды Антонавичуса К. А., Афанасьева В. А., Русакова А. А., Лейбмана Л. Я., Михельсона В. С., Панкратова Ю. П., Рыбальского В. И., Смирнова Т. И., Цоя Т. Н. и других. , ,

От многочисленных исследований отдельных аспектов сетевых методов планирования и управления был осуществлен переход к системному использованию новой методологии планирования. В литературе и практике все более широко закреплялось отношение к сетевому планированию не только как к методу анализа, но и как к развитой системе планирования и управления, приспособленной для очень широкого круга проблем.

За годы практического использования в России и за рубежом сетевое планирование показало эффективность в самых различных сферах экономического и организационного анализа.

Необходимость использования методов сетевого планирования в исследовании систем управления объясняется многим разнообразием моделей планирования: графики и таблицы, физические модели, логические и математические выражения, машинные модели, имитационные модели.

Особый интерес представляет сетевой метод формализованного представления систем управления, который сводится к построению сетевой модели для решения комплексной задачи управления. Основой сетевого планирования является информационная динамическая сетевая модель, в которой весь комплекс расчленяется на отдельные, четко определенные операции (работы), располагаемые в строгой технологической последовательности их выполнения. При анализе сетевой модели производится количественная, временная и стоимостная оценка выполняемых работ. Параметры задаются для каждой входящей в сеть работы их исполнителем на основе нормативных данных либо своего производственного опыта.

При имитационном динамическом моделировании строится модель, адекватно отражающая внутреннюю структуру моделируемой системы; затем поведение модели проверяется на ЭВМ на сколь угодно продолжительное время вперед. Это дает возможность исследовать поведение как системы в целом, так и ее составных частей. Имитационные динамические модели используют специфический аппарат, позволяющий отразить причинно–следственные связи между элементами системы и динамику изменений каждого элемента. Модели реальных систем обычно содержат значительное число переменных, поэтому их имитация осуществляется на компьютере.

Таким образом, тема исследования методов сетевого планирования является актуальной, т.к. графическое представление не только дает представление о сложном процессе, но и позволяет осуществить разностороннее исследование системы управления проектом.

Исходя из приведенных аргументов актуальности и темы работы, можно сформулировать цель работы – освещение методов сетевого планирования и управления в исследовании социально-экономических и политических процессов.

Для достижения цели поставлены и решены следующие задачи:

1. Проведен анализ сетевого планирования и управления.

2. Выявлена сущность сетевых методов планирования и управления

3. Рассмотрены виды методов сетевого планирования и управления, изучена область их применения.

4. Рассмотрены основы практического применения методов сетевого планирования и управления.

Предметом исследования моей курсовой работы является методология сетевого планирования и управления.

Объектом моей курсовой работы является сфера применения методологии сетевого планирования и управления.

Глава I . Понятие и сущность сетевого планирования и управления

1.1. Сущность сетевых методов планирования

Сетевое планирование - это комплекс графических и расчетных методов организационных мероприятий, обеспечивающих моделирование, анализ и динамическую перестройку плана выполнения сложных проектов и разработок, например, таких как:

· строительство и реконструкция каких-либо объектов;

· выполнение научно-исследовательских и конструкторских работ;

· подготовка производства к выпуску продукции;

· перевооружение армии.

Характерной особенностью таких проектов является то, что они состоят из ряда отдельных, элементарных работ. Они обусловливают друг друга так, что выполнение некоторых работ не может быть начато раньше, чем завершены некоторые другие.

Основная цель сетевого планирования и управления - сокращение до минимума продолжительности проекта.

Задача сетевого планирования и управления состоит в том, чтобы графически, наглядно и системно отобразить и оптимизировать последовательность и взаимозависимость работ, действий или мероприятий, обеспечивающих своевременное и планомерное достижение конечных целей.

Для отображения и алгоритмизации тех или иных действий или ситуаций используются экономико-математические модели, которые принято называть сетевыми моделями, простейшие из них - сетевые графики. С помощью сетевой модели руководитель работ или операции имеет возможность системно и масштабно представлять весь ход работ или оперативных мероприятий, управлять процессом их осуществления, а также маневрировать ресурсами.

Во всех системах сетевого планирования основным объектом моделирования служат разнообразные комплексы предстоящих работ, например социально-экономические исследования, проектные разработки, освоение, производство новых товаров и другие плановые мероприятия.

Система СПУ позволяет:

· формировать календарный план реализации некоторого комплекса работ;

· выявлять и мобилизовывать резервы времени, трудовые, материальные и денежные ресурсы;

· осуществлять управление комплексом работ по принципу «ведущего звена» с прогнозированием и предупреждением возможных срывов в ходе работ;

· повышать эффективность управления в целом при четком распределении ответственности между руководителями разных уровней и исполнителями работ;

· четко отобразить объем и структуру решаемой проблемы, выявить с любой требуемой степенью детализации работы, образующие единый комплекс процесса разрешения проблемы; определить события, совершение которых необходимо для достижения заданных целей;

· выявить и всесторонне проанализировать взаимосвязь между работами, так как в самой методике построения сетевой модели заложено точное отражение всех зависимостей, обусловленных состоянием объекта и условиями внешней и внутренней среды;

· широко использовать вычислительную технику;

· быстро обрабатывать большие массивы отчетных данных и обеспечивать руководство своевременной и исчерпывающей информацией о фактическом состоянии реализации программы;

· упростить и унифицировать отчетную документацию.

Диапазон применения СПУ весьма широк: от задач, касающихся деятельности отдельных лиц, до проектов, в которых участвуют сотни организаций и десятки тысяч людей.

Сетевая модель представляет собой описание комплекса работ (комплекса операций, проекта). Под ним понимается всякая задача, для выполнения которой необходимо осуществить достаточно большое количество разнообразных действий. Это может быть создание любого сложного объекта, разработка его проекта и процесс построения планов реализации проекта.

Использование методов сетевого планирования способствует сокращению сроков создания новых объектов на 15-20%, обеспечению рационального использования трудовых ресурсов и техники.

Наиболее эффективными областями применения сетевых методов планирования и управления является управление крупными целевыми программами, научно-техническими разработками и инвестиционными проектами, а также сложными комплексами социальных, экономических и организационно-технических мероприятий на федеральном и региональных уровнях.

1.2. Элементы и виды сетевых моделей

Сетевые модели состоят из трех следующих элементов:

· Работа (или задача)

· Событие (вехи)

· Связь (зависимость)

Работа ( A ctivity) – это процесс, который необходимо выполнить для получения определенного (заданного) результата, как правило, позволяющего приступить к последующим действиям. Термины "задача" (Task) и "работа" могут быть идентичны, однако в некоторых случаях задачами принято называть выполнение действий, выходящих за рамки непосредственного производства, например "Экспертиза проектной документации" или "Переговоры с заказчиком". Иногда понятие "задача" используют для отображения работ самого низкого уровня иерархии.

Термин «работа» используется в широком смысле слова, и может иметь следующие значения:

· действительная работа , то есть трудовой процесс, требующий затрат времени и ресурсов;

· ожидание – процесс, требующий времени, но не потребляющий ресурсы;

· зависимость или «фиктивная работа» - работа, не требующая времени и ресурсов, но указывающая, что возможность начала одной работы непосредственно зависит от результатов другой.

Событие ( N ode) – момент изменения состояния системы, в частности, момент начала или окончания любой работы по своей сути является событием, а каждая работа обязательно имеет начальное и конечное события. Работа – это действие или процесс, которые должны произойти для перехода от начального события к конечному. Некоторые события являются общими для нескольких работ, в этом случае свершение события является моментом времени, соответствующим завершению последней из работ, непосредственно предшествующих данному событию.

Веха ( M ilestone) – разновидность события, характеризующая достижение значимых промежуточных результатов (отдельных этапов проекта).

Связь ( L ink) – это логическая зависимость между сроками выполнения отдельных работ и наступления событий. Если для начала выполнения какой-либо работы необходимо завершение другой работы, говорят, что эти работы соединены связью (связаны). Связи по своему существу могут определяться технологией работ, либо их организацией. Соответственно различают технологические и организационные виды связей. Связи могут называться также зависимостями (Relationship), или фиктивными работами (Dummy Activity). Связям не требуются исполнители и прямые затраты времени, однако они могут характеризоваться продолжительностью растяжения (положительным, отрицательным или нулевым).

При расчетах для сетевой модели определяются следующие характеристики ее элементов.

Характеристики событий

1. Ранний срок свершения события tp( 0) = 0, tР(j) =тахi{tр(i) + t(ij)}, j=1--N характеризует самый ранний срок завершения всех путей, в него входящих. Этот показатель определяется «прямым ходом» по графу модели, начиная с начального события сети.

2. Поздний срок свершения события t п (N) = t р (N), t п (i) = min j {(t п (j)-t(ij)} , i=1--(N-1) характеризует самый поздний срок, после которого остается ровно столько времени, сколько требуется для завершения всех путей, следующих за этим событием. Этот показатель определяется «обратным ходом» по графу модели, начиная с завершающего события сети.

3. Резерв времени события R(T) = t п (i) - t р (i) показывает, на какой максимальный срок можно задержать наступление этого события, не вызывая при этом увеличения срока выполнения всего комплекса работ.

Резервы времени для событий на критическом пути равны нулю, R(i) = 0.

Характеристики работы (i,j)

· Ранний срок начала работы

· Ранний срок окончания работы

· Поздний срок начала работы

· Поздний срок окончания работы

Резервы времени работ:

· полный резерв - максимальный запас времени, на который можно отсрочить начало или увеличить длительность работы без увеличения длительности критического пути. Работы на критическом пути не имеют полного резерва времени;

· частный резерв -часть полного резерва, на которую можно увеличить продолжительность работы, не изменив позднего срока ее начального события;

· свободный резерв -максимальный запас времени, на который можно задержать начало работы или (если она началась в ранний срок) увеличит ее продолжительность, не изменяя ранних сроков начала последующих работ;

· независимый резерв - запас времени, при котором все предшествующие работы заканчиваются в поздние сроки, а все последующие - начинаются в ранние сроки. Использование этого резерва не влияет на величину резервов времени других работ.

Замечания Работы, лежащие на критическом пути, резервов времени не имеют. Если на критическом пути L кр лежит начальное событие iработы (i,j), то R п (i,j)=R l (i,j). Если на L кр лежит конечное событие j работы (i,j), то R п (i,j)=R c (i,j). Если на L кр лежат и событие i, и событие j работы (i,j), а сама работа не принадлежит критическому пути, то R п (i,j)=R c (i,j)=R п (i,j)

Характеристики путей

Продолжительность пути равна сумме продолжительностей составляющих ее работ.

Резерв времени пути равен разности между длинами критического пути и рассматриваемого пути.

Резерв времени пути показывает, насколько может увеличиться продолжительность работ, составляющих данный путь, без изменения продолжительности срока выполнения всех работ.

В сетевой модели можно выделить так называемый критический путь. Критический путь L кр состоит из работ (i,j), у которых полный резерв времени равен нулю R п (i,j)=0 , кроме этого, резерв времени R(i) всех событий i на критическом равен 0. Длина критического пути определяет величину наиболее длинного пути от начального до конечного события сети и равна.

Виды сетевых моделей и графиков

По способу представления информации существуют два принципиально различных вида сетевых моделей (графиков):

1. Сеть вида "вершина – событие" (" A ctivity-on- A rrow"): вершины соответствуют событиям, а соединяющие их дуги – работам. Связи представлены пунктирными стрелками, которые так же, как и работы, являются направленными дугами графа. В некоторых источниках сетевые графики вида "вершина - событие" называются "американскими".

2. Сеть вида "вершина – работа" (" A ctivity-on- N ode"): вершины соответствуют работам, а дуги – связям. События (главным образом вехи) при необходимости отображаются какими-либо фигурами, например – треугольниками. Сетевые графики данного вида иногда называют "французскими".

В последнее время сетевая модель вида "вершина-работа" применяется значительно чаще, чем сеть вида "вершина-событие".

Сетевая модель и сетевой график могут отображаться как в масштабе, так и вне масштаба времени. Сетевые модели, разрабатываемые на этапе планирования для расчета параметров работ, как правило, сложно показать в масштабе времени. В отличие от них модели (графики), предназначенные для отображения принятого календарного плана работ и контроля за его выполнением, для наглядности привязывают к временной шкале.

Если временные параметры расписания рассчитаны, откорректированы и утверждены, то можно говорить об окончании этапа планирования и переходе к непосредственной реализации проекта.

Глава II . Методы сетевого планирования и управления

2.1. Методы сетевого планирования и управления

Система методов сетевого планирования и управления (СПУ) – совокупность методов планирования и управления разработкой народнохозяйственных комплексов, научными исследованиями, конструкторскими и технологическими роботами, разработкой изделий нового вида, строительством и реконструкцией зданий и сооружений, капитальным ремонтом основных фондов путем применения сетевых графиков.

Методы сетевого планирования:

  • Детерминированные сетевые методы
    • Диаграмма Ганта с дополнительным временным люфтом 10-20%
    • Метод критического пути (МКП)
  • Вероятностные сетевые методы
    • Неальтернативные

Метод статистических испытаний (метод Монте-Карло)

Метод оценки и пересмотра планов (ПЕРТ, PERT)

  • Альтернативные

Метод графической оценки и анализа (GERT)

Диаграмма Ганта (англ.Gantt chart , также ленточная диаграмма , график Ганта ) - это популярный тип столбчатых диаграмм, который используется для иллюстрации плана, графика работ по какому-либо проекту. Является одним из методов планирования проектов.

Пример диаграммы Ганта 1

Пример диаграммы Ганта 2

Первый формат диаграммы был разработан Генри Л. Гантом (Henry L. Gantt , 1861‒1919) в 1910 году.

Диаграмма Ганта представляет собой отрезки (графические плашки), размещенные на горизонтальной шкале времени. Каждый отрезок соответствует отдельной задаче или подзадаче. Задачи и подзадачи, составляющие план, размещаются по вертикали. Начало, конец и длина отрезка на шкале времени соответствуют началу, концу и длительности задачи. На некоторых диаграммах Ганта также показывается зависимость между задачами. Диаграмма может использоваться для представления текущего состояния выполнения работ: часть прямоугольника, отвечающего задаче, заштриховывается, отмечая процент выполнения задачи; показывается вертикальная линия, отвечающая моменту «сегодня».

Часто диаграмма Ганта соседствует с таблицей со списком работ, строки которой соответствуют отдельно взятой задаче, отображенной на диаграмме, а столбцы содержат дополнительную информацию о задаче.

Метод критического пути - эффективный инструмент планирования расписания и управления сроками проекта.

В основе метода лежит определение наиболее длительной последовательности задач от начала проекта до его окончания с учетом их взаимосвязи. Задачи лежащие на критическом пути (критические задачи ) имеют нулевой резерв времени выполнения и в случае изменения их длительности изменяются сроки всего проекта. В связи с этим при выполнении проекта критические задачи требуют более тщательного контроля, в частности, своевременного выявления проблем и рисков, влияющих на сроки их выполнения и, следовательно, на сроки выполнения проекта в целом. В процессе выполнения проекта критический путь проекта может меняться, так как при изменении длительности задач некоторые из них могут оказаться на критическом пути.

Расчёт критического пути

Если начальный момент выполнения проекта положить равным нулю, то сроки окончания у первых работ сетевого графика, то есть работ, выходящих из первого события, будет определяться их продолжительностью. Время наступления любого события следует положить равным самому позднему времени окончания непосредственно входящих в это событие работ: считается, что работа в сетевом графике не может начаться, пока не завершены все предшествующие для нее работы.

В процессе решения - методом «эстафеты» - просматриваются все дуги сетевого графика. Пусть очередная просматриваемая дуга связывает вершины i и j. Если для вершины i определено предположительное время его свершения и это время плюс продолжительность работы больше предположительного времени наступления события j, тогда для вершины j устанавливается новое предположительное время наступления, равное предположительному времени наступления события i плюс продолжительность работы рассматриваемой дуги. Решение заканчивается, когда очередной просмотр дуг не вызывает ни одного исправления предположительного значения времени начала/окончания работ/событий. В результате может быть определено событие с самым поздним временем наступления, и путь от начальной вершины в эту конечную будет считаться критическим и определять продолжительность выполнения проекта. Наряду с общей продолжительностью выполнения проекта, критический путь определяет другие характеристики сетевого графика, играющие важную роль при планировании реализации нововведения, минимизации сроков и расходов на разработку.

Суть решения задачи сокращения сетевого графика сводится к привлечению дополнительных ресурсов к выполнению работ, лежащих на критическом пути, снятием работ, не лежащих на критическом пути, запараллеливанием работ.

Метод Монте-Карло (методы Монте-Карло, ММК) - общее название группы численных методов, основанных на получении большого числа реализаций стохастического (случайного) процесса, который формируется таким образом, чтобы его вероятностные характеристики совпадали с аналогичными величинами решаемой задачи. Используется для решения задач в различных областях физики, математики, экономики, оптимизации, теории управления и др.

Интегрирование методом Монте-Карло


Рисунок 1. Численное интегрирование функции детерминистическим методом

Предположим, необходимо взять интеграл от некоторой функции. Воспользуемся неформальным геометрическим описанием интеграла и будем понимать его как площадь под графиком этой функции.

Для определения этой площади можно воспользоваться одним из обычных численных методов интегрирования: разбить отрезок на подотрезки, подсчитать площадь под графиком функции на каждом из них и сложить. Предположим, что для функции, представленной на рисунке 2, достаточно разбиения на 25 отрезков и, следовательно, вычисления 25 значений функции. Представим теперь, мы имеем дело с n -мерной функцией. Тогда нам необходимо 25 n отрезков и столько же вычислений значения функции. При размерности функции больше 10 задача становится огромной. Поскольку пространства большой размерности встречаются, в частности, в задачах теории струн, а также многих других физических задачах, где имеются системы со многими степенями свободы, необходимо иметь метод решения, вычислительная сложность которого бы не столь сильно зависела от размерности. Именно таким свойством обладает метод Монте-Карло.

Обычный алгоритм Монте-Карло интегрирования

Рисунок 2. Численное интегрирование функции методом Монте-Карло

Для определения площади под графиком функции можно использовать следующий стохастический алгоритм:

Для малого числа измерений интегрируемой функции производительность Монте-Карло интегрирования гораздо ниже, чем производительность детерминированных методов. Тем не менее, в некоторых случаях, когда функция задана неявно, а необходимо определить область, заданную в виде сложных неравенств, стохастический метод может оказаться более предпочтительным.

Использование выборки по значимости

Очевидно, что точность вычислений можно увеличить, если область, ограничивающая искомую функцию, будет максимально к ней приближена. Для этого необходимо использовать случайные величины с распределением, форма которого максимально близка к форме интегрируемой функции. На этом основан один из методов улучшения сходимости в вычислениях методом Монте-Карло: выборка по значимости.

Program Evaluation and Review Technique (сокращенно PERT) - техника оценки и анализа программ, которая используется при управлении проектами. Была разработана в 1958 году консалтинговой фирмой «Буз, Ален и Гамильтон» совместно с корпорацией «Локхид» по заказу Подразделения специальных проектов ВМС США в составе Министерства Обороны США для проекта создания ракетной системы «Поларис» (Polaris). Проект «Поларис» был ответом на кризис, наступивший после запуска Советским Союзом первого космического спутника.

Пример сетевой PERT диаграммы для проекта продолжительностью в семь месяцев с пятью промежуточными точками (от 10 до 50) и шестью деятельностями (от A до F)

PERT - это способ анализа задач, необходимых для выполнения проекта. В особенности, анализа времени, которое требуется для выполнения каждой отдельной задачи, а также определение минимального необходимого времени для выполнения всего проекта.

PERT был разработан в 50-ые годы главным образом для упрощения планирования и составления графиков больших и сложных проектов. Метод подразумевал наличие неопределённости, давая возможность разработать рабочий график проекта без точного знания деталей и необходимого времени для всех его составляющих.

Самая известная часть PERT - это «Сети PERT» - графики соединённых между собой временных линий. PERT предназначен для очень масштабных, единовременных, сложных, нерутинных проектов.

Диаграмма представляет собой множество точек-вершин вместе с соединяющими их ориентированными дугами. Каждая из них как направленный отрезок имеет начало и конец, причем модель содержит только одну из пары симметричных дуг (от вершины 1 к вершине 2 и от вершины 2 к вершине 1). Всякой дуге, рассматриваемой в качестве какой-то работы из числа нужных для осуществления проекта, приписываются определенные количественные характеристики. Это - объемы выделяемых на нее ресурсов и, соответственно, ее ожидаемая продолжительность (длина дуги). Любая вершина интерпретируется как событие завершения работ, представленных дугами, которые входят в нее, и одновременно начала работ, отображаемых дугами, исходящими оттуда. Таким образом, фиксируется что ни к одной из работ нельзя приступить прежде чем будут выполнены все предшествующие ей согласно технологии реализации проекта. Факт начала этого процесса - вершина без входящих, а окончание - без исходящих дуг. Остальные вершины должны иметь и те, и другие. Последовательность дуг, в которой конец каждой предшествующей совпадает с началом последующей, трактуется как путь от отправной вершины к завершающей, а сумма длин таких дуг - как его продолжительность. Обычно начало и конец реализации проекта связаны множеством путей, длины которых различаются. Наибольшая определяет длительность всего этого проекта, минимально возможную при зафиксированных характеристиках дуг графа. Соответствующий путь - критический и в каждый момент времени контролировать нужно состояние именно тех работ, которые «лежат» на нем.

Метод графической оценки и анализа (GERT , англ.Graphical Evaluation and Review Technique ) - альтернативный вероятностный метод сетевого планирования, применяется в случаях организации работ, когда последующие задачи могут начинаться после завершения только некоторого числа из предшествующих задач , причём не все задачи, представленные на сетевой модели, должны быть выполнены для завершения проекта.
Разработан в США в 1966 году.
Основу применения метода GERT составляет использование альтернативных сетей, называемых GERT-cетями. Они позволяют более адекватно задавать сложные процессы строительного производства в тех случаях, когда затруднительно или невозможно (по объективным причинам) однозначно определить, какие именно работы и в какой последовательности должны быть выполнены для достижения цели проекта (то есть существует многовариантность реализации проекта).
Расчёт GERT-сетей, моделирующих реальные процессы, чрезвычайно сложен, однако программное обеспечение для вычисления сетевых моделей такого типа в настоящее время, к сожалению, не распространено.

2.2. Сетевой график

Сетевой график основан на использовании математической модели - графа. Графом (устаревшие синонимы: сеть, лабиринт, карта и т.д.) математики называют "множество вершин и набор упорядоченных или неупорядоченных пар вершин". Говоря более привычным для студента (но менее точным) языком, граф - это набор кружков (прямоугольников, треугольников и проч.), соединенных направленными или ненаправленными отрезками. В этом случае сами кружки (или другие используемые фигуры) по терминологии теории графов будут называться "вершинами", а соединяющие их ненаправленные отрезки - "ребрами", направленные (стрелки) - "дугами". Если все отрезки являются направленными, граф называется ориентированным, если ненаправленными - неориентированным.

Наиболее распространенный тип сетевого графика работ представляет систему кружков и соединяющих их направленных отрезков (стрелок), где стрелки отображают сами работы, а кружки на их концах ("события") - начало или окончание этих работ.

Рисунок показывает упрощенно лишь одну из возможных конфигураций сетевого графика, без данных, характеризующих сами планируемые работы. Фактически на сетевом графике приводится множество сведений о производимых работах. Над каждой стрелкой пишется наименование работы, под стрелкой - продолжительность, этой работы (обычно в днях).

В графике могут использоваться пунктирные стрелки - это так называемые "зависимости" (фиктивные работы), не требующие ни времени, ни ресурсов.

Они указывают на то, что "событие", на которое направлена пунктирная стрелка, может происходить только после свершения события, из которого исходит эта стрелка.

В сетевом графике не должно быть тупиковых участков, каждое событие должно соединяться сплошной или пунктирной стрелкой (или стрелками) с каким-либо предшествующим (одним или несколькими) я последующим (одним или несколькими) событиями.

Нумерация событий производится примерно в той последовательности, в какой они будут происходить. Начальное событие располагается обычно с левой стороны графика, конечное - с правой.

Последовательность стрелок, в которой начало каждой последующей стрелки совпадает с концом предыдущей, называется путем. Путь обозначается в виде последовательности номеров событий.

В сетевом графике между начальным и конечным событиями может быть несколько путей. Путь, имеющий наибольшую продолжительность, называется критическим. Критический путь определяет общую продолжительность работ. Все остальные пути имеют меньшую продолжительность, и поэтому в них выполняемое работы имеют резервы времени.

Критический путь обозначается на сетевом графике утолщенными или двойными линиями (стрелками).

Особое значение при составлении сетевого графика имеют два понятия:

  • Раннее начало работы - срок, раньше которого нельзя начать данную работу, не нарушив принятой технологической последовательности. Он определяется наиболее долгим путем от исходного события до начала данной работы
  • Позднее окончание работы - самый поздний срок окончания работы, при котором не увеличивается общая продолжительность работ. Он определяется самым коротким путем от данного события до завершения всех работ.

При оценке резервов времени удобно использовать еще два вспомогательных понятия:

  • Раннее окончание - срок, раньше которого нельзя закончить данную работу. Он равен раннему началу плюс продолжительность данной работы
  • Позднее начало - срок, позже которого нельзя начинать данную работу, не увеличив общую продолжительность проекта. Он равен позднему окончанию минус продолжительность данной работы.

Если событие является окончанием лишь одной работы (т.е. в него направлена только одна стрелка), то раннее окончание этой работы совпадает с ранним началом последующей.

Общий (полный) резерв - это наибольшее время, на которое можно задержать выполнение данной работы, не увеличивая общую продолжительность работ. Он определяется разностью между поздним и ранним началом (или поздним и ранним окончанием - что тоже самое).

Частный (свободный) резерв - это наибольшее время, на которое можно задержать выполнение данной работы, не меняя раннего начала последующей. Этот резерв возможен только тогда, когда в событие входят две или более работы (зависимости), т.е. на него направлены две или более стрелки (сплошные или пунктирные). Тогда лишь у одной из этих работ раннее окончание будет совпадать с ранним началом последующей работы, для остальных же это будут разные значения. Эта разница у каждой работы и будет ее частным резервом.

Кроме описанного типа сетевых графиков, в котором вершины графа ("кружки") отображают события, а стрелки - работы, существует другой тип, в котором вершинами являются работы. Различие между этими типами непринципиальное - все основные понятия (раннее начало, позднее окончание, общие и частные резервы, критический путь и т.д.) сохраняются неизменными, отличаются лишь способы их записи.

Построение сетевого графика этого типа основано на том, что раннее начало последующей работы равно раннему окончанию предыдущей. Если данной работе предшествует несколько работ, ее раннее качало должно быть равно максимальному раннему окончанию предыдущих работ. Расчет поздних сроков ведется в обратном порядке - от завершающий к исходной, как и в сетевом графике "вершины - события". У завершающей работы позднее и раннее окончание совпадают и отражают продолжительность критического пути. Позднее начало последующей работы равно позднему окончанию предыдущей. Если за данной работой следует несколько работ, то определяющим является минимальное значение из поздних начал.

Сетевые графики "вершины - работы" появились позже графиков "вершины - события", поэтому они несколько менее известны и сравнительно реже описываются в учебной и справочной литературе. Тем не менее, они имеют свои преимущества, в частности их легче строить и легче корректировать. При корректировке графиков ""вершены - работы" их конфигурация не меняется, у графиков же "вершины - события" такие изменения исключить не удается. Однако в настоящее время составление и корректировка сетевых графиков автоматизированы, и для пользователя, которому важно знать лишь последовательность работ и их резервы времени, не имеет особого значения, каким способом сделан график, т.е. какого он типа. В современных специализированных пакетах компьютерных программ планирования и оперативного управления в основном используется тип "вершины - работы".

Корректировка сетевых графиков производится как на этапе их составления, так и использования. Она состоит в оптимизации строительных работ по времени и по ресурсам (в частности по движению рабочей силы). Если, например, сетевой график не обеспечивает выполнения работ в необходимые сроки (нормативные или установленные контрактом) производится его корректировка по времени, т.е. сокращается продолжительность критического пути. Обычно это делается:

  • за счет резервов времени некритических работ и соответствующего перераспределения ресурсов;
  • за счет привлечения дополнительных ресурсов;
  • за счет изменения организационно-технологической последовательности и взаимосвязи работ.

В последнем случае у графиков "вершины - события" приходится менять их конфигурацию (топологию).

Корректировка по ресурсам производится путем построения линейных календарных графиков по ранним началам, соответствующих тому или иному варианту сетевого графика, и корректировки этого варианта.

При построении сетевых графиков необходимо соблюдать ряд правил:

1. В сети не должно быть событий, из которых не выходит ни одной работы, если только эти события не являются для данной сети завершающими.

2. В сети не должно быть событий, в которые не входит ни одной работы, если только эти события не являются для данной сети исходными.

3. В сети не должно быть замкнутых контуров, путей, соединяющих какое-либо событие с ним же самим.

4. В сети не должно быть работ и событий, имеющих одинаковые шифры.


Пример изображения совмещенных работ

6. Если для выполнения какой-либо работы необходимо получить результаты не всех входящих в ее начальное событие работ, а только части из них, то для этой работы нужно ввести новое начальное событие, и соединить его с прежним начальным событием фиктивной работой.



Примеры укрупнения фрагментов сетевой модели

а) простейший случай для группы работ с одной входной и выходной работой (до укрупнения); б) тоже, после укрупнения

Анализируя сетевые графики, можно заметить, что они отлича­ются не только количеством событий, но и числом взаимосвязей между ними. Сложность сетевого графика оценивается коэффициентом слож­ности. Коэффициент сложности представляет собой отношение количества работ сетевого графика к количеству событий и определя­ется по формуле:

Где К – коэффициент сложности сетевого графика;
Р и С – количество работ и событий, ед.
Сетевые графики, имеющие коэффициент сложности от 1,0 до 1,5, являются простыми, от 1,51 до 2,0 – средней сложности, более 2,1 – сложными.

Приступая к построению сетевого графика, следует установить:

1. какие работы должны быть завершены ранее, чем начнется дан­ная работа;

2. какие работы могут быть начаты после завершения данной ра­боты;

3. какие работы могут выполняться одновременно с данной работой. Кроме того, надо придерживаться общих положений и правил:

Сеть вычерчивается слева направо (это же направление имеют и стрелки-работы);

Каждое событие с большим порядковым номером изображается правее предыдущего;

График должен быть простым, без лишних пересечений;

Все события, кроме завершающего, должны иметь последую­щую работу (в сети не должно быть события, кроме исходного, в которое не входила бы ни одна работа);

Один и тот же номер события нельзя использовать дважды;

В сетевом графике ни один путь не должен проходить дважды через одно и то же событие (если такие пути обнаружены, то это свидетельствует об ошибке);

Если начало какой-либо работы зависит от окончания двух предшествующих работ, выходящих из одного события, тогда между событиями – окончаниями этих двух работ – вводится фиктивная работа (зависимость).

Заключение

Цель сетевого планирования – представить любой проект в виде последовательности связанных между собой задач. В итоге возникает иерархическая структура проекта.

Любая работа может быть оценена по времени, необходимому для ее выполнения. Пространство, которым представляется на схеме время, должно соответствовать тому объему работ, который должен быть произведен в это время. Использование этих двух принципов позволяет понять всю систему; при этом становится возможным графическое представление любого рода работ, общим мерилом которых является время.

Сетевое планирование как часть системы управления проектами стало объектом внимания и внедрения по причине обострения конкуренции и падения прибыли. Уже давно интересуются им строительные компании, отрасли информационных технологий и телекоммуникаций. Сейчас растет спрос со стороны банков и металлургов. Однако, несмотря на всю свою технологичность и четкую логику, сетевое планирование не становится реальностью в тех компаниях, где не созданы предпосылки для его внедрения.

Сетевые графики, составленные тщательно, но без учета рисков имеют низкую вероятность успешного исполнения. Технология сетевого планирования включает и работу с рисками. Часть рисков можно нейтрализовать, если заранее предусмотреть планы работы с ними.

Основным плановым документом в системе СПУ является сетевой график (сетевая модель или сеть), представляющий собой информационно-динамическую модель, в которой отражаются взаимосвязи и результаты всех работ, необходимых для достижения конечной цели разработки.

Преимущества моделей сетевого планирования и управления обеспечивают своевременное внесение корректив в процесс управления и в работу различных управленческих органов, эффективное предвидение будущего и надлежащего воздействия на ход выполнения работ. Обеспечиваются также необходимые условия для применения опыта, творческих возможностей человека на этапах постановки задач, корректировки хода их решения и оценки конечных результатов. Управленческие работники освобождаются от рутинной деятельности.

Использование компьютерных графиков в организации и проведении оперативных совещаний позволяет с высокой степенью четкости, ясности, убедительности и предметности своевременно решать возникающие вопросы.

Система сетевого планирования и управления является комплексом расчетных алгоритмов, организационных мероприятий, контрольных и координационных приемов. Она представляет собой средство динамического и сбалансированного представления и анализа сложных социально-экономических программ. Целями функционирования системы являются: выявление и мобилизация резервов времени и материальных ресурсов, скрытых в рациональной организации социально-экономических процессов; осуществление управления программой с постоянной концентрацией внимания на решении главных, наиболее значимых задач; прогнозирование и предупреждение возможных сбоев в ходе программы; повышение эффективности управления в целом при четком распределении ответственности между руководителями разных уровней.

Литература

1. Попов В. М., Солодков Г. П., Топилин В. М. Системный анализ в управлении социально-экономическими и политическими процессами. – Р-н-Д.: СКАГС, 2002.

2. Зуховицкий С. И., Радчик И. А., Математические методы сетевого планирования, М., 1965.

3.

4. Сетевые графики в планировании, М., 1967.

5. Сетевые модели и задачи управления, М., 1967.

6. Модер Дж., Филлипс С., Метод сетевого планирования в организации работ, пер. с англ., М. - Л., 1966.

7. Основные положения по разработке и применению систем сетевого планирования и управления, 2 изд., М., 1967.

8. Ребрин Ю.И. Основы экономики и управления производством. Конспект лекций, Таганрог: Изд-во ТРТУ, 2000.

9. Алешина С. Наука плетения сетей // Секрет фирмы. № 47 (86) 13.12.2004.

10. Кремер Н.Ш., Путко Б.А., Тришин И.М., Фридман М.Н./Исследование операций в экономике: Учебное пособие для ВУЗов/ под ред. Проф. Кремера Н.Ш– М.: ЮНИТИ, 2000.

11. Рыбальский В. И. Автоматизированные системы управления строительством. – Киев, Высш. шк., 1979.

12. Рыкунов В. И. Основы управления: Монография. – М.: Изограф, 2000.

13. Сытник В. Ф. АСУП и оптимальное планирование. – Киев.: Выща шк., 1978.

14. Прыкин Б. В. и др. Основы управления. Производственно-строительные системы: Учебник для вузов. – М.: Стройиздат, 1991.

15. Павловский Ю. Н. Декомпозиция моделей управляемых систем- М.: Наука, 1979.

16. Потапов А. Б. Технология творчества. – М.: НТК «Метод», 1992.

17. Опнер С. Л. Системный анализ для решения деловых и промышленных проблем. Пер. с англ. – М.: Сов. Радио, 1969.

18. Ларин А. А. Теоретические основы управления. Г. 1.: Процессы и системы управления. – М.: РВСН, 1994.


Гребнев Е. Т. Управленческие нововведения. – М.: Экономика, 1983

Основы построения автоматизированных систем управления/ Под ред. В. И. Костюка. – М.: Сов. Радио, 1977

Кремер Н.Ш., Путко Б.А., Тришин И.М., Фридман М. Н./Исследование операций в экономике: Учебное пособие для ВУЗов/ под ред. Проф. Кремера Н.Ш– М.: ЮНИТИ, 2000– С291 – 294

Основные положения по разработке и применению систем сетевого планирования и управления, 2 изд., М., 1967.

Сетевые модели и задачи управления, М., 1967.

Модер Дж., Филлипс С., Метод сетевого планирования в организации работ, пер. с англ., М. - Л., 1966.

Сетевые графики в планировании, М., 1967.

Ковалева Л.Ф. “Математическая логика и теория графов”/МЭСИ, 1977

Зуховицкий С. И., Радчик И. А., Математические методы сетевого планирования, М., 1965.

Международный университет природы, общества и человека
«Дубна»

Кафедра системного анализа и управления

Реферат по дисциплине

«Разработка управленческих решений»

«Сетевое управление
и планирование»

Выполнил: студент
Шадров К.Н., гр. 4111

Проверил:
Бугров А.Н.


Актуальность данной работы обусловлена необходимостью грамотного управления крупными народнохозяйственными комплексами и проектами, научными исследованиями, конструкторской и технологической подготовкой производства, новых видов изделий, строительством и реконструкцией, капитальным ремонтом основных фондов путём применения сетевых моделей.

Цель работы - описать и усвоить, что, в общем, представляет собой сетевое планирование и управление (СПУ).

Для достижения поставленной цели следует решить следующие задачи :

Осветить историю СПУ,

Показать, в чём состоит сущность и назначение СПУ,

Дать определение основным элементам СПУ,

Указать правила построения и упорядочения сетевых графиков,

Описать временные показатели СПУ,

Дать правила оптимизации сетевого графика,

Показать построение сетевого графика в масштабе времени.

Методики сетевого планирования были разработаны в конце 50-х годов в США. В 1956 г. М. Уолкер из фирмы «Дюпон», исследуя возможности более эффективного использования принадлежащей фирме вычислительной машины Univac, объединил свои усилия с Д. Келли из группы планирования капитального строительства фирмы «Ремингтон Рэнд». Они попытались использовать ЭВМ для составления планов-графиков крупных комплексов работ по модернизации заводов фирмы «Дюпон». В результате был создан рациональный и простой метод описания проекта с использованием ЭВМ. Первоначально он был назван методом Уолкера-Келли, а позже получил название метода критического пути - МКП (или CPM - CriticalPathMethod).

Параллельно и независимо в военно-морских силах США был создан метод анализа и оценки программ PERT (Program Evaluation and Review Technique). Данный метод был разработан корпорацией «Локхид» и консалтинговой фирмой «Буз, Аллен энд Гамильтон» для реализации проекта разработки ракетной системы «Поларис», объединяющего около 3800 основных подрядчиков и состоящего из 60 тыс. операций. Использование метода PERT позволило руководству программы точно знать, что требуется делать в каждый момент времени и кто именно должен это делать, а также вероятность своевременного завершения отдельных операций. Руководство программой оказалось настолько успешным, что проект удалось завершить на два года раньше запланированного срока. Благодаря такому успешному началу данный метод управления вскоре стал использоваться для планирования проектов во всех вооруженных силах США. Методика отлично себя зарекомендовала при координации работ, выполняемых различными подрядчиками в рамках крупных проектов по разработке новых видов вооружения.

Крупные промышленные корпорации начали применение подобной методики управления практически одновременно с военными для разработки новых видов продукции и модернизации производства. Широкое применение методика планирования работ на основе проекта получила в строительстве. Например, для управления проектом сооружения гидроэлектростанции на реке Черчилль в Ньюфаундленде (полуостров Лабрадор). Стоимость проекта составила 950 млн. долларов. Гидроэлектростанция строилась с 1967 по 1976 г. Этот проект включал более 100 строительных контрактов, причем стоимость некоторых из них достигала 76 млн. долларов. В 1974 году ход работ по проекту опережал расписание на 18 месяцев и укладывался в плановую оценку затрат. Заказчиком проекта была корпорация Churchill Falls Labrador Corp., которая для разработки проекта и управления строительством наняла фирму Acress Canadian Betchel.

По существу, значительный выигрыш по времени образовался от применения точных математических методов в управлении сложными комплексами работ, что стало возможным благодаря развитию вычислительной техники. Однако первые ЭВМ были дороги и доступны только крупным организациям. Таким образом, исторически первые проекты представляли из себя грандиозные по масштабам работ, количеству исполнителей и капиталовложениям государственные программы.

Первоначально, крупные компании осуществляли разработку программного обеспечения для поддержки собственных проектов, но вскоре первые системы управления проектами появились и на рынке программного обеспечения. Системы, стоявшие у истоков планирования, разрабатывались для мощных больших компьютеров и сетей мини-ЭВМ.

Основными показателями систем этого класса являлись их высокая мощность и, в то же время, способность достаточно детально описывать проекты, используя сложные методы сетевого планирования. Эти системы были ориентированы на высокопрофессиональных менеджеров, управляющих разработкой крупнейших проектов, хорошо знакомых с алгоритмами сетевого планирования и специфической терминологией. Как правило, разработка проекта и консультации по управлению проектом осуществлялись специальными консалтинговыми фирмами.

Этап наиболее бурного развития систем для управления проектами начался с появлением персональных компьютеров, когда компьютер стал рабочим инструментом для широкого круга руководителей. Значительное расширение круга пользователей управленческих систем породило потребность создания систем для управления проектами нового типа, одним из важнейших показателей таких систем являлась простота использования. Управленческие системы нового поколения разрабатывались как средство управления проектом, понятное любому менеджеру, не требующее специальной подготовки и обеспечивающее лёгкое и быстрое включение в работу. Time Line принадлежит именно к этому классу систем. Разработчики новых версий систем этого класса, стараясь сохранить внешнюю простоту систем, неизменно расширяли их функциональные возможности и мощность, и при этом сохраняли низкие цены, делавшие системы доступными фирмам практически любого уровня.

В настоящее время сложились глубокие традиции использования систем управления проектами во многих областях жизнедеятельности. Причем, основную долю среди планируемых проектов составляют небольшие по размерам проекты. Например, исследования, проведенные еженедельником InfoWorld, показали, что пятидесяти процентам пользователей в США требуются системы, позволяющие поддерживать планы, состоящие из 500-1 000 работ и только 28 процентов пользователей разрабатывают расписания, содержащие более 1 000 работ. Что касается ресурсов, то 38 процентам пользователей приходится управлять 50-100 видами ресурсов в рамках проекта, и только 28 процентам пользователей требуется контролировать более чем 100 видов ресурсов. В результате исследований были определены также средние размеры расписаний проектов: для малых проектов - 81 работа и 14 видов ресурсов, для средних - 417 работ и 47 видов ресурсов, для крупных проектов - 1 198 работ и 165 видов ресурсов. Данные цифры могут служить отправной точкой для менеджера, обдумывающего полезность перехода на проектную форму управления деятельностью собственной организации. Как видим, применение системы управления проектами на практике может быть эффективным и для очень небольших проектов.

Естественно, что с расширением круга пользователей систем проектного менеджмента происходит расширение методов и приемов их использования. Западные отраслевые журналы регулярно публикуют статьи, посвященные системам для управления проектами, включающие советы пользователям таких систем и анализ использования методики сетевого планирования для решения задач в различных сферах управления.

В России работы по сетевому управлению начались в 60-х годах. Тогда методы СПУ нашли применение в строительстве и научных разработках. В дальнейшем сетевые методы стали широко применяться и в других областях народного хозяйства.

Чем сложнее и больше планируемая работа или проект, тем сложнее задачи оперативного планирования, контроля и управления. В этих условиях применение календарного графи­ка не всегда может быть достаточно удовлет­ворительным, особенно для крупного и сложного объекта, посколь­ку не позволяет обоснованно и оперативно планировать, выбирать оптимальный вариант продолжительности выпол­нения работ, использовать резервы и корректировать график в хо­де деятельности.

Перечисленные недостатки линейного календарного графика в значительной мере устраняются при использовании системы се­тевых моделей, которые позволяют анализировать график, выяв­лять резервы и использовать электронно-вычислительную технику. Применение сетевых моделей обеспечивает продуманную деталь­ную организацию работ, создает условия для эффек­тивного руководства.

Весь процесс находит отражение в графической модели, называемой сетевым графиком. В сетевом графике учи­тываются все работы от проектирования до ввода в действие, оп­ределяются наиболее важные, критические работы, от выполне­ния которых зависит срок окончания проекта. В процессе деятельности появляется возможность корректировать план, вно­сить изменения, обеспечивать непрерывность в оперативном пла­нировании. Существующие методы анализа сетевого графика поз­воляют оценить степень влияния вносимых изменений на ход осу­ществления программы, прогнозировать состояние работ на будущее. Сетевой график точно указывает на работы, от которых за­висит срок выполнения программы.